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Chapter 6

Continuous Distributions

In principle it is easy to calculate probabilities such asP{Bin(30, p) ≥ 17} for various
values ofp: one has only to sum the series(

30

17

)
p17(1− p)13+

(
30

18

)
p18(1− p)12+ . . .+ (1− p)30

With a computer (compare with the Matlab m-file BinProbs.m) such a task would not be as
arduous as it used to be back in the days of hand calculation. In this Chapter I will discuss
another approach, based on an exact representation of the sum as a beta integral, as a sneaky
way of introducing the the concept of a continuous distribution. (Don’t worry if you have
never heard of the beta integral; I’ll explain it all.)

For many purposes it would suffice to have to good approximation to the sum. The best
known method—the normal approximation, due to de Moivre (1733)—will be described in
Chapter 7. The beta integral will be starting point for one derivation of the normal approxi-
mation.

Binomial to beta

The connection between the Binomial distribution and the beta integral becomes evident
when we consider a special method for simulating coin tosses. Start from a random vari-
ableU that isuniformly distributed on the interval [0, 1]. That is,•uniformly distributed

P{a ≤ U ≤ b} = b− a for all 0≤ a ≤ b ≤ 1.

This distribution is denoted by Uniform[0, 1]. It is a different sort of distribution from the
geometric or Binomial. Instead of having only a discrete range of possible values,U ranges
over a continuous interval. It is said to have acontinuous distribution. Instead of•continuous distribution
giving probabilities forU taking on discrete values, we must specify probabilities forU to
lie in various subintervals of its range. Indeed, if you puta equal tob you will find that
P{U = b} = 0 for eachb in the interval [0,1].

To distinguish more clearly between continuous distributions and the sort of distribu-
tions we have been working with up to now, a random variable likeXn that take values in a
discrete range, will be said to have adiscrete distribution.•discrete distribution

Of course, to actually simulate a Uniform[0, 1] distribution on a computer one would
work with a discrete approximation. For example, if numbers were specified to only 7 dec-
imal places, one would be approximating Uniform[0,1] by a discrete distribution placing
probabilities of about 10−7 on a fine grid of about 107 equi-spaced points in the interval.
You might think of the Uniform[0, 1] as a convenient idealization of the discrete approxima-
tion.

For a fixedn (such asn = 30), generate independentlyn random variablesU1, . . . ,Un,
each distributed uniformly on [0, 1]. Fix a p in [0, 1]. Then the independent events

{U1 ≤ p}, {U2 ≤ p}, . . . , {Un ≤ p}
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are liken independent flips of a coin that lands heads with probabilityp. The number,Xn,
of such events that occur has a Bin(n, p) distribution.

The trick for reexpressing Binomial probabilities as integrals involves new random vari-
ables defined from theUi . Write T1, . . . , Tn for the values of theU1, . . . ,Un rearranged into
increasing order:

0 1U4 U1

T1

U5 U2 U6 U3

T2

T3

T4

p

The {Ti } are called theorder statistics of the {Ui }, and are often written asU(1),•order statistics U(2),. . . , U(n) or Un:1, Un:2, . . . , Un:n. (Exercise: What isP{U(1) = U1}?)

The random variablesTi , which have continuous distributions, are related toXn, which
has a discrete distribution, by the equivalence:

Xn ≥ k if and only if Tk ≤ p.

That is, there arek or more of theUi ’s in [0, p] if and only if the kth smallest of them is
in [0, p]. Thus

Pp{Xn ≥ k} = Pp{Tk ≤ p}.
I have added a subscriptp to the probability to remind you that the definition ofXn in-
volves p; the random variableXn has a Bin(n, p) distribution.

Now all we have to do is find the distribution ofTk, or, more specifically, find the prob-
ability that it lies in the interval [0, p].

The distribution of the order statistics from the uniform distribution

To specify the distribution of the random variableTk we need to find the probability that it
lies in a subinterval [a, b], for all choices ofa, b with 0≤ a < b ≤ 1.

Start with a simpler case where the interval is very short. For 0< t < t + δ < 1 andδ
very small, findP{t ≤ Tk ≤ t + δ}.

Decompose first according to the number of points{Ui } in [t, t + δ]. If there is only
one point in [t, t + δ] then we must have exactlyk− 1 points in [0, t) to get t ≤ Tk ≤ t + δ.
If there are two or more points in [t, t + δ] then it becomes more complicated to describe
all the ways that we would gett ≤ Tk ≤ t + δ. Luckily for us, the contributions from all
those complicated expressions will turn out to be small enough to ignore ifδ is small. Let
us calculate.

