
Chapter 10

Poisson processes

10.1 Overview

The Binomial distribution and the geometric distribution describe the be-
havior of two random variables derived from the random mechanism that I
have called coin tossing. The name coin tossing describes the whole mecha-
nism; the names Binomial and geometric refer to particular aspects of that
mechanism. If we increase the tossing rate to n tosses per second and de-
crease the probability of heads to a small p, while keeping the expected
number of heads per second fixed at λ = np, the number of heads in a t
second interval will have approximately a Bin(nt, p) distribution, which is
close to the Poisson(λt). Also, the numbers of heads tossed during disjoint
time intervals will still be independent random variables. In the limit, as
n→∞, we get an idealization called a Poisson process.

Remark. The double use of the name Poisson is unfortunate. Much
confusion would be avoided if we all agreed to refer to the mechanism
as “idealized-very-fast-coin-tossing”, or some such. Then the Poisson
distribution would have the same relationship to idealized-very-
fast-coin-tossing as the Binomial distribution has to coin-tossing.
Conversely, I could create more confusion by renaming coin tossing as
“the binomial process”. Neither suggestion is likely to be adopted, so
you should just get used to having two closely related objects with the
name Poisson.

Definition. A Poisson process with rate λ on [0,∞) is a random mechanism
that generates “points” strung out along [0,∞) in such a way that

(i) the number of points landing in any subinterval of length t is a random
variable with a Poisson(λt) distribution
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(ii) the numbers of points landing in disjoint (= non-overlapping) intervals
are independent random variables.

It often helps to think of [0,∞) as time.
Note that, for a very short interval of length δ, the number of points N

in the interval has a Poisson(λδ) distribution, with

P{N = 0} = e−λδ = 1− λδ + o(δ)

P{N = 1} = λδe−λδ = λδ + o(δ)

P{N ≥ 2} = 1− e−λδ − λδe−λδ = o(δ).

When we pass to the idealized mechanism of points generated in contin-
uous time, several awkward details of discrete-time coin tossing disappear.

Example <10.1> (Gamma distribution from Poisson process) The wait-
ing time Wk to the kth point in a Poisson process with rate λ has a con-
tinuous distribution, with density gk(w) = λkwk−1e−λw/(k − 1)! for w > 0,
zero otherwise.

It is easier to remember the distribution if we rescale the process, defining
Tk = λWk. The new Tk has a continuous distribution with a gamma(k)
density,

fk(t) =
tk−1e−t

(k − 1)!
I{t > 0}

Remark. Notice that gk = fk when λ = 1. That is, Tk is the waiting
time to the kth point for a Poisson process with rate 1. Put another
way, we can generate a Poisson process with rate λ by taking the points
appearing at times 0 < T1 < T2 < T3 < . . . from a Poisson process
with rate 1, then rescaling to produce a new process with points at

0 <
T1
λ
<
T2
λ
<
T3
λ
< . . .

You could verify this assertion by checking the two defining properties
for a Poisson process with rate λ. Doesn’t it makes sense that, as λ
gets bigger, the points appear more rapidly?

For k = 1, Example <10.1> shows that the waiting time, W1, to the first
point has a continuous distribution with density λe−λw1{w > 0}, which
is called the exponential distribution with expected value 1/λ. (You
should check that EW1 = 1/λ.) The random variable λW1 has a standard
exponential distribution, with density f1(t) = e−t1{t > 0} and expected
value 1.
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Remark. I write the exponential distribution symbolically as “exp,
mean 1/λ”. Do you see why the name exp(1/λ) would be ambiguous?
Don’t confuse the exponential density (or the exponential distribution
that it defines) with the exponential function.

Just as for coin tossing, the independence properties of the Poisson pro-
cess ensures that the times W1,W2−W1,W3−W2, . . . are independent, each
with the same distribution. You can see why this happens by noting that
the future evolution of the process after the occurence of the first point at
time W1 is just a Poisson process that is independent of everything that
happened up to time W1. In particular, the standardized time Tk = λWk,
which has a gamma(k) distribution, is a sum of independent random vari-
ables Z1 = λW1, Z2 = λ(W2 −W1), . . . each with a standard exponential
distribution.

