
Chapter 1

Probabilities and random
variables

1.1 Overview

Probability theory provides a systematic method for describing randomness
and uncertainty. It prescribes a set of mathematical rules for manipulat-
ing and calculating probabilities and expectations. It has been applied in
many areas: gambling, insurance, finance, the study of experimental error,
statistical inference, and more.

One standard approach to probability theory (but not the only one)
starts from the concept of a sample space, which is an exhaustive list of
possible outcomes in an experiment or other situation where the result is
uncertain. Subsets of the list are called events. For example, in the very
simple situation where 3 coins are tossed, the sample space might be

S = {hhh, hht, hth, htt, thh, tht, tth, ttt}.

There is an event corresponding to “the second coin landed heads”, namely,

{hhh, hht, thh, tht}.

Each element in the sample space corresponds to a uniquely specified out-
come.

Notice that S contains nothing that would specify an outcome like “the
second coin spun 17 times, was in the air for 3.26 seconds, rolled 23.7 inches
when it landed, then ended with heads facing up”. If we wish to contemplate
such events we need a more intricate sample space S. Indeed, the choice

Statistics 241/541 fall 2014 c©David Pollard, Aug2014 1



1. Probabilities and random variables 2

of S—the detail with which possible outcomes are described—depends on
the sort of events we wish to study.

In general, a sample space can make it easier to think precisely about
events, but it is not always essential. It often suffices to manipulate events
via a small number of rules (to be specified soon) without explicitly identi-
fying the events with subsets of a sample space.

If the outcome of the experiment corresponds to a point of a sample
space belonging to some event, one says that the event has occurred. For
example, with the outcome hhh each of the events {no tails}, {at least one
head}, {more heads than tails} occurs, but the event {even number of heads}
does not.

The uncertainty is modelled by a probability assigned to each event.
The probabibility of an event E is denoted by PE. One popular interpreta-
tion of P (but not the only one) is as a long run frequency: in a very large
number (N) of repetitions of the experiment,

(number of times E occurs)/N ≈ PE,

provided the experiments are independent of each other.More about
independence soon. As many authors have pointed out, there is something fishy about this

interpretation. For example, it is difficult to make precise the meaning of
“independent of each other” without resorting to explanations that degener-
ate into circular discussions about the meaning of probability and indepen-
dence. This fact does not seem to trouble most supporters of the frequency
theory. The interpretation is regarded as a justification for the adoption of
a set of mathematical rules, or axioms. See the Appendix to Chapter 2 for
an alternative interpretation, based on fair prices.

The first four rules are easy to remember if you think of probability as
a proportion. One more rule will be added soon.

Rules for probabilities

(P1) 0 ≤ PE ≤ 1 for every event E.

(P2) For the empty subset ∅ (= the “impossible event”), P∅ = 0,

(P3) For the whole sample space (= the “certain event”), PS = 1.

(P4) If an event E is a disjoint union of a sequence of events E1, E2, . . .
then PE =

∑
i PEi.
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1. Probabilities and random variables 3

Example <1.1> Find P{at least two heads} for the tossing of three coins.

Probability theory would be very boring if all problems were solved likeNote: The examples are
collected together at the
end of each chapter

that: break the event into pieces whose probabilities you know, then add.
Things become much more interesting when we recognize that the assign-
ment of probabilities depends on what we know or have learnt (or assume)
about the random situation. For example, in the last problem we could have
written

P{at least two heads | coins fair, “independence,” . . . } = . . .

to indicate that the assignment is conditional on certain information (or
assumptions). The vertical bar stands for the word given; that is, we read
the symbol as probability of at least two heads given that . . .

Remark. If A = {at least two heads} and info denotes the assumptions
(coins fair, “independence,” . . . ) the last display makes an assertion
about P(A | info). The symbol P· | info) denotes the conditional
probability given the information; it is NOT the probability of a
conditional event. I regard “A | info” without the P as meaningless.

If the conditioning information is held fixed throughout a calculation, the
conditional probabilities P (. . . | info) satisfy rules (P1) through (P4). For
example, P(∅ | info) = 0, and so on. In that case one usually doesn’t bother
with the “given . . . ”, but if the information changes during the analysis the
conditional probability notation becomes most useful.