P{t ≤ Tk ≤ t + δ} = P{exactly 1 point in [t, t + δ], exactlyk− 1 points in [0, t)}
+ P{t ≤ Tk ≤ t + δ, two or more points in [t, t + δ]}<6.1>

Let me first dispose of the second contribution on the right-hand side of<6.1>. The
indicator function of the event

F2 = {t ≤ Tk ≤ t + δ, two or more points in [t, t + δ]}
is less than the sum of indicator functions∑

1≤i< j≤n

1{Ui , Uj both in [t, t + δ]}

You should check this assertion by verifying that the sum of indicators is nonnegative and
that it takes a value≥ 1 if the eventF2 occurs. Take expectations, remembering that the
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probability of an event is equal to the expectation of its indicator function, to deduce that

PF2 ≤
∑

1≤i< j≤n

P{Ui , Uj both in [t, t + δ]}

By symmetry, all
(n

2

)
terms in the sum are equal to

P{U1,U2 both in [t, t + δ]}
= P{t ≤ U1 ≤ t + δ}P{t ≤ U2 ≤ t + δ} by independence

= δ2.

ThusPF2 ≤
(n

2

)
δ2, which tends to zero much faster thanδ asδ → 0. (The value ofn stays

fixed throughut the calculation.)

Next consider the first contribution on the right-hand side of<6.1>. The event

F1 = {exactly 1 point in [t, t + δ], exactlyk− 1 points in [0, t)}
can be broken into disjoint pieces like

{U1, . . . ,Uk−1 in [0, t), Uk in [t, t + δ], Uk+1, . . . ,Un in (t + δ, 1]}.
Again by virtue of the independence between the{Ui }, the piece has probability

P{U1 < t}P{U2 < t} . . .P{Uk−1 < t}P{Uk in [t, t + δ]}P{Uk+1 > t + δ} . . .P{Un > t + δ},
Invoke the defining property of the uniform distribution to factorize the probability as

tk−1δ(1− t − δ)n−k = tk−1(1− t)n−kδ + terms of orderδ2 or smaller.

How many such pieces are there? There are
( n

k−1

)
ways to choose thek − 1 of theUi ’s to

land in [0, t), and for each of these ways there aren− k + 1 ways to choose the observation
to land in [t, t + δ]. The remaining observations must go in(t + δ, 1]. We must add up(

n

k− 1

)
× (n− k+ 1) = n!

(k− 1)!(n− k)!

pieces with the same probability to calculatePF1.

Consolidating all the small contributions fromPF1 andPF2 we get

<6.2> P{t ≤ Tk ≤ t + δ} = n!

(k− 1)!(n− k)!
tk−1(1− t)n−kδ + terms of orderδ2 or smaller.

The function

<6.3> f (t) = n!

(k− 1)!(n− k)!
tk−1(1− t)n−k for 0< t < 1

is called thedensity function for the distribution ofTk.•density function
Calculate the probability thatTk lies in a longer interval [a, b] by breaking the interval

into many short pieces. Form a large integer, letI1, . . . , Im be the disjoint subintervals with
lengthsδ = (b− a)/m and left end pointsti−1 = a+ (i − 1)δ.

t0 = a tm = bti-1 = a+(i-1)δ

f(.)

Statistics 241: 12 October 1997 c©David Pollard



Chapter 6 Continuous Distributions Page 4

From<6.2>,
P{Tk ∈ Ii } = f (ti )δ + terms of orderδ2 or smaller

Sum over the subintervals.

P{Tk ∈ [a, b]} = δ
m∑

i=1

f (ti )+ remainder of orderδ or smaller.

Notice howm contributions of orderδ2 (or smaller) can amount to a remainder of order at
worst δ (or smaller), becausem increases like 1/δ. (Can you make this argument rigorous?)

The sumδ
∑m

i=1 f (ti ) is an approximation to the integral off over [a, b]. As δ tends
to zero, the sum converges to that integral. The remainder terms tend to zero withδ. The
left-hand side just sits there. In the limit we get

P{Tk ∈ [a, b]} =
∫ b

a
f (t) dt,

where f denotes the density function from<6.3>.

<6.4> Definition. A random variable Y is said to have a continuous distribution with
density function g(·) if

P{a ≤ Y <≤ b} =
∫ b

a
g(t) dt

for all intervals [a, b]. In particular (at least at points t where g(·) is continuous)

P{t ≤ Y ≤ t + δ} = g(t)δ + terms of orderδ or smaller.