The gamma density can also be defined for fractional values α > 0:

fα(t) =
tα−1e−t

Γ(α)
1{t > 0}

is called the gamma(α) density. The scaling constant, Γ(α), which ensures
that the density integrates to one, is given by

Γ(α) =

∫ ∞
0

xα−1e−xdx for each α > 0.

The function Γ(·) is called the gamma function. Don’t confuse the gamma
density (or the gamma distribution that it defines) with the gamma function.

Example <10.2> Facts about the gamma function: Γ(k) = (k − 1)! for
k = 1, 2, . . . , and Γ(1/2) =

√
π.

The change of variable used in Example <10.2> to prove Γ(1/2) =
√
π

is essentially the same piece of mathematics as the calculation to find the
density for the distribution of Y = Z2/2 when Z ∼ N(0, 1). The random
variable Y has a gamma(1/2) distribution.

Example <10.3> Moments of the gamma distribution

Poisson processes are often used as the simplest model for stochastic
processes that involve arrivals at random times.

Example <10.4> A process with random arrivals
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Poisson Processes can also be defined for sets other than the half-line.

Example <10.5> A Poisson Process in two dimensions.

10.2 Things to remember

Analogies between coin tossing, as a discrete time mechanism, and the Pois-
son process, as a continuous time mechanism:

discrete time ↔ continuous time

coin tossing, prob p of heads ↔ Poisson process with rate λ

Bin(n, p) ↔ Poisson(λt)
X = #heads in n tosses X = # points in [a, a+ t]

P{X = i} =
(
n
i

)
piqn−i P{X = i} = e−λt(λt)i/i!

for i = 0, 1, . . . , n for i = 0, 1, 2 . . .

geometric(p) ↔ (standard) exponential
N1 = # tosses to first head; T1/λ = time to first point;

P{N1 = 1 + i} = qip T1 has density f1(t) = e−t

for i = 0, 1, 2, . . . for t > 0

negative binomial ↔ gamma

See HW10 Tk has density
fk(t) = tk−1e−t/k! for t > 0

negative binomial as sum of gamma(k) as sum of
independent geometrics independent exponentials

10.3 Examples for Chapter 10

<10.1> Example. Let Wk denote the waiting time to the kth point in a Poisson
process on [0,∞) with rate λ. It has a continuous distribution, whose den-
sity gk we can find by an argument similar to the one used in Chapter 7 to
find the distribution of an order statistic for a sample from the Uniform(0, 1).
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For a given w > 0 and small δ > 0, write M for the number of points
landing in the interval [0, w), and N for the number of points landing in the
interval [w,w + δ]. From the definition of a Poisson process, M and N are
independent random variables with

M ∼ Poisson(λw) and N ∼ Poisson(λδ).

To have Wk lie in the interval [w,w+ δ] we must have N ≥ 1. When N = 1,
we need exactly k − 1 points to land in [0, w). Thus

P{w ≤Wk ≤ w+δ} = P{M = k−1, N = 1}+P{w ≤Wk ≤ w+δ, N ≥ 2}.

The second term on the right-hand side is of order o(δ). Independence of
M and N lets us factorize the contribution from N = 1 into

P{M = k − 1}P{N = 1} =
e−λw(λw)k−1

(k − 1)!

e−λδ(λδ)1

1!

=
e−λwλk−1wk−1

(k − 1)!

(
λδ + o(δ)

)
,

Thus

P{w ≤Wk ≤ w + δ} =
e−λwλkwk−1

(k − 1)!
δ + o(δ),

which makes

gk(w) =
e−λwλkwk−1

(k − 1)!
1{w > 0}

the density function for Wk. �

<10.2> Example. The gamma function is defined for α > 0 by

Γ(α) =

∫ ∞
0

xα−1e−xdx.

By direct integration, Γ(1) =
∫∞
0 e−xdx = 1. Also, a change of variable

y =
√

2x gives

Γ(1/2) =

∫ ∞
0

x−1/2e−xdx

=

∫ ∞
0

√
2e−y

2/2dy

=

√
2

2

√
2π√
2π

∫ ∞
−∞

e−y
2/2dy

=
√
π cf. integral of N(0, 1) density.
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For each α > 0, an integration by parts gives

Γ(α+ 1) =

∫ ∞
0

xαe−xdx

=
[
−xαe−x

]∞
0

+ α

∫ ∞
0

xα−1e−xdx

= αΓ(α).