The final rule for (conditional) probabilities lets us break occurrence of
an event into a succession of simpler stages, whose conditional probabilities
might be easier to calculate or assign. Often the successive stages correspond
to the occurrence of each of a sequence of events, in which case the notation
is abbreviated in any of the following ways:

P (. . . | event A and event B have occurred and previous info)

P (. . . | A ∩B and previous info) where ∩ means intersection

P (. . . | A, B, previous info)

P (. . . | A ∩B) or P (. . . | AB) if “previous info” is understood.

if the “previous info” is understood. I often write AB instead of A ∩B for
an intersection of two sets. The commas in the third expression are open to
misinterpretation, but convenience recommends the more concise notation.
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Remark. I must confess to some inconsistency in my use of parentheses
and braces. If the “. . . ” is a description in words, then {. . . } denotes
the subset of S on which the description is true, and P{. . . } or
P{· · · | info} seems the natural way to denote the probability attached
to that subset. However, if the “. . . ” stand for an expression like
A ∩ B, the notation P(A ∩ B) or P(A ∩ B | info) looks nicer to me. It
is hard to maintain a convention that covers all cases. You should not
attribute much significance to differences in my notation involving a
choice between parentheses and braces.

Rule for conditional probability

(P5) : if A and B are events then

P (A ∩B | info) = P (A | info) · P (B | A, info) .

The frequency interpretation might make it easier for you to appreciate
this rule. Suppose that in N “independent” repetitions (given the same
initial conditioning information) A occurs NA times and A∩B occurs NA∩B
times. Then, for N large,

P (A | info) ≈ NA/N and P (A ∩B | info) ≈ NA∩B/N.

If we ignore those repetitions where A fails to occur then we have NA repeti-
tions given the original information and occurrence of A, in NA∩B of which
the event B also occurs. Thus P (B | A, info) ≈ NA∩B/NA. The rest is
division.

Remark. Many textbooks define P(B | A) as the ratio P(BA)/PA,
which is just a rearrangement of (P5) without the info. That definition,
not surprisingly, gives students the idea that conditional probabilities
are always determined by taking ratios, which is not true. Often the
assignment of conditional probabilities is part of the modelling. See
Example <1.3> for example.

In my experience, conditional probabilities provide a more reliable method
for solving problems traditionally handled by counting arguments (Combi-
natorics). I find it hard to be consistent about how I count, to make sure
every case is counted once and only once, to decide whether order should
matter, and so on. The next Example illustrates my point.
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1. Probabilities and random variables 5

Example <1.2> What is the probability that a hand of 5 cards contains
four of a kind?

I wrote out many of the gory details to show you how the rules reduce the
calculation to a sequence of simpler steps. In practice, one would be less
explicit, to keep the audience awake.

The statement of the next example is taken verbatim from the delightful
Fifty Challenging Problems in Probability by Frederick Mosteller, one of my
favourite sources for elegant examples. One could learn a lot of probability
by trying to solve all fifty problems. The underlying question has resurfaced
in recent years in various guises. See

http://en.wikipedia.org/wiki/Monty Hall problem

http://en.wikipedia.org/wiki/Marilyn vos Savant#The Monty Hall problem

to understand why probabilistic notation is so valuable. The lesson is: Be
prepared to defend your assignments of conditional probabilities.

Example <1.3> Three prisoners, A, B, and C, with apparently equally
good records have applied for parole. The parole board has decided to release
two of the three, and the prisoners know this but not which two. A warder
friend of prisoner A knows who are to be released. Prisoner A realizes that it
would be unethical to ask the warder if he, A, is to be released, but thinks of
asking for the name of one prisoner other than himself who is to be released.
He thinks that before he asks, his chances of release are 2/3. He thinks that
if the warder says “B will be released,” his own chances have now gone down
to 1/2, because either A and B or B and C are to be released. And so A
decides not to reduce his chances by asking. However, A is mistaken in his
calculations. Explain.

