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Chapte r 2

Expectations

Just as events have (conditional) probabilities attached to them, with possible interpretation
as along-run frequency, so too do random variables have anumber interpretable as along-run
average attached to them. Given a particular piece of information, the symbol

E
(
X | information

)
denotes the (conditional) expected value or (conditional) expectation of the ran-•(conditional) expected value
dom variable X (given that information).

When the information is taken as understood, the expected value is abbreviated to EX.

Expected values are not restricted to lie in the range from zero to one.

As with conditional probabilities, there are convenient abbreviations when the conditioning
information includes something like {event F has occurred}:

E
(
X | information and “ F has occurred”

)
E
(
X | information, F

)
Unlike many authors, I wil l take the expected value as aprimitive concept, not one to be derived
from other concepts. Al l of the methods that those authors use to define expected values wil l be
derived from a small number of basic rules. You should provide the interpretations for these rules
as long-run averages of values generated by independent repetitions of random experiments.

Rules for (conditional) expectations

Let X and Y be random variables, c and d be constants, and F1, F2, . . .be events. Then:

(E1) E
(
cX + dY | info

) = cE
(
X | info

)+ dE
(
Y | info

)
;

(E2) if X can only take the constant value c under the given “info” then E
(
X | info

) = c;

(E3) if the given “info” forces X ≤ Y then E
(
X | info

) ≤ E(Y | info
)
;

(E4) if the events F1, F2, . . . are disjoint and have union equal to the whole sample space then

E
(
X | info

) =∑
i

E
(
X | Fi ,info

)
P
(
Fi | info

)
.

Only rule E4 should require much work to interpret. It combines the power of both rules P4
and P5 for conditional probabilities. Here is an interpretation for the case of two disjoint events
F1 and F2 with union S.

Repeat the experiment a very large number (N) of times, noting for each repetition the value
taken by X and which of F1 or F2 occurs.

1 2 3 4 . . .  N − 1 N total
F1 occurs X X  X . . .  X X N1

F2 occurs X . . .  X X X N2

X x1 x2 x3 x4 . . .  xN−1 xN
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Those trials whereF1 occurs correspond to conditioning onF1:

E
(
X | F1, info

) ≈ 1

N1

∑
F1occurs

xi .

Similarly,

E
(
X | F2, info

) ≈ 1

N2

∑
F2occurs

xi

and

P
(
F1 | info

) ≈ N1/N

P
(
F2 | info

) ≈ N2/N.

Thus

E
(
X | F1, info

)
P
(
F1 | info

)+ E(X | F2, info
)
P
(
F2 | info

)
≈
(

1

N1

∑
F1occurs

xi

)(
N1

N

)
+
(

1

N2

∑
F2occurs

xi

)(
N2

N

)

= 1

N

N∑
i=1

xi

≈ E(X | info
)
.

As N gets larger and larger all approximations are supposed to get better and better, and so on.

Rules E2 and E5 imply immediately a result that is used to calculate expectations from
probabilities. Consider the case of a random variableY expressible as a functiong(X) of another
random variable,X, which takes on only a discrete set of valuesc1, c2, . . .. (I will return later to
the case of so-called continuous random variables.) LetFi be the subset ofS on which X = ci ,
that is,

Fi = {X = ci }.
Then by E2,

E
(
Y | Fi , info

) = g(ci ),

and by E5,
E
(
Y | info

) =∑
i

g(ci )P
(
Fi | info

)
.

More succinctly,

<2.1>

E
(
g(X) | info

) =∑
i

g(ci )P
(
X = ci | info

)
In particular,

<2.2> E
(
X | info

) =∑
i

ciP
(
X = ci | info

)
.

Formulas<2.1> and<2.2> apply to random variables that take values in the “discrete set”
{c1, c2, . . .}. If the range of values includes an interval of real numbers, an approximation argu-
ment (see Chapter 4) replaces sums by integrals.

