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Chapter 13

Generating functions and transforms

Throughout the course I have been emphasizing the idea that discrete probability dis-
tributions are specified by the list of possible values and the probabilities attached to those
values, and that continuous distributions are specified by density functions. There are other
ways to characterize distributions.1

Probability distributions can also be specified by a variety of transforms, that is, by
functions that somehow encode the properties of the distributions into a form more conve-
nient for certain kinds of probability calculation. In this Chapter I will describe two closely
related transforms: probability generating functions and moment generating functions.

Probability generating functions

For a random variableX taking only nonnegative integer values, with probabilitiespk =
P{X = k}, theprobability generating function g(·) is defined as•probability generating

function

<13.1> g(s) = EsX =
∞∑

k=0

pksk for 0≤ s ≤ 1

The powers of the dummy variables serves as placeholders for thepk probabilities that de-
termine the distribution; we recover thepk as coefficients in a power series expansion of the
probability generating function.

<13.2> Example. If a random variableX has probability generating function

g(s) = exp(λ(s− 1)) for 0≤ s ≤ 1,

with λ a positive constant, thenX has a Poisson(λ) distribution, because the coefficient ofsk

in the power series expansion

exp(λ(s− 1)) = e−λ
∞∑

k=0

(λs)k

k!

equalse−λλk/k!. ¤

Expansion of a probability generating function in a power series is just one way of ex-
tracting information about the distribution. Repeated differentiation inside the expectation

1 For example, I could have worked with probability distribution functions,F(x) = P{X ≤ x}
for each realx. Problem 11.6 showed you how to derive joint densities from the analogously
defined bivariate distribution function. For some problems (such as calculations of distributions
for maxima of independent random variables) it would be convenient to work with distribution
functions, but I feel that they do not deserve the prominence usually given them by introductory
texts. I have quite deliberately chosen to work with more flexible methods for handling probability
distributions.

Statistics 241: 2 December 1997 c©David Pollard



Chapter 13 Generating functions and transforms Page 2

sign gives

g(m)(s) = ∂m

∂sm
E(sX) = E (X(X − 1) . . . (X −m+ 1)sX−m

)
,

whence
g(m)(1) = E (X(X − 1) . . . (X −m+ 1)

)
for m= 1, 2, . . .

In particular,

EX = g′(1)
E(X2− X) = g′′(1)

E(X3− 3X2+ 2X) = g′′′(1)

With a little algebra we could recover the moments ofX.

<13.3> Exercise. Let X have a negative binomial distribution (as defined on Sheet 4),

P{X = k} =
(−α

k

)
pα(p− 1)k for k = 0, 1, 2, . . .

Find its probability generating function, and then deriveEX and var(X).

Solution: Write q for 1− p. Then

g(s) = EsX =
∞∑

k=0

(−α
k

)
pα(−qs)k = pα(1− qs)−α

Differentiate.

g′(s) = pααq(1− qs)−α−1 and g′′(s) = pαα(α + 1)q2(1− qs)−α−2

ThusEX = g′(1) = αq/p and

var(X) = g′′(1)+ EX − (EX)2 = αq/p2

Compare with the calculation of the expected value of a geometric(p) in Chapter 2. ¤

<13.4> Exercise. SupposeX andT are random variables, withT distributed gamma(α) and X
having a conditional Poisson distribution:

X | T = t ∼ Poisson(λt) for some constantλ.

Show thatX has a negative binomial distribution.

Solution: Calculate the probability generating function forX.