You might have the impression at this stage that the first step towards
the solution of a probability problem is always an explicit listing of the
sample space specification of a sample space. In fact that is seldom the
case. An assignment of (conditional) probabilities to well chosen events is
usually enough to set the probability machine in action. Only in cases of
possible confusion (as in the last Example), or great mathematical precision,
do I find a list of possible outcomes worthwhile to contemplate. In the next
Example construction of a sample space would be a nontrivial exercise but
conditioning helps to break a complex random mechanism into a sequence
of simpler stages.
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1. Probabilities and random variables 6

Example <1.4> Imagine that I have a fair coin, which I toss repeatedly.
Two players, M and R, observe the sequence of tosses, each waiting for a
particular pattern on consecutive tosses: M waits for hhh, and R waits
for tthh. The one whose pattern appears first is the winner. What is the
probability that M wins?

In both Examples <1.3> and <1.4> we had situations where particular
pieces of information could be ignored in the calculation of some conditional
probabilities,

P (A | B∗) = P(A),

P (next toss a head | past sequence of tosses) = 1/2.

Both situations are instances of a property called independence.

Definition. Call events E and F conditionally independent given a par-
ticular piece of information if

P (E | F , information) = P (E | information) .

If the “information” is understood, just call E and F independent.

The apparent asymmetry in the definition can be removed by an appeal
to rule P5, from which we deduce that

P(E ∩ F | info) = P(E | info)P(F | info)

for conditionally independent events E and F . Except for the conditioning
information, the last equality is the traditional definition of independence.
Some authors prefer that form because it includes various cases involving
events with zero (conditional) probability.

Conditional independence is one of the most important simplifying as-
sumptions used in probabilistic modeling. It allows one to reduce considera-
tion of complex sequences of events to an analysis of each event in isolation.
Several standard mechanisms are built around the concept. The prime ex-
ample for these notes is independent “coin-tossing”: independent repetition
of a simple experiment (such as the tossing of a coin) that has only two pos-
sible outcomes. By establishing a number of basic facts about coin tossing
I will build a set of tools for analyzing problems that can be reduced to a
mechanism like coin tossing, usually by means of well-chosen conditioning.
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Example <1.5> Suppose a coin has probability p of landing heads on any
particular toss, independent of the outcomes of other tosses. In a sequence
of such tosses, show that the probability that the first head appears on the
kth toss is (1− p)k−1p for k = 1, 2, . . . .

The discussion for the Examples would have been slightly neater if I had
had a name for the toss on which the first head occurs. Define

X = the position at which the first head occurs.

Then I could write

P{X = k} = (1− p)k−1p for k = 1, 2, . . . .

The X is an example of a random variable.
Formally, a random variable is just a function that attaches a number

to each item in the sample space. Typically we don’t need to specify the
sample space precisely before we study a random variable. What matters
more is the set of values that it can take and the probabilities with which
it takes those values. This information is called the distribution of the
random variable.

For example, a random variable Z is said to have a geometric(p) dis-
tribution if it can take values 1, 2, 3, . . . with probabilities

P{Z = k} = (1− p)k−1p for k = 1, 2, . . . .

The result from the last example asserts that the number of tosses required
to get the first head has a geometric(p) distribution.

Remark. Be warned. Some authors use geometric(p) to refer to
the distribution of the number of tails before the first head, which
corresponds to the distribution of Z − 1, with Z as above.

Why the name “geometric”? Recall the geometric series,∑∞

k=0
ark = a/(1− r) for |r| < 1.

Notice, in particular, that if 0 < p ≤ 1, and Z has a geometric(p) distribu-
tion, ∑∞

k=1
P{Z = k} =

∑∞

j=0
p(1− p)j = 1.

What does that tell you about coin tossing?
The final example for this Chapter, whose statement is also borrowed

verbatim from the Mosteller book, is built around a “geometric” mechanism.
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1. Probabilities and random variables 8

Example <1.6> A, B, and C are to fight a three-cornered pistol duel.
All know that A’s chance of hitting his target is 0.3, C’s is 0.5, and B never
misses. They are to fire at their choice of target in succession in the order
A, B, C, cyclically (but a hit man loses further turns and is no longer shot
at) until only one man is left unhit. What should A’s strategy be?

