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Chapter 3

Things binomial

The standard coin-tossing mechanism drives much of classical probability. It generates sev-
eral standard distributions, the most important of them being the Binomial. The distributions ap-
pear often in probabilistic modelling; it is worthwhile recording a few of their properties.

As a probabilist, I tend to regard any method involving probability calculations as a vast im-
provement over purely analytic methods. That will be my excuse for the following calculation.

<3.1> Example. How many ways are there to choose a subset of sizek from a set ofn objects, for
k = 0, 1, . . . ,n? It is traditional to write this number as

(n
k

)
, read “n choosek.” By convention,(n

0

) = 1. I’ll use a conditional probability argument to find
(n

k

)
for k ≥ 1.

Consider a slightly different question. Suppose the objects are numbered 1, 2, . . . ,n. Choose
a subset of sizek “at random.” What is the probability that it consists precisely of objects 1 to k?
Calculate the result in two ways, then equate the answers.

Method I.

Interpret “at random” to mean that all
(n

k

)
possible subsets of sizek are equally likely, so that

P{choose 1 to k} = 1/
(n

k

)
.

Method II.

Generate the randomk-set one member at a time: choose the first member at random from the n
available objects; then choose the second member at random from the remainingn − 1 objects;
and so on. Is it obvious that all k-sets have equal probability of being chosen? WriteFi for the
event{the ith choice is one of 1,2,. . . ,k}. Then

P{choose 1 tok} = PF1F2 . . . Fk

= PF1P
(
F2 | F1

)
. . .P

(
Fk | F1F2 . . . Fk−1

)
= k

n
.
k− 1

n− 1
.
k− 2

n− 2
. . .

1

n− k+ 1

= k!(n− k)!

n!
.

Notice how the(n−k)! cancels out all except thek largest factors inn!. Equate the two solutions
to get (

n

k

)
= n!

k!(n− k)!

¤

The symbol
(n

k

)
is called abinomial coefficient because of its connection with the bi-•binomial coefficient nomial expansion:

(a+ b)n =
n∑

k=0

(
n

k

)
akbn−k.
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The expansion can be generalized to fractional and negative powers by means of Taylor’s theo-
rem. For general realα define(

α

0

)
= 1 and

(
α

k

)
= α(α − 1)(α − 2) . . . (α − k+ 1)

k!
for k = 1, 2, . . .

Then

(1+ x)α =
∞∑

k=0

(
α

k

)
xk at least for|x| < 1.

The Binomial distribution arises in any situation where one is interested in the number of
successes in a fixed number of independent trials (or experiments), each of which can result in
either success or failure.

<3.2> Example. For n independent tosses of a coin that lands heads with probability p, find

(i) the distribution ofX, the total number of heads

(ii) the expected value ofX

Clearly X can take only values 0, 1, 2, . . . ,n. For a fixed ak in this range, break the event
{X = k} into disjoint pieces like

F1 = {first k gives heads, next n-k give tails}
F2 = {first (k-1) give heads, then tail, then head, then n- k-1 tails}
...

The indexing on theFi is most uninformative. (Maybe you can think of something better.) It
matters only that eachFi specifiesk positions for the heads and leaves the remainingn − k for
tails. Write Hj for {jth toss is a head}. Then

PF1 = P
(
H1H2 . . . Hk Hc

k+1 . . . H
c
n

)
= (PH1)(PH2) . . . (PHc

n ) by independence

= pk(1− p)n−k.

A similar calculation givesPFi = pk(1− p)n−k for every otheri ; all that changes is the order in
which the p and(1− p) factors appear. From the previous Example there are exactly

(n
k

)
different

Fi ’s, because eachFi corresponds to a different choice of thek positions for the heads to occur.
Adding up that many of thepk(1− p)n−k probabilities, we get

P{X = k} =
(

n

k

)
pk(1− p)n−k for k = 0, 1, . . . ,n.

A random variable that takes these values with these probabilities is said to have a “binomial dis-
tribution with parametersn and p,” or Bin(n, p) distribution, for short.

For part (ii) there are hard ways and easy ways to proceed.

Hard way: By the formula in Chapter 2,

EX =
∑

k = 0nk

(
n

k

)
pk(1− p)n−k = ??

The series is not so hard to sum, but why try?

Easy way: Use the method of indicators, as in Chapter 2. Define

Xi =
{

1 if ith toss is head
0 if ith toss is tail.

Then X = X1+ . . . Xn andEX = EX1+ . . .EXn by multiple applications of rule E1 for expecta-
tions. ConsiderX1. From rule E4,

EX1 = 0P{X1 = 0} + 1P{X1 = 1} = p.
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Similarly EXi = p for all the otherXi . Add to getEX = np.¤

The calculation for part (ii) made no use of the independence. If eachXi hasmarginal•marginal
distribution Bin(1,p), that is, if

P{Xi = 1} = p = 1− P{Xi = 0} for eachi,

thenE(X1+ . . . Xn) = np, regardless of possible dependence between the tosses.