EsX =
∫ ∞

0
E
(
sX | T = t

) tα−1e−t

0(α)
dt

=
∫ ∞

0
eλt (s−1) t

α−1e−t

0(α)
dt from Example<13.2>

=
∫ ∞

0

yα−1e−y

(1+ λ(1− s))α−10(α)
dy

That is,

EsX =
(

1

1+ λ(1− s)

)α
= pα(1− qs)−α where p = 1

1+ λ = 1− q,

which is the probability generating function of the negative binomial from Example<13.3>.
A power series expansion (really necessary?) would recover the negative binomial probabili-
ties as coefficients. ¤

As a check on the result from the last Exercise you might verify by direct integration
that ∫ ∞

0
P{X = k | T = t} t

α−1e−t

0(α)
dt =

(−α
k

)
(−λ)k(1+ λ)−α−k for k = 0, 1, 2, . . .
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An exact probability generating function uniquely determines a distribution; an approxi-
mation to the probability generating function approximately determines the distribution.

<13.5> Example. If X has a Bin(n, p) distribution then (withq = 1− p)

E
(
sX
) = n∑

k=0

sk

(
n

k

)
pkqn−k = (q + ps)n

If p = λ/n, andn is large, then

logE
(
sX
) = log

(
1− λ

n
+ λs

n

)n

= n log

(
1+ λ(s− 1)

n

)
≈ n

λ(s− 1)

n

It follows thatE
(
sX
)

is approximately equal toeλ(s−1), which is the probability generating
function for the approximating Poisson(λ) distribution. ¤

The next two Examples show how probability generating functions can be used to solve
problems involving the stochastic model called abranching process.•branching process

<13.6> Exercise. A careful study of the reproductive behaviour of the royal house of Oz has re-
vealed that each member of the family has probability:

1
6 of producing no children;
3
6 of producing only one child;<13.7>

2
6 of producing exactly two children.

The present king, Osgood, is only 8 years old. Assuming that family members reproduce
independently of each other, according to the stated distribution, find the probability that Os-
good eventually has exactly two grandchildren.

Write Xn for the size of thenth generation, starting fromX0 = 1 for Osgood himself.
The question asks forP{X2 = 2}.

Solution by brute-force conditioning: The problem is simple enough to yield
to straightforward conditioning onX1, the number of children that Osgood will produce.
Clearly

P{X2 = 2 | X1 = 0} = 0 and P{X2 = 2 | X1 = 1} = 2
6

If X1 = 2 then each of the two children will reproduce according to the offspring distribu-
tion <13.7>, and thusX2 can be written as a sum of two (conditionally) independent ran-
dom variablesξ1 andξ2 with

P{ξi = 0 | X1 = 2} = 1
6, P{ξi = 1 | X1 = 2} = 3

6, P{ξi = 2 | X1 = 2} = 2
6

Arguing conditonally, withX2 = ξ1+ ξ2, we get

P{X2 = 2 | X1 = 2} = P{ξ1+ ξ2 = 2 | X1 = 1}
= P{ξ1 = 0, ξ2 = 2 | X1 = 1} + P{ξ1 = 1, ξ2 = 1 | X1 = 1}

+ P{ξ1 = 2, ξ2 = 0 | X1 = 1}
= ( 1

6 × 2
6

)+ ( 3
6 × 3

6

)+ ( 2
6 × 1

6

)
by conditional independence

= 13

36
Average out over theX1 distribution.

P{X2 = 2} = P{X2 = 2 | X1 = 0} 16 + P{X2 = 2 | X1 = 1} 36 + P{X2 = 2 | X1 = 2} 26
= 0+ ( 2

6 × 3
6

)+ ( 13
36 × 2

6

)
<13.8>

= 31
108

Not so hard.
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You would have a lot more work to do—mainly bookkeeping—if I asked for the proba-
bility of exactly 7 great-great-great-great-grandchildren. It would be hard to keep track of all
the possible ways of gettingX6 = 7. For such a task, generating functions come in handy.

Solution using probability generating functions: Definegn(s) = EsXn for
0 ≤ s ≤ 1. For fixeds, calculate the expected value of a function of a random variable in
the usual way:

g1(s) = s0P{X1 = 0} + s1P{X1 = 1} + s2P{X1 = 2} = 1
6 + 3

6s+ 2
6s2

Similarly,

<13.9> g2(s) = s0P{X1 = 0} + s1P{X1 = 1} + s2P{X1 = 1} + s3P{X1 = 1} + s4P{X1 = 4} = ?

