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Chapter 11
Conditional densities

Density functions determine continuous distributions. If the distribution is conditional
on some information, then the density is called a conditional density. When the conditioning
information involves a random variable with a continuous distribution, the calculation of the
conditional density involves arguments like those of Chapter 10.

To illustrate a few of the possible methods for dealing with conditional densities, this
Chapter will provide three solutions to the following problem:

Let X and Y be independent random variables, each distributed Iy. For each
r > 0, find the conditional distribution of X giveg/ X2+ Y2 =r.

Ratios of small probabilities

The joint density for(X, Y) equals

XZ + yZ)

1
fx,y) = — exp(— >

2
Write R for /X2 + Y2, For a fixedxo and small positive,

P{Xo < X <X+ | R=r}~P{xg< X<Xg+d8|r<R=<r+¢}
_ Pxo=X<Xo+d,r <R=<r +¢€}
B Pir <R<r +¢}

<11.1>

Consider the probability in the numerator. H&g| < r, the event corresponds to the
two small regions in th&X, Y)-plane lying between the lines = xo andx = %p + 8, and
between the circles centered at the origin with radindr + €.

radius r+&
— \
radius r /
Yotrn = V/(r+€)*xo>

XOJ Xo+0 Vo= /I’Z-XOZ ”

—

Xo  Xotd

By symmetry, both regions contribute the same probability. Consider the upper region. For
small § ande, the region is approximately a parallelogram, with base

nz\/(r+e)2—x§—\/r2—x§
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<11.2>

and widthé. We could expand the expression fpas a power series ia by multiple appli-
cations of Taylor's theorem. Equivalently, use the fact that

Yo+m2=@+e?—x3 whereyd =r?—-x3
Expand each square, discarding term& gnde?) of smaller order, leaving
Y2+ 2nyo 124+ 2re — X2

orn =~ (re/yo). The upper region has approximate ared/yo,. The numerator inc11.1>
equals
r  exp(—r?/2)

2 2 27'[
VIe—Xg

reé
2y— f (X0, Yo) + smaller order terms: €6
0

The denominator inc11.1> could be calculated by a similar argument, but it is not really

necessary. IR has densityg(-) the probability in the denominator equals
€g(r) + smaller order terms

which gives

2 exp(—r?/2)
2 =/ (cg)

2_ 2
r2 —xg

as the approximation for the ratio ika11.1>. Thee cancels, leaving
rexp(—r?/2 1
mg(r) r2 —x2
as the conditional density, which | denote lbyx | R = r). (Once again | have omitted
the subscript on th&yg, to indicate that the argument works for everyn the range.) The
function ofr out front plays the role of the constant (for fixellto ensure that

r

fx]R=r)dx=1 for eachr > 0.

for x| <r

-r

We can calculate the necessary scaling constant directly, using the fact

/’ dx ) 72t cost do
O ——— —_———————— =TT
T2 o Vr2—rZsirte
Thusr exp(—r?/2)/g(r) = 1, and
1
fX|R=r)= ——— for x| <r
T2 — X2

as the density for the conditional distribution ¥fgiven R=r.

The conditional distribution for the random variallle= X/R given R = r is even
simpler. It has density

rfrt |R=r) = for |t] <1

1
a4/l —12

As a bonus we gefi(r) = r exp(—r?/2) forr > 0. A change-of-variable argument

(compare with Problem 10.1 or the discussion in Chapter 9 regarding transformations for

univariate densities) tha®?/2 has a standard exponential distribution.

Ratios of densities

The calculations of probabilities faix, Y) lying in small regions shaped almost like paral-

lelograms should have reminded you of the calculations in Chapter 10, for calculating joint
densities for functions of random variables with jointly continuous distributions. Indeed, the
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<11.3>

approximation
2  exp(—r?/2)

2 2 21
NIEE':

is exactly the result needed to show that the random variablead R have a jointly con-
tinuous distribution with joint density

r exp(—r?/2)

2 2 T
NIEED'

The marginal densitg for R is given by the integral
exp(—r?/2)

fww(x,r)dx:/ '
—00 —r /rz_xg s

The conditional densityf (- | R =r) was just the ratia}/g:

Pixg < X <X +8,r<R=<r+e}=xes

forO< |x| <

v(X,1) =

dx =r exp(—r?/2)

joint densityy (X, r)

ditional densi R=r)=
conditional densityf (x | " marginal densityg(r)

An analogous formula (with appropriate joint and marginal densities) works for the calcula-

tion of conditional densities in general.

Transformation to new random variables

The original problem can be recast in a much simpler form wKesndY are written in
polar coordinatesX = Rcog®) andY = Rsin(®). The distribution ofX/R givenR =r
is just the conditional distribution of cé®). Formula<11.2> shows that this conditonal

distribution does not depend on that is, cog®) is independent oR. The formula suggests

that ® and R are independent random variables.
To verify the suggested independence we can work backwards.

Exercise. SupposeV has a standard exponential distribution independer@,ofvhich is
uniformly distributed on [027]. Put R = +/2W. Show that the random variables

X = Rcos®

Y = Rsin®
are independent and eachNKO, 1) distributed.

SOLUTION: The rectangleA with corners(ty, 6p), and (tp + 8, 6o + €) in the (W, ®) strip
corresponds to a region* in the (X, Y)-plane bounded by radial lines at angiigsand 6, +
e from the X-axis and two circles, of radii/2ty and /2(tp + §), centered at the origin.

radius,/ 2(ty+0) -

radius,/ 2ty g AU

anglee
s

Simple geometry will give the area af*. (You might calculate the Jacobian as a
cross-check.) The annular region between the two circles hast@@a+ §) — 7 (2tg). The
two radial lines carve out a proportian (27) of that area:

area of A* = i2718 =€b
2
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The joint densityf (x, y) for (X, Y) at the point(Xq, Yo) = (/2o COSHg, +/2tg Sinbp) is given

by
€8t (X0, Yo) ~ P{(X,Y) € A"}
=Pl <O <O+etp <W<tg+4}
=P{0g <O < Oy+ €}P{tg < W < tg+ 6} by independence
2 1 \2
~ ia exp(—to) wherety = Xt %
27
That is ) )
1 X4y
f =—e — .
o = o -X50)
The random variableX, andY have the joint density of a pair of independeé0, 1) dis-
tributed variates. O

In the motivating problem for this Chapter, we could have takeandY as in the pre-
vious Exercise. TheX? + Y2 = 2W, and the problem asks for the conditional distribution
of +/2W cog®) given thatW = r2/2. The conditioning lets us puf2W equal to the con-
stantr. The independence & and® lets us ignore the effects on q@¥) of the condition-
ing; the conditional density for c0®) is the same as its marginal density. To calculate that
marginal density, take-1 <ty < 1 and smalb > 0. Then

2
P{to < cOS®) <to+6} =2P{fp < © <o+ ¢} = -
JT
wherefy anddp + ¢ are the values 0, =) for which co%6p) = tg and co$dp + ¢) = tg + 8.
Arguing thaté/e ~ sin(6p), we deduce that the distribution for & has density

1

as in<11.2>.

Bgt€

Remarks: The Box-Muller method generates independiiid, 1) variatesX; and Xa,
from two independent Unifor@®, 1) variates,U; andU,, by

X1 = {/—2logU; cog27U,)
X2 = /—2logU; sin(27Uy)

O Why does the method work?
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