<3.3> Example. An unwary visitor to the Big City is standing at the corner of 1st Street and 1st Av-
enue. He wishes to reach the railroad station, which actually occupies the block on 6th Street
from 3rd to 4th Avenue. (The Street numbers increase as one moves north; the Avenue numbers
increase as one moves east.) He is unaware that he is certain to be mugged as soon as he steps
onto 6th Street or 6th Avenue.

Being unsure of the exact location of the railroad station, the visitor lets himself be guided
by the tosses of a fair coin: at each intersection he goes east with probability 1/2 and north with
probability 1/2. What is the probability that he is mugged outside the railroad station?

To get mugged at (3,6) or (4,6) the visitor must proceed north from either the

1

6

3 4

intersection (3,5) or the intersection (4,5)—we may assume that if he gets mugged
at (2,6) and then moves east, he won’t get mugged again at (3,6), which would be
an obvious waste of valuable mugging time for no return. The two possibilities
correspond to disjoint events.

P{mugged at railroad}
= P{reach (3,5), move north} + P{reach (4,5), move north}
= 1/2P{reach (3,5)} + 1/2P{reach (4,5)}
= 1/2P{move east twice during first 6 blocks}
+ 1/2P{move east 3 times during first 7 blocks}.

A better way to describe the last event might be “move east 3 times and north 4 times, in some
order, during the choices governed by the first 7 tosses of the coin.” The Bin(7,1/2) lurks behind
the calculation. The other calculation involves the Bin(6,1/2).

P{mugged at railroad} = 1

2

(
6

2

)(
1

2

)2(1

2

)4

+ 1

2

(
7

3

)(
1

2

)3(1

2

)4

= 65

256
.

¤

<3.4> Example. Suppose a multiple-choice exam consists of a string of unrelated questions, each
having three possible answers. Suppose there are two types of candidate who will take the exam:
guessers, who make a blind stab on each question, and skilled candidates, who can always elim-
inate one obviously false alternative, but who then choose at random between the two remaining
alternatives. Suppose 70% of the candidates who take the exam are skilled and the other 30% are
guessers. A particular candidate has gotten 4 of the first 6 question correct. What is the probabil-
ity that he will also get the 7th question correct?

Interpret the assumptions to mean that a guesser answers questions independently, with prob-
ability 1/3 of being correct, and that a skilled candidate also answers independently, but with
probability 1/2 of being correct. LetX denote the number of questions answered correctly from
the first six. Then

(i) for a guesser, X has (conditional) distribution Bin(6,1/3)

(ii) for a skilled candidate, X has (conditional) distribution Bin (6,1/2).

Let G denote the event{the candidate is a guesser} and S denote the event{the candidate is
skilled}. We are to assume that

PG = 0.3 andPS= 0.7.

The question asks forP{next correct| X = 4}.
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Split according to the type of candidate, then condition.

P{next correct| X = 4}
= P{next correct,S | X = 4} + P{next correct,G | X = 4}
= P(S | X = 4)P{next correct| X = 4, S} + P(G | X = 4)P{next correct| X = 4, G}.

If we know the type of candidate, the{X = 4} information becomes irrelevant, reducing the last
expression to

1/2P(S | X = 4)+ 1/3P(G | X = 4).

Notice how the success probabilities are weighted by probabilities that summarize our current
knowledge about whether the candidate is skilled or guessing. If the roles of{X = 4} and type of
candidate were reversed we could use the conditional distributions forX to calculate conditional
probabilities:

P(X = 4 | S) = (64)(1/2)
4(1/2)

22= (64)1/64

P(X = 4 | G) = (64)(1/3)
4(2/3)

2 = (64)4/729.

I have been lazy with the binomial coefficients because they will later cancel out.

Apply the usual splitting/conditioning argument.

P(S | X = 4) = PS{X = 4}
P{X = 4}

= P(X = 4 | S)PS

P(X = 4 | S)PS+ P(X = 4 | G)PG

=
(6

4

)
1/64(.7)(6

4

)
1/64(.7)+

(6
4

)
4/729(.3)

≈ .869.

There is no need to repeat the calculation for the other conditional probability, because

P(G | X = 4) = 1− P(S | X = 4) ≈ .131.

Thus, given the 4 out of 6 correct answers, the candidate has conditional probability of approxi-
mately

1/2(.869)+ 1/3(.131) ≈ .478

of answering the next question correctly.¤

Some authors prefer to summarize the calculations by means of theodds ratios:

P(S | X = 4)

P(G | X = 4)
= PS

PG
· P(X = 4 | S)
P(X = 4 | G) .

The initial ratio ofPS/PG is multiplied by a factor that reflects the relative support of the data
for the two competing explanations “skilled” and “guessing”. The conditioning calculation for
P(S | X = 4) is an instance ofBayes’s formula. The whole Example is an instance of•Bayes’s formula
Bayesian inference.