1.2 Things to remember

• , , and the five rules for manipulating (conditional)
probabilities.

• Conditioning is often easier, or at least more reliable, than counting.

• Conditional independence is a major simplifying assumption of prob-
ability theory.

• What is a random variable? What is meant by the distribution of a
random variable?

• What is the geometric(p) distribution?

References

Mosteller, F. (1987). Fifty Challenging Problems in Probability with Solu-
tions. New York: Dover.

1.3 The examples

<1.1> Example. Find P{at least two heads} for the tossing of three coins. Use
the sample space

S = {hhh, hht, hth, htt, thh, tht, tth, ttt}.
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If we assume that each coin is fair and that the outcomes from the coins don’t
affect each other (“independence”), then we must conclude by symmetry
(“equally likely”) that

P{hhh} = P{hht} = · · · = P{ttt}.

By rule P4 these eight probabilities add to PS = 1; they must each equal
1/8. Again by P4,

P{at least two heads} = P{hhh}+ P{hht}+ P{hth}+ P{thh} = 1/2.

�

<1.2> Example. What is the probability that a hand of 5 cards contains four of a
kind?

Let us assume everything fair and aboveboard, so that simple probabil-
ity calculations can be carried out by appeals to symmetry. The fairness
assumption could be carried along as part of the conditioning information
but it would just clog up the notation to no useful purpose.

I will consider the ordering of the cards within the hand as signif-
icant. For example, (7♣, 3♦, 2♥,K♥, 8♥) will be a different hand from
(K♥, 7♣, 3♦, 2♥, 8♥).

Start by breaking the event of interest into 13 disjoint pieces:

{four of a kind} =
⋃13

i=1
Fi

where

F1 = {four aces, plus something else},
F2 = {four twos, plus something else},

...

F13 = {four kings, plus something else}.

By symmetry each Fi has the same probability, which means we can con-
centrate on just one of them.

P{four of a kind} =
∑13

1
PFi = 13PF1 by rule P4.

Now break F1 into simpler pieces, F1 = ∪5j=1F1j , where

F1j = {four aces with jth card not an ace}.

Statistics 241/541 fall 2014 c©David Pollard, Aug2014



1. Probabilities and random variables 10

Again by disjointness and symmetry, PF1 = 5PF1,1.
Decompose the event F1,1 into five “stages”, F1,1 = N1∩A2∩A3∩A4∩A5,

where

N1 = {first card is not an ace} and A1 = {first card is an ace}

and so on. To save on space, I will omit the intersection signs, writing
N1A2A3A4 instead of N1 ∩A2 ∩A3 ∩A4, and so on. By rule P5,

PF1,1 = PN1 P(A2 | N1)P(A3 | N1A2) . . . P(A5 | N1A2A3A4)

=
48

52
× 4

51
× 3

50
× 2

49
× 1

48
.

Thus

P{four of a kind} = 13× 5× 48

52
× 4

51
× 3

50
× 2

49
× 1

48
≈ .00024.

Can you see any hidden assumptions in this analysis?
Which sample space was I using, implicitly? How would the argument

be affected if we took S as the set of all of all
(
52
5

)
distinct subsets of size 5,

with equal probability on each sample point? That is, would it matter if we
ignored ordering of cards within hands? �

<1.3> Example. (The Prisoner’s Dilemma—verbatim from Mosteller, 1987)

Three prisoners, A, B, and C, with apparently equally good
records have applied for parole. The parole board has decided
to release two of the three, and the prisoners know this but not
which two. A warder friend of prisoner A knows who are to be
released. Prisoner A realizes that it would be unethical to ask
the warder if he, A, is to be released, but thinks of asking for the
name of one prisoner other than himself who is to be released.
He thinks that before he asks, his chances of release are 2/3.
He thinks that if the warder says “B will be released,” his own
chances have now gone down to 1/2, because either A and B or
B and C are to be released. And so A decides not to reduce his
chances by asking. However, A is mistaken in his calculations.
Explain. It is quite tricky to argue through this problem without
introducing any notation, because of some subtle distinctions
that need to be maintained.
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The interpretation that I propose requires a sample space with only four
items, which I label suggestively

aB = both A and B to be released, warder must say B

aC = both A and C to be released, warder must say C

Bc = both B and C to be released, warder says B

bC = both B and C to be released, warder says C.