<2.3> Example. The “HHH versus TTHH” Example in Chapter 1 solved the following problem:

Imagine that I have a fair coin, which I toss repeatedly. Two players, M and R,
observe the sequence of tosses, each waiting for a particular pattern on consecutive
tosses: M waits for hhh, and R waits for tthh. The one whose pattern appears first
is the winner. What is the probability that M wins?

The answer—that M has probability 5/12 of winning—is slightly surprising, because, at first
sight, a pattern of four appears harder to achieve than a pattern of three.
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A calculation of expected values will add to the puzzlement. As you will see, if the game
is continued until each player sees his pattern, it takes tthh longer (on average) to appear than
it takes hhh to appear. However, when the two patterns are competing, the tthh pattern is more
likely to appear first. How can that be?

For the moment forget about the competing hhh pattern: calculate the expected number of
tosses needed before the pattern tthh is obtained with four successive tosses. That is, if we letX
denote the number of tosses required then the problem asks for the expected valueEX.

S T TT TTH TTHH

The Markov chain diagram keeps track of the progress from the starting state (labelled S)
to the state TTHH where the pattern is achieved. Each arrow in the diagram corresponds to a
transition between states with probability 1/2.

Once again it is easier to solve not just the original problem, but a set of problems, one for
each starting state. Let

ES = E(X | start at S)

EH = E(X | start at H)
...

Then the original problem is asking for the value ofES.

Condition on the outcome of the first toss, writingH for the event{first toss lands heads}
andT for the event{first toss lands tails}. From rule E4 for expectations,

ES = E(X | start at S,T)P(T | start at S)+ E(X | start at S,H)P(H | start at S)

Both the conditional probabilities equal 1/2 (“fair coin”; probability does not depend on the
state). For the first of the conditional expectations, count 1 for the first toss, then recognize that
the remaining tosses are just those needed to reach TTHH starting from the stateT :

E(X | start at S,T) = 1+ E(X | start at T)

Don’t forget to count the first toss. An analogous argument leads to an analogous expression for
the second conditional expectation. Susbtitution into the expression forES then gives

ES = 1/2(1+ ET )+ 1/2(1+ ES)

Similarly,

ET = 1/2(1+ ET T)+ 1/2(1+ ES)

ET T = 1/2(1+ ET T)+ 1/2(1+ ET T H)

ET T H = 1/2(1+ 0)+ 1/2(1+ ET )

What does the zero in the last equation represent?

The four linear equations in four unknowns have the solutionES = 16, ET = 14, ET T = 10,
ET T H = 8. Thus, the solution to the original problem is that the expected number of tosses to
achieve the tthh pattern is 16.

On Problem Sheet 2 you are asked to show that the expected number of tosses needed to get
hhh, without competition, is 14. The expected number of tosses for the game with competition
between hhh and tthh is 91/3 (see Matlab m-file solvehhh tthh.m). Notice that the expected value
for the game with competition is smaller than the minimum of the expected values for the two
games. Why must it be smaller?¤

The calculation of an expectation is often a good way to get a rough feel for the behaviour
of a random process. It is helpful to remember expectations for a few standard mechanisms, such
as coin tossing, rather than have to rederive them repeatedly.
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<2.4> Example. For independent coin tossing, what is the expected number of tosses to get the first
head?

Suppose the coin has probabilityp > 0 of landing heads. (So we are actually calculating the
expected value for the geometric(p) distribution.) I will present two methods.

Method A.

Condition on whether the first toss lands heads (H) or tails (T). WithX defined as the number of
tosses until the first head,

EX = E(X | H)PH + E(X | T)PT

= (1)p+ (1+ EX)(1− p).

The reasoning behind the equality

E(X | T) = 1+ EX

is: After a tail we are back where we started, still counting the number of tosses until a head,
except that the first tail must be included in that count.

Solving the equation forEX we get

EX = 1/p.

Does this answer seem reasonable? (Is it always at least 1? Does it increase asp increases?
What happens asp tends to zero or one?)

