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Chapter 11

Conditional densities

Density functions determine continuous distributions. If the distribution is conditional
on some information, then the density is called a conditional density. When the conditioning
information involves a random variable with a continuous distribution, the calculation of the
conditional density involves arguments like those of Chapter 10.

To illustrate a few of the possible methods for dealing with conditional densities, this
Chapter will provide three solutions to the following problem:

Let X and Y be independent random variables, each distributed N(0, 1). For each
r > 0, find the conditional distribution of X given

√
X2+ Y2 = r .

Ratios of small probabilities

The joint density for(X,Y) equals

f (x, y) = 1

2π
exp

(
−x2+ y2

2

)
Write R for

√
X2+ Y2. For a fixedx0 and small positiveδ,

P{x0 ≤ X ≤ x0+ δ | R= r } ≈ P{x0 ≤ X ≤ x0+ δ | r ≤ R≤ r + ε}
= P{x0 ≤ X ≤ x0+ δ, r ≤ R≤ r + ε}

P{r ≤ R≤ r + ε}<11.1>

Consider the probability in the numerator. For|x0| < r , the event corresponds to the
two small regions in the(X,Y)-plane lying between the linesx = x0 andx = x0 + δ, and
between the circles centered at the origin with radiir andr + ε.

radius r+ε

radius r

x0+δx0

x0 x0+δ

y0+η =   (r+ε)2-x0
2

y0 =   r2-x0
2

By symmetry, both regions contribute the same probability. Consider the upper region. For
small δ andε, the region is approximately a parallelogram, with base

η =
√
(r + ε)2− x2

0 −
√

r 2− x2
0
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and widthδ. We could expand the expression forη as a power series inε by multiple appli-
cations of Taylor’s theorem. Equivalently, use the fact that

(y0+ η)2 = (r + ε)2− x2
0 wherey2

0 = r 2− x2
0

Expand each square, discarding terms (η2 andε2) of smaller order, leaving

y2
0 + 2ηy0 ≈ r 2+ 2r ε − x2

0

or η ≈ (r ε/y0). The upper region has approximate arear εδ/y0. The numerator in<11.1>

equals

2
r εδ

y0
f (x0, y0)+ smaller order terms≈ εδ 2r√

r 2− x2
0

exp(−r 2/2)

2π

The denominator in<11.1> could be calculated by a similar argument, but it is not really
necessary. IfR has densityg(·) the probability in the denominator equals

εg(r )+ smaller order terms

which gives

εδ
2r√

r 2− x2
0

exp(−r 2/2)

2π

/
(εg(r ))

as the approximation for the ratio in<11.1>. The ε cancels, leaving

r exp(−r 2/2)

πg(r )

1√
r 2− x2

for |x| < r

as the conditional density, which I denote byf (x | R = r ). (Once again I have omitted
the subscript on thex0, to indicate that the argument works for everyx in the range.) The
function of r out front plays the role of the constant (for fixedr ) to ensure that∫ r

−r
f (x | R= r ) dx = 1 for eachr > 0.

We can calculate the necessary scaling constant directly, using the fact∫ r

−r

dx√
r 2− x2

= 2
∫ π/2

0

r cosθ dθ√
r 2− r 2 sin2 θ

= π

Thusr exp(−r 2/2)/g(r ) = 1, and

f (x | R= r ) = 1

π
√

r 2− x2
for |x| < r

as the density for the conditional distribution ofX given R= r .

The conditional distribution for the random variableT = X/R given R = r is even
simpler. It has density

<11.2> r f (r t | R= r ) = 1

π
√

1− t2
for |t | < 1

As a bonus we getg(r ) = r exp(−r 2/2) for r > 0. A change-of-variable argument
(compare with Problem 10.1 or the discussion in Chapter 9 regarding transformations for
univariate densities) thatR2/2 has a standard exponential distribution.