It might appear that calculation ofg2(s) involves five times the sort of work required for the
calculation ofP{X2 = 2}. Not so.

Condition once more on the value ofX1.

E(sX2 | X1 = 0) = s0 = 1= g1(s)
0 becauseP{X2 = 0 | X1 = 0} = 1

E(sX2 | X1 = 1) = g1(s) offspring distribution<13.7>

Conditional independence of the offspring from each child whenX1 = 2 justifies (cf. Prob-
lem [1]) a factorization:

E(sX2 | X1 = 2) = E(sξ1sξ2 | X1 = 2) = g1(s)
2

In short,
E(sX2 | X1 = k) = g1(s)

k for k = 0, 1, 2

Average out over theX1 distribution.

g2(s) = EsX2

= E (sX2 | X1 = 0
)
P{X1 = 0} + E (sX2 | X1 = 1

)
P{X1 = 1}

+ E (sX2 | X1 = 2
)
P{X1 = 2}

= g1(s)
0P{X1 = 0} + g1(s)P{X1 = 1} + g1(s)

2P{X1 = 2}
That is,

g2(s) = g1(t) wheret = g1(s)

= g1(g1(s))

= 1
6 + 3

6g1(s)+ 2
6g1(s)

2

= 1
6 + 3

6

(
1
6 + 3

6s+ 2
6s2
)+ 2

6

(
1
6 + 3

6s+ 2
6s2
)2

= ( 1
6 + 3

6 × 1
6 + 2

6 × 1
36

)+ ( 3
6 × 3

6 + 2
6 × 6

36

)
s

+ ( 3
6 × 2

6 + 2
6 × 13

36

)
s2+ ( 2

6 × 12
36

)
s3+ ( 2

6 × 4
36

)
s4

The probabilityP{X2 = 2} equals 31/108, the coefficient ofs2. Not only is the answer the
same as before, but also the numerical expression is exactly the same as in<13.8>. The
powers ofs have served merely as placeholders around which the algebra has been orga-
nized; the powers ofs tag the various products of probabilities that go into the sums for cal-
culating eachP{X2 = k} by conditioning.

The virtue of the generating function as a bookkeeping device becomes clearer if we
follow the later generations of the House of Oz. You should check that

E(sXn | Xn−1 = k) = g1(s)
k,

by writing Xn as a sum ofk conditionally independent random variablesξ1, . . . , ξk when
Xn−1 = k. Averaging out over theXn−1 distribution, you would then get

EsXn = 1+ g1(s)P{Xn−1 = 1} + g1(s)
2P{Xn−1 = 2} + . . . = gn−1(g1(s))
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The same argument repeatedn− 2 more times would then give

gn(s) = g1(g1(g1(. . . g1(s))) . . .),

an n-fold composition of functions.

Your algebraic abilities might be up to multiplying out polynomials of polynomials, but
mine aren’t. Luckily, there are computer packages, such as Mathematica2, that make short
work of such algebra. Forg6(s), Mathematica gives the polynomial

0.412+ 0.0824s+ 0.107s2+ 0.0934s3+ 0.0808s4+ 0.0624s5+ 0.0483s6+ 0.0354s7+
0.0254s8+ 0.0178s9+ 0.0122s10+ 0.00819s11+ 0.00539s12+ 0.00348s13+ 0.00221s14+
0.00137s15+ 0.000838s16+ 0.000503s17+ 0.000296s18+ 0.000171s19+ 0.0000969s20+
0.0000539s21+ 0.0000294s22+ 0.0000157s23+ (Are you still checking?)