Method B.

By the formula<2.1>,

EX =
∞∑

k=1

k(1− p)k−1 p.

There are several cute ways to sum this series. Here is my favorite. Writeq for 1− p. Write the
kth summand as a a column ofk terms pqk−1, then sum by rows:

EX = p+ pq+ pq2+ pq3+ . . .
+pq+ pq2+ pq3+ . . .

+pq2+ pq3+ . . .
+pq3+ . . .

...
Each row is a geometric series.

EX = p/(1− q)+ pq/(1− q)+ pq2/(1− q)+ . . .
= 1+ q + q2+ . . .
= 1/(1− q)

= 1/p,

same as before.¤

Probabilists study standard mechanisms, and establish basic results for them, partly in the
hope that they will recognize those same mechanisms buried in other problems. In that way, un-
necessary calculation can be avoided, making it easier to solve more complex problems. It can,
however, take some work to find the hidden mechanism.

<2.5> Example. (coupon collector’s problem) In order to encourage consumers to buy many packets
of cereal, a manufacurer includes a Famous Probabilist card in each packet. There are 10 differ-
ent types of card: Chung, Feller, Levy, Kologorov,. . . , Doob. Suppose that I am seized by the
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desire to own at least one card of each type. What is the expected number of packets that I need
to buy in order to achieve my goal?

Assume that the manufacturer has produced enormous numbers of cards, the same number
for each type. (If you have ever tried to collect objects of this type, you might doubt the assump-
tion about equal numbers. But, without it, the problem becomes exceedingly difficult.) The as-
sumption ensures, to a good approximation, that the cards in different packets are independent,
with probability 1/10 for a Chung, probability 1/10 for a Feller, and so on.

The high points in my life occur at random “times”T1, T1+T2, . . . , T1+T2+ . . .+T10, when
I add a new type of card to my collection: AfterT1 = 1 card I have my first type; after another
T2 cards I will get something different from the first card; after anotherT3 cards I will get a third
type; and so on.

The question asks forE(T1 + T2 + . . .+ T10), which rule E1 (applied repeatedly) reexpresses
asET1+ ET2+ . . .+ ET10.

The calculation forET1 is trivial becauseT1 must equal 1: we getET1 = 1 by rule E2.
Consider the mechanism controllingT2. For concreteness suppose the first card was a Doob.
Each packet after the first is like a coin toss with probability 9/10 of getting a head (= a non-
Doob), with T2 like the number of tosses needed to get the first head. Thus

T2 has a geometric(9/10) distribution.

Deduce from Example<2.4> thatET2 = 10/9, which is slightly larger than 1.

Now consider the mechanism controllingT3. Condition on everything that was observed up
to time T1 + T2. Under the assumption of equal abundance and enormous numbers of cards, this
conditioning information is acually irrelevent; the mechanism controllingT3 is independent of the
past information. (Hard question: Why would theT2 andT3 mechanisms not be independent if
the cards were not equally abundant?) So what is thatT3 mechanism? I am waiting for any one
of the 8 types I have not yet collected. It is like coin tossing with probability 8/10 of heads:

T3 has geometric (8/10) distribution,

and thusET3 = 10/8. And so on, leading to

ET1+ ET2+ . . .+ ET10 = 1+ 10/9+ 10/8+ ...+ 10/1≈ 29.3.

I should expect to buy about 29.3 packets to collect all ten cards.¤

The independence between packets was not needed to justify the appeal to rule E1, to break
the expected value of the sum into a sum of expected values. It did allow us to recognize the
various geometric distributions without having to sort through possible effects of largeT2 on the
behavior ofT3, and so on.

You might appreciate better the role of independence if you try to solve a similar problem
with just two sorts of card, not in equal proportions.

For the coupon collectors problem I assumed large numbers of cards of each type, in order
to justify the analogy with coin tossing. Without that assumption the depletion of cards from the
population would have a noticeable effect on the proportions of each type remaining after each
purchase. The next example illustrates the effects of sampling from a finite population without
replacement, when the population size is not assumed very large.