<3.5> Example. Members of the large governing body of a small country are given special bank-
ing privileges. Unfortunately, some members appear to be abusing the privilege by writing bad
checks. The royal treasurer declares the abuse to be a minor aberration, restricted to fewer than
5% of the members. An investigative reporter manages to expose the bank records of 20 mem-
bers, showing that 4 of them have been guilty. How credible is the treasurer’s assertion?

Suppose a fractionp of the members are guilty. If the sample size 20 is small relative to
the population of members, and if the reporter was getting a representative sample, the number of
guilty in the sample should be distributed Bin(20,p). You should be able to think of many ways
in which these assumptions could be violated, but I’ll calculate as if the simple Binomial model
were correct.
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Write X for the number of guilty in the sample, and add a subscriptp to the probabilities to
show that they refer to the Bin(20,p) distribution. Before the sample is taken we could assert

Pp{X ≥ 4}
= (20

4

)
p4(1− p)16+ (20

5

)
p5(1− p)14+ . . .+ (20

4

)
p20(1− p)0

= 1−
((20

0

)
p0(1− p)20+ (20

1

)
p1(1− p)19+ (20

2

)
p2(1− p)18+ (20

3

)
p3(1− p)17

)
.

The second form makes it easier to calculate by hand whenp = .05:

P.05{X ≥ 4} ≈ .02.

For values ofp less than 0.05 the probability is even smaller.

After the sample is taken we are faced with a choice: either the treasurer is right, and we
have just witnessed something very unusual; or maybe we should disbelieve the 5% upper bound.
This dichotomy illustrates the statistical procedure calledhypothesis testing. One chooses•hypothesis testing
an event that should be rare under one model, but more likely under an alternative model, as a
guide to a simplebelieve model/don’t believe modelresponse to an experiment. For the present
example the event{X ≥ 4} would have been much more likely under alternative explanations
involving larger proprtions of bad-check writers amongst the members.

You could safely skip the remainder of this Example. It discusses a concept from theoretical
statistics as an excuse to make more calculations with Binomial distributions.

z z z z z z z z z z z z z z z z

Sometimes a simple yes/no response is inadequate. Given the nature ofX, one would like
a plausible range of values forp. More specifically, givenX = 4, what would be a reasonable
lower bound for possiblep values?

Many statisticians would quote aconfidence interval for p in response to the last ques-•confidence interval tion. The interpretation is subtle; the interval does not carry the meaning that one might assume.
(Some statisticians of the Bayesian persuasion have been unkind enough to point out similarities
between confidence intervals and confidence tricks.) With this encouraging introduction, let me
explain how one could calculate a one-sided confidence interval forp.

0.2 0.4 0.6 0.8 1
p0

0.2

0.4

0.6

0.8

1

k=
1

k=
4

k=
20

Pp{X ≥ k}

p(4)≈0.07 p(20)≈0.86

Remember thatPp{. . .} refers to calculations under whichX has a Bin(20,p) distribution.
For eachk the probabilityPp{X ≥ k} is increasing as a function ofp. If 1 ≤ k ≤ 20, it increases
smoothly from 0 to 1 asp increases from 0 to 1. With some small effort one can solve for the
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values
0< p(1) < p(2) < . . . < p(20) < 1

for which
Pp(k){X ≥ k} = 0.05.

Define p(0) = 0, so thatp(X) is well defined for all possible values ofX.

Let C denote the random interval [p(X), 1]. I assert thatC has the property

<3.6> Pp{C containsp} ≥ .95 for everyp.

To see why the inequality holds, consider a typicalp. Suppose, for ex-

p(2) p(3)

p

ample, thatp(2) ≤ p < p(3). The random intervalC = [ p(X), 1] fails
to containp if p < p(X). That happens ifX takes a valuek for which
p < p(k), which, in the present case, holds fork = 3, 4, . . . ,20. Simi-
larly, the intervalC containsp if X takes a valuek for which p(k) ≤ p;
it containsp if X takes values 0,1, or 2. Thus

Pp{C does not containp} = Pp{X ≥ 3}
≤ Pp(3){X ≥ 3} becausePp{X ≥ 3} increases withp

= 0.05 by definition ofp(3).

Subtract both sides of the inequality from 1 to get<3.6>, at least forp betweenp(2) and p(3).
A similar argument establishes<3.6> for the other ranges ofp.

Now for the subtle part. If the reporter observesX = 4 he would calculate [p(4), 1] as the
one-sided confidence interval, perhaps announcing that he is 95% confident that the unknownp
lies in the range 0.07 to 1. (The value ofp(4) is approximately 0.07.) What does that mean?
It does not mean thatp has probability 0.95 of lying in the range [0.07, 1]. A statistician who
accepts the frequency interpretation might explain:

“There is a fixed value ofp that we don’t know. Maybe it is greater than 0.07, and
maybe it’s not. Who knows? But if you keep taking samples of size 20 and calculat-
ing the intervals [p(X), 1], in about 95% of the samples you will actually cover the
unknown p.”

Now you know.¤
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