8.22× 10−6s24+ 4.21× 10−6s25+ 2.11× 10−6s26+ 1.04× 10−6s27+ 4.99× 10−7s28+
2.34× 10−7s29+ 1.08× 10−7s30+ 4.82× 10−8s31+ 2.11× 10−8s32+ 9.02× 10−9s33+ 3.75× 10−9s34+
1.52× 10−9s35+ 6.× 10−10s36+ 2.3× 10−10s37+ 8.57× 10−11s38+ 3.1× 10−11s39+ 1.09× 10−11s40+
3.68× 10−12s41+ 1.21× 10−12s42+ 3.81× 10−13s43+ 1.16× 10−13s44+ 3.4× 10−14s45+ 9.56× 10−15s46+
2.57× 10−15s47+ 6.61× 10−16s48+ 1.62× 10−16s49+ 3.75× 10−17s50+ 8.22× 10−18s51+ 1.7× 10−18s52+
3.27× 10−19s53+ 5.88× 10−20s54+ 9.75× 10−21s55+ 1.48× 10−21s56+ 2.03× 10−22s57+ 2.49× 10−23s58+
2.66× 10−24s59+ 2.43× 10−25s60+ 1.82× 10−26s61+ 1.05× 10−27s62+ 4.19× 10−29s63+ 8.74× 10−31s64

Just for the record, the probability that Osgood has exactly 7 great-great-great-great-
grandchildren isP{X6 = 7} = coefficient ofs7 ≈ 0.0354. You should also notice that
P{X6 = 0} ≈ 0.412. There is a 41% chance that the House of Oz will have died out by the
6th generation. It’s tough to keep the family name alive, even if each family member works
hard at keeping the birth rate up. ¤

Naturally Osgood would like the House of Oz to survive forever. The prospects might
appear good, because each member of the family has expected number of offspring equal to
(0× 1/6)+ 1× 3/6+ 2× 2/6 = 7/6. On the average, each generation size should be about
7/6 times the size of the previous generation size. But averages don’t tell the whole story, as
the 41% at the end of the last Example shows.

<13.10> Exercise. (The House of Oz, continued—maybe.) What is the probability that the House
never dies out?

Solution: With the same notation as in the previous Example, the probability of survival
to at least thenth generation is

P{Xn > 0} = 1− P{Xn = 0} = 1− gn(0)

Write θn for P{Xn = 0}. As n increases,θn increases. Why? It must have a limiting value,
which we can denote byθ . Thus

P{survive forever} = 1− θ
How do we calculateθ?

Notice that

θn = gn(0)

2 I used the following Mathematica definitions to expand the polynomials:

g[s ] := 1/6+ 3/6 ∗ s+ 2/6 ∗ s ∗ s

gn[n ] := Expand[Nest[g, s, n]]

gg[n ] := N[gn[n], 3]

The last line rounds the coefficients off to 3 decimal places: I got tired of looking at fractions like
2317562/89725362 in the output.
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= g1(g1(g1(. . . g1(0) . . .)))

= g1(gn−1(0))

= g1(θn−1)

As n increases, theθn on the left-hand side increases toθ and theθn−1 on the right hand
side also increases toθ . In the limit we haveθ = g1(θ). That is,

θ = 1/6+ 3/6θ + 2/6θ2

The quadratic equation has two roots,θ = 1 andθ = 1/2. Which one is the value we seek?

Here is an argument to show thatθ = 1/2 is the root that solves the extinction problem.
By direct substitution,

θ1 = g1(0) = 1/6< 1/2.

Apply the increasing functiong1(.) to both sides to get

θ2 = g1(θ1) = g1(1/6) < g1(1/2) = 1/2.

Apply g1 again:

θ3 = g1(θ2) < g1(1/2) = 1/2.

And so on. For everyn, we haveθn < 1/2. Theθn values cannot increase to 1; they must
increase to the other root:θ = 1/2. There is a probability 1/2 that the Osgood line eventu-
ally dies out.