<2.6> Example. Suppose an urn contains r red balls and b black balls, all balls identical except for
color. Suppose balls are removed from the urn one at a time, without replacement. Assume that
the person removing the balls selects them at random from the urn: if k balls remain then each
has probability 1/k of being chosen.

Question: What is the expected number of red balls removed before the first black ball?

The problem might at first appear to require nothing more than a simple application of for-
mula<2.1> for deriving expectations from probabilities. We shall see. LetT be the number of
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reds removed before the first black. Find the distribution of T , then appeal to the formula<2.1>

to get
ET =

∑
k

kP{T = k}.

Sounds easy enough.

Define Ri = {i th ball red} and Bi = {i th ball black}. The possible values for T are
0, 1, . . . , r . For k in this range,

P{T = k} = P{first k balls red, (k+1)st ball is black}
= P(R1R2 . . . Rk Bk+1)

= (PR1)P(R2 | R1)P(R3 | R1R2) . . .P(Bk+1 | R1 . . . Rk)

= r

r + b
.

r − 1

r + b− 1
. . .

b

r + b− k
.

The dependence on k is fearsome. I wouldn’t like to try multiplying by k and summing. If you
are into pain you might continue the argument from here.

There is amuch easier way to calculate the expectation, by breaking T into a sum of much
simpler random variables for which formula<2.1> is trivial to apply. This approach is some-
times called the method of indicators.•method of indicators

Suppose the red balls are labelled 1, . . . , r . Let Ti equal 1 if red ball number i is sampled
before the first black ball. (Be careful here. The black balls are not thought of as numbered. The
first black ball is not a ball bearing the number 1; it might be any of the b black balls in the urn.)
Then T = T1 + . . .+ Tr . By symmetry—it is assumed that the numbers have no influence on the
order in which red balls are selected—each Ti has the same expectation. Thus

ET = ET1+ . . .+ ETr = rET1.

For the calculation of ET1 we can ignore most of the red balls. The event {T1 = 1} occurs if and
only if red ball number 1 is drawn before all b of the black balls. By symmetry, the event has
probability 1/(b+ 1). (If b+ 1 objects are arranged in random order, each object has probability
1/(1+ b) of appearing first in the order.)

If you are not convinced by the appeal to symmetry, you might find it helpful to consider a
thought experiment where all r + b balls are numbered and they are removed at random from the
urn. That is, treat all the balls as distinguishable and sample until the urn is empty. (You might
find it easier to follow the argument in a particular case, such as all 120 = 5! orderings for five
distinguishable balls, 2 red and 3 black.) The sample space consists of all permutations of the
numbers 1 to r + b. Each permutation is equally likely. For each permutation in which red 1
precedes all the black balls there is another equally likely permutation, obtained by interchanging
the red ball with the first of the black balls chosen; and there is an equally likely permutation
in which it appears after two black balls, obtained by interchanging the red ball with the sec-
ond of the black balls chosen; and so on. Formally, we are partitioning the whole sample space
into equally likely events, each determined by a relative ordering of red 1 and all the black balls.
There are b+ 1 such equally likely events, and their probabilities sum to one.

Now it is easy to calculate the expected value for red 1.

ET1 = 0P{T1 = 0} + 1P{T1 = 1} = 1/(b+ 1)

The expected number of red balls removed before the first black ball is equal to r/(b+ 1).¤

Problem Sheet 3 outlines another way to solve the problem.

Compare the solution r/(b + 1) with the result for sampling with replacement, where the
number of draws required to get the first black would have ageometric(b/(r + b)) distribution.
With replacement, the expected number of reds removed before the first black would be

(b/(r + b))−1− 1= r/b.