¤

Notice thatg must be non-negative, for otherwise some tiny interval would receive a
negative probability. Also

1= P{−∞ < Y <∞} =
∫ ∞
−∞

g(t) dt.

In particular, for the density of theTk distribution,

1=
∫ 0

−∞
0dt + n!

(k− 1)!(n− k)!

∫ 1

0
tk−1(1− t)n−kdt +

∫ ∞
1

0dt

That is,

<6.5>

∫ 1

0
tk−1(1− t)n−kdt = (k− 1)!(n− k)!

n!
,

a fact that you might try to prove by direct calculation.

Remark:I prefer to think of densities as being defined on the whole real line,
with values outside the range of the random variable being handled by setting the
density function equal to zero appropriately. That way my integrals always run
over the whole line with the zero density killing off unwanted contributions. This
convention will be useful when we consider densities that vanish outside a range
depending on a parameter of the distribution; it will also help us avoid some amus-
ing calculus blunders.

The Tk distribution is a member of a family whose name is derived from thebeta•beta function
function, defined by

B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt for α > 0, β > 0.

Equality<6.5> gives the value forB(k, n− k+ 1). If we divide through byB(α, β) we get
a candidate for a density function: non-negative and integrating to 1.
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<6.6> Definition. For α > 0 and β > 0 the Beta(α, β) distribution is defined by the density
function

tα−1(1− t)β−1

B(α, β)
for 0< t < 1

The density is zero outside (0, 1). ¤

For example,Tk has Beta(k, n− k+ 1) distribution.
β 

=
 5

β 
=

 4
β 

=
 3

β 
=

 2

α = 1

β 
=

 1

α = 2

Beta densities: tα-1 (1-t) β-1 /B(α,β) for 0 < t <1 and vertical range (0,5)

α = 3 α = 4 α = 5

See the Matlab m-file drawbeta.m for the calculations used to draw all these den-
sity functions.

A Matlab digression

The functionbeta in Matlab calculates the beta function, defined forz> 0 andw > 0 by

beta(z, w) =
∫ 1

0
t z−1(1− t)w−1dt.

The functionbetaincin Matlab calculates the incomplete beta function, defined by

betainc(x, z, w) =
∫ x

0

t z−1(1− t)w−1

beta(z, w)
dt for 0≤ x ≤ 1.

Expectation of a random variable with a continuous distribution

Consider a random variableX whose distribution has density functionf (·). Let W = g(X)
be a new random variable defined as a function ofX. How can we calculateEW?
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Construct discrete approximations tog by cutting the line into small intervals of length
δ. Define

g′i,δ = max{g(x) : i δ ≤ x < (i + 1)δ}
g′′i,δ = min{g(x) : i δ ≤ x < (i + 1)δ}

Near points whereg is continuous,g′i,δ ≈ g(i δ) ≈ g′′i,δ. Define upper (W′δ) and lower (W′′δ )

approximations tog(X) by puttingW′δ = g′i,δ andW′′δ = g′′i,δ if i δ ≤ X < (i + 1)δ, for
i = 0,±1,±2, . . ..

Notice thatW′′δ ≤ g(X) ≤ W′δ always. Rule E3 for expectations (see Chapter 2) there-
fore gives

EW′′δ ≤ Eg(X) ≤ EW′δ

Both W′δ andW′′δ have discrete distributions, for which we can find expected values by
the conditioning rule E4:

EW′δ =
∑

i

P{i δ ≤ X < (i + 1)δ}E(W′δ | i δ ≤ X < (i + 1)δ)

≈
∑

i

δ f (i δ)g(i δ)

You should recognize the last sum as an approximation to the integral
∫∞
−∞ g(x) f (x) dx.

The expectationEW′′δ approximates the same integral.

As δ → 0, both approximating sums converge to the integral. The fixed valueEW gets
sandwiched between converging upper and lower bounds. In the limit we must have

<6.7> Eg(X) =
∫ ∞
−∞

g(x) f (x) dx

when X has a continuous distribution with densityf (·).
Compare with the formula for a random variableX∗ taking only a discrete set of values

x1, x2, . . .:
Eg(X∗) =

∑
i

g(xi )P{X∗ = xi }

In the passage from discrete to continuous distributions, discrete probabilities get replaced by
densities and sums get replaced by integrals.

You should be very careful not to confuse the formulae for expectations in the discrete
and continuous cases. Think again if you find yourself integrating probabilities or sum-
ming expressions involving probability densities.
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