There are three events to be considered

A = {A to be released} =
{

aB , aC
}

B = {B to be released} =
{

aB , Bc , bC
}

B∗ = {warder says B to be released} =
{

aB , Bc
}
.

Apparently prisoner A thinks that P (A | B∗) = 1/2.
How should we assign probabilities? The words “equally good records”

suggest (compare with Rule P4)

P{A and B to be released}
= P{B and C to be released}
= P{C and A to be released}
= 1/3

That is,
P{ aB } = P{ aC } = P{ Bc }+ P{ bC } = 1/3.

What is the split between Bc and bC ? I think the poser of the problem
wants us to give 1/6 to each outcome, although there is nothing in the
wording of the problem requiring that allocation. (Can you think of another
plausible allocation that would change the conclusion?)

With those probabilities we calculate

PA ∩B∗ = P{ aB } = 1/3

PB∗ = P{ aB }+ P{ Bc } = 1/3 + 1/6 = 1/2,

from which we deduce (via rule P5) that

P (A | B∗) =
PA ∩B∗

PB∗
=

1/3

1/2
= 2/3 = PA.
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The extra information B∗ should not change prisoner A’s perception of his
probability of being released.

Notice that

P (A | B) =
PA ∩B

PB
=

1/3

1/2 + 1/6 + 1/6
= 1/2 6= PA.

Perhaps A was confusing P (A | B∗) with P (A | B).
The problem is more subtle than you might suspect. Reconsider the

conditioning argument from the point of view of prisoner C, who overhears
the conversation between A and the warder. With C denoting the event

{C to be released} =
{

aC , Bc , bC
}
,

he would calculate a conditional probability

P (C | B∗) =
P{ Bc }
PB∗

=
1/6

1/2
6= PC.

The warder might have nominated C as a prisoner to be released. The fact
that he didn’t do so conveys some information to C. Do you see why A
and C can infer different information from the warder’s reply? �

<1.4> Example. Here is a coin tossing game that illustrates how conditioning
can break a complex random mechanism into a sequence of simpler stages.
Imagine that I have a fair coin, which I toss repeatedly. Two players, M and
R, observe the sequence of tosses, each waiting for a particular pattern on
consecutive tosses:

M waits for hhh and R waits for tthh.

The one whose pattern appears first is the winner. What is the probability
that M wins?

For example, the sequence ththhttthh . . . would result in a win for R,
but ththhthhh . . . would result in a win for M.

You might imagine that M has the advantage. After all, surely it must
be easier to get a pattern of length 3 than a pattern of length 4. You’ll
discover that the solution is not that straightforward.

The possible states of the game can be summarized by recording how
much of his pattern each player has observed (ignoring false starts, such as
hht for M, which would leave him back where he started, although R would
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have matched the first t of his pattern.).

States M partial pattern R partial pattern

S – –

H h –

T – t

TT – tt

HH hh –

TTH h tth

M wins hhh ?

R wins ? tthh

By claiming that these states summarize the game I am tacitly assuming
that the coin has no “memory”, in the sense that the conditional probability
of a head given any particular past sequence of heads and tails is 1/2 (for
a fair coin). The past history leading to a particular state does not matter;
the future evolution of the game depends only on what remains for each
player to achieve his desired pattern.

The game is nicely summarized by a diagram with states represented
by little boxes joined by arrows that indicate the probabilities of transition
from one state to another. Only transitions with a nonzero probability are
drawn. In this problem each nonzero probability equals 1/2. The solid
arrows correspond to transitions resulting from a head, the dotted arrows
to a tail.

H M winsHH

TTH R wins

S

M winsHH

T

TT
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1. Probabilities and random variables 14

For example, the arrows leading from S to H to HH to M wins cor-
respond to heads; the game would progress in exactly that way if the first
three tosses gave hhh. Similarly the arrows from S to T to TT correspond
to tails.