Replacement of balls after each draw increases the expected value slightly. Does that make
sense?
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You could safely skip the remainder of this Chapter. It contains a discussion of a tricky little
problem, that can be solved by conditioning or by an elegant symmetry argument.

z z z z z z z z z z z z z z z z

My interest in the calculations in the last Example was kindled by a problem that appeared
in the August-September 1992 issue of the American Mathematical Monthly. My solution to
the problem—the one I first came up with by application of a straightforward conditioning
argument—reduces the calculation to several applications of the result from the previous Exam-
ple. The solution offered by two readers of the Monthly was slicker.

<2.7> Example. (The problem of the Big Pills and Little Pills)
E 3429 [1991, 264]. Proposed by Donald E. Knuth and John McCarthy, Stanford University,

Stanford, CA.
A certain pill bottle contains m large pills and n small pills initially, where each large pill is

equivalent to two small ones. Each day the patient chooses a pill at random; if a small pill is se-
lected, (s)he eats it; otherwise (s)he breaks the selected pill and eats one half, replacing the other
half, which thenceforth is considered to be a small pill.

(a) What is the expected number of small pills remaining when the last large pill is selected?

(b) On which day can we expect the last large pill to be selected?

Solution from AMM:

Composite solution by Walter Stromquist, Daniel H. Wagner, Associates, Paoli, PA and Tim Hes-
terberg, Franklin & Marshall College, Lancaster, PA.The answers are (a)n/(m+1)+∑m

k=1(1/k),
and (b) 2m+n− (n/(m+1))−∑m

k=1(1/k). The answer to (a) assumes that the small pill created
by breaking the last large pill is to be counted. A small pill present initially remains when the
last large pill is selected if and only if it is chosen last from among them+1 element set consist-
ing of itself and the large pills—an event of probability 1/(m+ 1). Thus the expected number of
survivors from the original small pills isn/(m+ 1). Similarly, when thekth large pill is selected
(k = 1, 2, . . . ,m), the resulting small pill will outlast the remaining large pills with probability
1/(m− k+ 1), so the expected number of created small pills remaining at the end is

∑m
k=1(1/k).

Hence the answer to (a) is as above. The bottle will last 2m+ n days, so the answer to (b) is just
2m+ n minus the answer to (a), as above.

I offer two methods of solution for the problem. The first method uses a conditioning ar-
gument to set up a recurrence formula for the expected numbers of small pills remaining in the
bottle after each return of half a big pill. The equations are easy to solve by repeated substitu-
tion. The second method uses indicator functions to spell out the Hesterberg-Stromquist method
in more detail. Apparently the slicker method was not as obvious to most readers of the Monthly
(and me):

Editorial comment.Most solvers derived a recurrence relation, guessed the answer,
and verified it by induction. Several commented on the origins of the problem.
Robert High saw a version of it in the MIT Technology Review of April, 1990.
Helmut Prodinger reports that he proposed it in the Canary Islands in 1982. Daniel
Moran attributes the problem to Charles MacCluer of Michigan State University,
where it has been know for some time.

Solved by 38 readers (including those cited) and the proposer. One incorrect solution was

received.

Conditioning method.

Invent random variables to describe the depletion of the pills. Initially there areL0 = n
small pills in the bottle. LetS1 small pills be consumed before the first large pill is broken. After
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the small half is returned to the bottle let there beL1 small pills left. Then letS2 small pills be
consumed before the next big pill is split, leavingL2 small pills in the bottle. And so on.

S1 small S2 small Si small

L1 small left Li small left

first big broken ith big brokenith big brokenfirst big broken last big broken

With this notation, part (a) is asking forELm. Part (b) is asking for 2m+ n − ELm: If the
last big pill is selected on dayX then it takesX + Lm days to consume the 2m + n small pill
equivalents, soEX + ELm = 2m+ n.

The random variables are connected by the equation

Li = Li−1− Si + 1,

the−Si representing the small pills consumed between the breaking of the(i − 1)st andi th big
pill, and the+1 representing the half of the big pill that is returned to the bottle. Taking expecta-
tions we get

<2.8> ELi = ELi−1− ESi + 1.