Another way to understand the convergence ofθn to 1/2 is to plot the functionsg1(s) =
1/6+3s/6+2s2/6 ands on the same graph. They cross at 1/2 and 1. The successive values
θ1, θ2, . . . correspond to a zig-zag path with alternating horizontal and vertical steps, starting
from the point(0, 1/6). The path jams itself into the narrow spike betweens andg(s); the
zig-zag converges to the tip of the spike at(1/2, 1/2).
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Moment generating functions

Formally the moment generating function is obtained by substitutings = et in the probabil-
ity generating function.

<13.11> Definition. Define the moment generating function of a random variable X as the function

M(t) = E(eXt)

for those real t at which the expectation is well defined.3 ¤

The Cauchy distribution from Problem 11.2 is an examp[le where the moment generat-
ing functionis finite only att = 0.

As the name suggests,M(t) generates themomentsfor X:

E(eXt) =
∞∑

k=0

E(Xt)k

k!

The coefficient oftk/k! in the series expansion ofM(t) equals thekth moment,EXk.

<13.12> Example. SupposeX has a standard normal distribution. Its moment generating function
equals exp(t2/2), for all real t , because∫ ∞

−∞
ext e

−x2/2

√
2π

dx = 1√
2π

∫ ∞
−∞

exp

(
− (x − t)2

2
+ t2

2

)
dx = exp

(
t2

2

)
(For the last equality, compare with the fact that theN(t, 1) density integrates to 1.) The
exponential expands to

∞∑
m=0

1

m!

(
t2

2

)m

=
∞∑

m=0

(
(2m)!

m!2m

)
t2m

(2m)!

Pick off coefficients.

EX2 = 2!

1!21
= 1 (we knew that)

EX4 = 4!

2!22
= 3

and so on. The coefficient for each odd power oft equals zero, which reflects the fact that
EXk = 0, by anti-symmetry, ifk is odd. ¤

Approximations via moment generating functions

If X has a Bin(n, p) then(X − np)/
√

np(1− p) is approximatelyN(0, 1) distributed. The
moment generating functionMn(t) for the standardized variable suggests such an approxima-
tion. Write q for 1− p andσ 2 for npq. Then

Mn(t) = Eet (X−np)/σ

= e−npt/σEeX(t/σ)

= e−npt/σ
(
q + pet/σ

)n
from <13.5> with s= et/σ

= (qe−pt/σ + peqt/σ
)n

The power series expansion forqe−pt/σ + peqt/σ simplifies:

q

(
1− pt

σ
+ p2t2

2!σ 2
− p3t3

3!σ 3
+ . . .

)
+ p

(
1+ qt

σ
+ q2t2

2!σ 2
− q3t3

3!σ 3
+ . . .

)
= 1+ pqt

2σ 2
+ pq(p− q)t3

6σ 3
+ . . .

3 The problem with existence is solved ift is replaced byi t , wheret is real andi = √−1.
In probability theory the functionEei Xt is usually called thecharacteristic function, even though
the more standard termFourier transformwould cause less confusion.
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For largen use the series expansion log(1+ z)n = n(z− z2/2+ . . .) to deduce that

log Mn(t) = t2

2
+ (q − p)t3

6
√

npq
+ terms of order

1

n
or smaller

The t2/2 term agree with the logarithm of the moment generating function for the standard
normal. Asn tends to infinity, the remainder terms tend to zero.

The convergence ofMn(t) to et2/2 can be used to prove rigorously that the distribution
of the standardized Binomial “converges to the standard normal” asn tends to infinity. In
fact the series expansion for logMn(t) is the starting point for a more precise approximation
result—but for that story you will have to take the more advanced probability course Statis-
tics 330.

Problems

[1] Let X1, . . . , Xm be independent random variables with probability generating functions
g1(s), . . . , gm(s). Show that the sumX1 + . . . + Xm has probability generating func-
tion

∏
i≤m gi (s).

[2] If X1, . . . , Xm are independent random variables, each distributed geometric(p), use the re-
sult from Example<13.3> to prove that the sumX1 + . . . + Xm has a negative binomial
distribution.
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