The arrow looping from TT back into itself corresponds to the situation
where, after . . . tt, both players progress no further until the next head.
Once the game progresses down the arrow T to TT the step into TTH

becomes inevitable. Indeed, for the purpose of calculating the probability
that M wins, we could replace the side branch by:

T TTH

The new arrow from T to TTH would correspond to a sequence of tails
followed by a head. With the state TT removed, the diagram would become
almost symmetric with respect to M and R. The arrow from HH back to
T would show that R actually has an advantage: the first h in the tthh
pattern presents no obstacle to him.

Once we have the diagram we can forget about the underlying game.
The problem becomes one of following the path of a mouse that moves
between the states according to the transition probabilities on the arrows.
The original game has S as its starting state, but it is just as easy to solve the
problem for a particle starting from any of the states. The method that I will
present actually solves the problems for all possible starting states by setting
up equations that relate the solutions to each other. Define probabilities for
the mouse:

PS = P{reach M wins | start at S }
PT = P{reach M wins | start at T }

and so on. I’ll still refer to the solid arrows as “heads”, just to distinguish
between the two arrows leading out of a state, even though the coin tossing
interpretation has now become irrelevant.

Calculate the probability of reaching M wins , under each of the different
starting circumstances, by breaking according to the result of the first move,
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and then conditioning.

PS = P{reach M wins , heads | start at S }
+ P{reach M wins , tails | start at S }

= P{heads | start at S }P{reach M wins | start at S , heads}
+ P{tails | start at S }P{reach M wins | start at S , tails}.

The assumed lack of memory for the fair coin reduces the last expression to
1
2PH + 1

2PT . Notice how the conditioning information “start at S , heads”
has been replaced by “start at H ”, and so on. We have our first equation:

PS = 1
2PH + 1

2PT .

Similar splitting and conditioning arguments for each of the other starting
states give

PH = 1
2PT + 1

2PHH

PHH = 1
2 + 1

2PT

PT = 1
2PH + 1

2PTT

PTT = 1
2PTT + 1

2PTTH

PTTH = 1
2PT + 0.

We could use the fourth equation to substitute for PTT , leaving

PT = 1
2PH + 1

2PTTH .

This simple elimination of the PTT contribution corresponds to the excision
of the TT state from the diagram. If we hadn’t noticed the possibility for
excision the algebra would have effectively done it for us. The six split-
ting/conditioning arguments give six linear equations in six unknowns. If
you solve them you should get PS = 5/12, PH = 1/2, PT = 1/3, PHH = 2/3,
and PTTH = 1/6. For the original problem, M has probability 5/12 of win-
ning. �

There is a more systematic way to carry out the analysis in the last
problem without drawing the diagram. The transition probabilities can be
installed into an 8 by 8 matrix whose rows and columns are labeled by the
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1. Probabilities and random variables 16

states:

P =



S H T HH TT TTH M wins R wins

S 0 1/2 1/2 0 0 0 0 0
H 0 0 1/2 1/2 0 0 0 0
T 0 1/2 0 0 1/2 0 0 0
HH 0 0 1/2 0 0 0 1/2 0
TT 0 0 0 0 1/2 1/2 0 0
TTH 0 0 1/2 0 0 0 0 1/2
M wins 0 0 0 0 0 0 1 0
R wins 0 0 0 0 0 0 0 1


If we similarly define a column vector,

π = (PS , PH , PT , PHH , PTT , PTTH , PM wins, PR wins)
′,

then the equations that we needed to solve could be written as

Pπ = π,

with the boundary conditions PM wins = 1 and PR wins = 0.

Remark. Write e′M and e′R for the last two rows of P and Q for the
6× 8 matrix made up of the first 6 rows of I −P . Then π is the unique
solution to the equation  Qe′M

e′R

π = eM

The matrix P is called the transition matrix. The element in row i
and column j gives the probability of a transition from state i to state j. For
example, the third row, which is labeled T , gives transition probabilities
from state T . If we multiply P by itself we get the matrix P 2, which gives
the “two-step” transition probabilities. For example, the element of P 2 in
row T and column TTH is given by∑

j

PT,jPj,TTH =
∑
j

P{step to j | start at T }P{step to TTH | start at j}.