The result from Example<2.6> will let us calculateESi in terms ofELi−1, thereby producing
the recurrence formula forELi .

Condition on the pill history up to the(i − 1)st breaking of big pill (and the return of the
unconsumed half to the bottle). At that point there areLi−1 small pills andm− (i − 1) big pills
in the bottle. The mechanism controllingSi is just like the urn problem of Example<2.6>, with

r = Li−1 red balls (= small pills)

b = m− (i − 1) black balls (= big pills).

From that Example,

E
(
Si | history to(i − 1)st breaking of a big pill

) = Li−1

1+m− (i − 1)
.

To calculateESi we would need to average out using weights equal to the probability of each
particular history:

ESi = 1

1+m− (i − 1)

∑
histories

P{history}(value of Li−1 for that history).

The sum on the right-hand side is exactly the sum we would get if we calculatedELi−1 using
rule E4, partitioning the sample space according to possible histories up to the(i − 1)st breaking
of a big pill. Thus

ESi = 1

2+m− i
ELi−1.

Now we can eliminateESi from equality<2.8> to get the recurrence formula for theELi

values:

ELi =
(

1− 1

2+m− i

)
ELi−1+ 1.

If we defineθi = ELi /(1+m− i ) the equation becomes

θi = θi−1+ 1

1+m− i
for i = 1, 2, . . . ,m,

with initial condition θ0 = EL0/(1+m) = n/(1+m). Repeated substitution gives

θ1 = θ0+ 1

m
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θ2 = θ1+ 1

m− 1
= θ0+ 1

m
+ 1

m− 1

θ3 = θ2+ 1

m− 2
= θ0+ 1

m
+ 1

m− 1
+ 1

m− 2
...

θm = . . . = θ0+ 1

m
+ 1

m− 1
+ . . .+ 1

2
+ 1

1
.

That is, the expected number of small pills left after the last big pill is broken equals

ELm = (1+m−m)θm

= n

1+m
+ 1+ 1

2
+ . . .+ 1

m
.

Rewrite of the Stromquist-Hesterberg solution.

Think in terms of half pills, some originally part of big pills. Number the original half pills
1, . . . ,n. Define

Hi =
{+1 if original half pill i survives beyond last big pill

0 otherwise.
Number the big pills 1, . . . ,m. Use the same numbers to refer to the half pills that are created
when a big pill is broken. Define

Bj =
{+1 if created half pill j survives beyond last big pill

0 otherwise.
The number of small pills surviving beyond the last big pill equals

H1+ . . .+ Hn + B1+ . . .+ Bm.

By symmetry, eachHi has the same expected value, as does eachBj . The expected value asked
for by part (a) equals

<2.9> nEH1+mEB1 = nP{H1 = 1} +mP{B1 = 1}.
For the calculation ofP{H1 = +1} we can ignore all except the relative ordering of them

big pills and the half pill described byH1. By symmetry, the half pill has probability 1/(m+ 1)
of appearing in each of them+ 1 possible positions in the relative ordering. In particular,

P{H1 = +1} = 1

m+ 1
.

For the created half pills the argument is slightly more complicated. If we are given that
big pill number 1 the kth amongst the big pills to be broken, the created half then has to survive
beyond the remainingm − k big pills. Arguing again by symmetry amongst the(m − k + 1)
orderings we get

P
(
B1 = +1 | big number 1 chosen as kth big

) = 1

m− k+ 1
.

Also by symmetry,

P{big 1 chosen as kth big} = 1

m
.

Average out using the conditioning rule E4 to deduce

P{B1 = +1} = 1

m

m∑
k=1

1

m− k+ 1
.

Notice that the summands run through the values 1/1 to 1/m in reversed order.

When the values forP{H1 = +1} andP{B1 = +1} are substituted into<2.9>, the asserted
answer to part (a) results.¤
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