Ratios of densities

The calculations of probabilities for(X,Y) lying in small regions shaped almost like paral-
lelograms should have reminded you of the calculations in Chapter 10, for calculating joint
densities for functions of random variables with jointly continuous distributions. Indeed, the
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approximation

P{x0 ≤ X ≤ x0+ δ, r ≤ R≤ r + ε} ≈ εδ 2r√
r 2− x2

0

exp(−r 2/2)

2π

is exactly the result needed to show that the random variablesX and R have a jointly con-
tinuous distribution with joint density

ψ(x, r ) = r√
r 2− x2

0

exp(−r 2/2)

π
for 0< |x| < r

The marginal densityg for R is given by the integral∫ ∞
−∞

ψ(x, r ) dx =
∫ r

−r

r√
r 2− x2

0

exp(−r 2/2)

π
dx = r exp(−r 2/2)

The conditional densityf (· | R= r ) was just the ratioψ/g:

conditional densityf (x | R= r ) = joint densityψ(x, r )

marginal densityg(r )

An analogous formula (with appropriate joint and marginal densities) works for the calcula-
tion of conditional densities in general.

Transformation to new random variables

The original problem can be recast in a much simpler form whenX andY are written in
polar coordinates:X = Rcos(2) andY = Rsin(2). The distribution ofX/R given R = r
is just the conditional distribution of cos(2). Formula<11.2> shows that this conditonal
distribution does not depend onr , that is, cos(2) is independent ofR. The formula suggests
that2 and R are independent random variables.

To verify the suggested independence we can work backwards.

<11.3> Exercise. SupposeW has a standard exponential distribution independent of2, which is
uniformly distributed on [0, 2π ]. Put R= √2W. Show that the random variables

X = Rcos2

Y = Rsin2

are independent and each isN(0, 1) distributed.

Solution: The rectangle1 with corners(t0, θ0), and(t0 + δ, θ0 + ε) in the (W,2) strip
corresponds to a region1∗ in the (X,Y)-plane bounded by radial lines at anglesθ0 andθ0 +
ε from the X-axis and two circles, of radii

√
2t0 and

√
2(t0+ δ), centered at the origin.

angle ε

θ0

radius   2t0

radius   2(t0+δ)
∆∗

Simple geometry will give the area of1∗. (You might calculate the Jacobian as a
cross-check.) The annular region between the two circles has areaπ2(t0 + δ) − π(2t0). The
two radial lines carve out a proportionε/(2π) of that area:

area of1∗ = ε

2π
2πδ = εδ
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The joint density f (x, y) for (X,Y) at the point(x0, y0) = (
√

2t0 cosθ0,
√

2t0 sinθ0) is given
by

εδ f (x0, y0) ≈ P{(X,Y) ∈ 1∗}
= P{θ0 ≤ 2 ≤ θ0+ ε, t0 ≤ W ≤ t0+ δ}
= P{θ0 ≤ 2 ≤ θ0+ ε}P{t0 ≤ W ≤ t0+ δ} by independence

≈ ε

2π
δ exp(−t0) wheret0 = x2

0 + y2
0

2
That is

f (x, y) = 1

2π
exp

(
−x2+ y2

2

)
.

The random variablesX, andY have the joint density of a pair of independentN(0, 1) dis-
tributed variates. ¤

In the motivating problem for this Chapter, we could have takenX andY as in the pre-
vious Exercise. ThenX2 + Y2 = 2W, and the problem asks for the conditional distribution
of
√

2W cos(2) given thatW = r 2/2. The conditioning lets us put
√

2W equal to the con-
stantr . The independence ofW and2 lets us ignore the effects on cos(2) of the condition-
ing; the conditional density for cos(2) is the same as its marginal density. To calculate that
marginal density, take−1< t0 < 1 and smallδ > 0. Then

P{t0 ≤ cos(2) ≤ t0+ δ} = 2P{θ0 ≤ 2 ≤ θ0+ ε} = 2ε

2π
,

whereθ0 andθ0+ ε are the values in(0, π) for which cos(θ0) = t0 and cos(θ0+ ε) = t0+ δ.
Arguing thatδ/ε ≈ sin(θ0), we deduce that the distribution for cos(2) has density

1

π
√

1− t2
for |t | < 1,

as in<11.2>.

0

1

π 2π

t 0

t 0+δ

θ0+ε

θ0

Remarks: The Box-Muller method generates independentN(0, 1) variatesX1 and X2,
from two independent Uniform(0, 1) variates,U1 andU2, by

X1 =
√
−2 logU1 cos(2πU2)

X2 =
√
−2 logU1 sin(2πU2)

Why does the method work?¤
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