Repeated appeals to the same formula, for α > 0 and each positive integer m
less than α, give

Γ(α+m) = (α+m− 1)(α+m− 2) . . . (α)Γ(α).

In particular,

Γ(k) = (k−1)(k−2)(k−3) . . . (2)(1)Γ(1) = (k−1)! for k = 1, 2, . . . .

�

<10.3> Example. For parameter value α > 0, the gamma(α) distribution is defined
by its density

fα(t) =

{
tα−1e−t/Γ(α) for t > 0
0 otherwise

If a random variable T has a gamma(α) distribution then, for each positive
integer m,

ETm =

∫ ∞
0

tmfα(t) dt

=

∫ ∞
0

tmtα−1e−t

Γ(α)
dt

=
Γ(α+m)

Γ(α)

= (α+m− 1)(α+m− 2) . . . (α) by Example <10.2>.

In particular, ET = α and

var(T ) = E
(
T 2
)
− (ET )2 = (α+ 1)α− α2 = α.

�
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<10.4> Example. Suppose an office receives two different types of inquiry: persons
who walk in off the street, and persons who call by telephone. Suppose the
two types of arrival are described by independent Poisson processes, with
rate λw for the walk-ins, and rate λc for the callers. What is the distribution
of the number of telephone calls received before the first walk-in customer?

Write T for the arrival time of the first walk-in, and let N be the number
of calls in [0, T ). The time T has a continuous distribution, with the expo-
nential density f(t) = λwe

−λwt1{t > 0}. We need to calculate P{N = i} for
i = 0, 1, 2, . . . . Condition on T :

P{N = i} =

∫ ∞
0

P{N = i | T = t}f(t) dt.

The conditional distribution of N is affected by the walk-in process only in-
sofar as that process determines the length of the time interval over which N
counts. Given T = t, the random variable N has a Poisson(λct) conditional
distribution. Thus

P{N = i} =

∫ ∞
0

e−λct(λct)
i

i!
λwe

−λwt dt

= λw
λic
i!

∫ ∞
0

(
x

λc + λw

)i
e−x

dx

λc + λw
putting x = (λc + λw)t

=
λw

λc + λw

(
λc

λc + λw

)i 1

i!

∫ ∞
0

xie−xdx

The 1/i! and the last integral cancel. (Compare with Γ(i + 1).) Writing p
for λw/(λc + λw) we have

P{N = i} = p(1− p)i for i = 0, 1, 2, . . .

That is, 1 + N has a geometric(p) distribution. The random variable N
has the distribution of the number of tails tossed before the first head, for
independent tosses of a coin that lands heads with probability p.

Such a clean result couldn’t happen just by accident. HW10 will give
you a neater way to explain how the geometric got into the Poisson process.
�

<10.5> Example. A Poisson process with rate λ on R2 is a random mechanism
that generates “points” in the plane in such a way that

(i) the number of points landing in any region of area A is a random
variable with a Poisson(λA) distribution
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(ii) the numbers of points landing in disjoint regions are independent ran-
dom variables.

Suppose mold spores are distributed across the plane as a Poisson process
with intensity λ. Around each spore, a circular moldy patch of radius r
forms. Let S be some bounded region. Find the expected proportion of the
area of S that is covered by mold.

S

Write x = (x, y) for the typical point of R2. If B is a subset of R2,

area of S ∩B =

∫∫
x∈S

I{x ∈ B} dx

If B is a random set then

E
(
area of S ∩B

)
=

∫∫
x∈S

EI{x ∈ B} dx =

∫∫
x∈S

P{x ∈ B} dx.

If B denotes the moldy region of the plane,

1− P{x ∈ B} = P{ no spores land within a distance r of x }
= P{ no spores in circle of radius r around x }
= exp

(
− λπr2

)
.

Notice that the probability does not depend on x. Consequently,

E
(
area of S ∩B

)
=

∫∫
x∈S

1− exp
(
− λπr2

)
dx

=
(
1− exp

(
− λπr2

))
× area of S

The expected value of the proportion of the area of S that is covered by
mold is 1− exp

(
− λπr2

)
. �
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