
Chapter 13

Moment generating functions

13.1 Basic facts
MGF::overview

Formally the moment generating function is obtained by substituting s = et

in the probability generating function.

Definition. The moment generating function (m.g.f.) of a random vari-
able X is the function MX defined by MX(t) = E(eXt) for those real t at
which the expectation is well defined.

Unfortunately, for some distributions the moment generating function is
finite only at t = 0. The Cauchy distribution, with density

f(x) =
1

π(1 + x2)
for all x ∈ R,

is an example.

Remark. The problem with existence and finiteness is avoided if t is
replaced by it, where t is real and i =

√
−1. In probability theory

the function EeiXt is usually called the characteristic function, even
though the more standard term Fourier transform would cause less
confusion.

When the m.g.f. is finite in a neighborhood of the origin it can be
expanded in a power series, which gives us some information about the
moments (the values of EXk for k = 1, 2, . . . ) of the distribution:

E(eXt) =

∞∑
k=0

E(Xt)k

k!
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13. Moment generating functions 2

The coefficient of tk/k! in the series expansion of M(t) equals the kth mo-
ment, EXk.

normal.mgf <13.1> Example. Suppose X has a standard normal distribution. Its moment
generating function equals exp(t2/2), for all real t, because∫ ∞

−∞
ext

e−x
2/2

√
2π

dx =
1√
2π

∫ ∞
−∞

exp

(
−(x− t)2

2
+
t2

2

)
dx

= exp

(
t2

2

)
.

For the last equality, compare with the fact that the N(t, 1) density inte-
grates to 1.

The exponential in MX(t) expands to

∞∑
m=0

1

m!

(
t2

2

)m
=

∞∑
m=0

(
(2m)!

m!2m

)
t2m

(2m)!

Pick off coefficients.

EX2 =
2!

1!21
= 1 (you knew that)

EX4 =
4!

2!22
= 3

. . .

E(X2m) =
(2m)!

m!2m
for m a positive integer.

The coefficient for each odd power of t equals zero, which reflects the fact
that EXk = 0, by anti-symmetry, if k is odd.

�

gamma <13.2> Example. If X ∼ gamma(α), with α > 0, then for t < 1

MX(t) =
1

Γ(α)

∫ ∞
0

extxα−1e−xdx

=
1

(1− t)αΓ(α)

∫ ∞
0

yα−1e−ydy putting y = (1− t)x

= (1− t)−α.

For t ≥ 1 the integral diverges and MX(t) =∞. For |t| < 1,

MX(t) =
∑∞

k=0

(
−α
k

)
(−t)k

=
∑∞

k=0
(−1)k

(−α)(−α− 1) . . . (−α− k + 1)

k!
tk.
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13. Moment generating functions 3

The kth moment, E(Xk), equals (α+k−1))(α+k−2) . . . (α), the coeeficient
of tk/k!. Compare with the direct calculation in Example <10.3>.

�

13.2 MGF’s determine distributions
MGF::uniqueness

If two random variables X and Y have moment generating functions that are
finite and equal in some neighborhood of 0 then they have the same distri-
butions. This result is much harder to prove than its analog for probability
generating functions.

For example, if MX(t) = et
2/2, even just for t near 0, then X must have

a N(0, 1) distribution.

13.3 Approximations via moment generating functions
MGF::cty

If Xn = ξ1 + · · ·+ ξn with the ξi’s independently Ber(p) distributed then

MXn(t) = E
(
etξ1etξ2 . . . etξn

)
=
(
Eetξ1

)(
Eetξ2

)
. . .
(
Eetξn

)
by independence

=
(
q + pet

)n
.

That is, the Bin(n, p) has m.g.f.
(
q + pet

)n
.

Write q for 1−p and σ2n for npq. You know that the standardized random
variable Zn := (Xn − np)/σn is approximately N(0, 1) distributed. The
moment generating function MZn(t) also suggests such an approximation.
Then

MZn(t) = Eet(X−np)/σn

= e−npt/σEeX(t/σn) = e−npt/σMXn(t/σn)

= e−npt/σn
(
q + pet/σn

)n
=
(
qe−pt/σn + peqt/σn

)n
.

The power series expansion for qe−pt/σ + peqt/σ simplifies:

q

(
1− pt

σ
+
p2t2

2!σ2
− p3t3

3!σ3
+ . . .

)
+ p

(
1 +

qt

σ
+
q2t2

2!σ2
− q3t3

3!σ3
+ . . .

)
= 1 +

pqt

2σ2
+
pq(p− q)t3

6σ3
+ . . .
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13. Moment generating functions 4

For large n use the series expansion log(1+z)n = n(z−z2/2+ . . . ) to deduce
that

logMZn(t) =
t2

2
+

(q − p)t3

6
√
npq

+ terms of order
1

n
or smaller

The t2/2 term agree with the logarithm of the moment generating function
for the standard normal. As n tends to infinity, the remainder terms tend
to zero.

The convergence of MZn(t) to et
2/2 can be used to prove rigorously that

the distribution of the standardized Binomial “converges to the standard
normal” as n tends to infinity. In fact the series expansion for logMn(t) is
the starting point for a more precise approximation result—but for that story
you will have to take the more advanced probability course Statistics 330.
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