Here j runs over all states, but only j = H and j = TT contribute nonzero
terms. Substituting

P{reach TTH in two steps | start at T , step to j}
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for the second factor in the sum, we get the splitting/conditioning decom-
position for

P{reach TTH in two steps | start at T },

a two-step transition possibility.

Remark. What do the elements of the matrix Pn represent? What
happens to this matrix as n tends to infinity? If you are interested in
computation, look at the file HHH.TTHH.R, or try similar calculations
with Matlab or Mathematica.

The name Markov chain is given to any process representable as the
movement of a mouse (or a particle) between states (boxes) according to
transition probabilities attached to arrows connecting the various states.
The sum of the probabilities for arrows leaving a state should add to one.
All the past history except for identification of the current state is regarded
as irrelevant to the next transition; given the current state, the past is
conditionally independent of the future.

<1.5> Example. Suppose a coin has probability p of landing heads on any partic-
ular toss, independent of outcomes of other tosses. In a sequence of such
tosses, what is the probability that the first head appears on the kth toss (for
k = 1, 2, . . . )?

Write Hi for the event {head on the ith toss}. Then, for a fixed k (an
integer greater than or equal to 1),

P{first head on kth toss}
= P(Hc

1H
c
2 . . . H

c
k−1Hk)

= P(Hc
1)P(Hc

2 . . . H
c
k−1Hk | Hc

1) by rule P5.

By the independence assumption, the conditioning information is irrelevant.
Also PHc

1 = 1− p because PHc
1 + PH1 = 1. Why? Thus

P{first head on kth toss} = (1− p)P(Hc
2 . . . H

c
k−1Hk).

Similar conditioning arguments let us strip off each of the outcomes for tosses
2 to k − 1, leaving

P{first head on kth toss} = (1− p)k−1p for k = 1, 2, . . . .

�
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<1.6> Example. (The Three-Cornered Duel—also borrowed from Mosteller, 1987)
A, B, and C are to fight a three-cornered pistol duel. All know that A’s
chance of hitting his target is 0.3, C’s is 0.5, and B never misses. They are
to fire at their choice of target in succession in the order A, B, C, cyclically
(but a hit man loses further turns and is no longer shot at) until only one
man is left unhit. What should A’s strategy be?

What could A do? If he shoots at C and hits him, then he receives a
bullet between the eyes from B on the next shot. Not a good strategy:

P (A survives | he kills C first) = 0.

If he shoots at C and misses then B naturally would pick off his more dan-
gerous oppenent, C, leaving A one shot before B finishes him off too. That
single shot from A at B would have to succeed:

P (A survives | he misses first shot) = 0.3.

If A shoots first at B and misses the result is the same. What if A shoots
at B first and succeeds? Then A and C would trade shots until one of them
was hit, with C taking the first shot. We could solve this part of the problem
by setting up a Markov chain diagram, or we could argue as follows: For A
to survive, the fight would have to continue,

{C misses, A hits}
or

{C misses, A misses, C misses, A hits}
or

{C misses, (A misses, C misses) twice, A hits}

and so on. The general piece in the decomposition consists of some number
of repetitions of (A misses, C misses) sandwiched between the initial “C
misses” and the final “A hits.” The repetitions are like coin tosses with
probability (1 − 0.3)(1 − 0.5) = .35 for the double miss. Independence
between successive shots (or should it be conditional independence, given
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the choice of target?) allows us to multiply together probabilities to get

P (A survives | he first shoots B)

=
∞∑
k=0

P{C misses, (A misses, C misses) k times, A hits}

=

∞∑
k=0

(.5)(.35)k(.3)

= .15/(1− 0.35) by the rule of sum of geometric series

≈ .23

In summary:

P (A survives | he kills C first) = 0

P (A survives | he kills B first) ≈ .23

P (A survives | he misses with first shot) = .3

Somehow A should try to miss with his first shot. Is that allowed? �
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