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Chapter 10

Joint densities

Consider the general problem of describing probabilities involving two random vari-
ables,X andY. If both have discrete distributions, withX taking valuesx1, x2, . . . andY
taking valuesy1, y2, . . ., then everything about the joint behavior ofX andY can be deduced
from the set of probabilities

P{X = xi ,Y = yj } for i = 1, 2, . . . and j = 1, 2, . . .

We have been working for some time with problems involving such pairs of random vari-
ables, but we have not needed to formalize the concept of a joint distribution. When bothX
andY have continuous distributions, it becomes more important to have a systematic way to
describe how one might calculate probabilities of the formP{(X,Y) ∈ B} for various sub-
setsB of the plane. For example, how could one calculateP{X < Y} or P{X2 + Y2 ≤ 9} or
P{X + Y ≤ 7}?

<10.1> Definition. Say that random variables X and Y have a jointly continuous distribution with
joint density function f (·, ·) if•joint density

P{(X,Y) ∈ B} =
∫∫
{(x, y) ∈ B} f (x, y) dx dy

for each subset B of R2. In particular, for a small region 1 around a point (x0, y0),

P{(x, y) ∈ 1} ≈ (area of1) f (x0, y0),

at least if f is continuous at (x0, y0). ¤

To ensure thatP{(X,Y) ∈ B} is nonnegative and that it equals one whenB is the whole
of R2, we must require

f ≥ 0 and
∫∫
{(x, y) ∈ R2} f (x, y) dx dy= 1.

Apart from the replacement of single integrals by double integrals, and the replacement
of intervals of small length by regions of small area, the definition of a joint density is the
same as the definition for densities on the real line in Chapter 6.

The small region1 can be chosen in many ways—small rectangles, small disks, small
blobs, small shapes that don’t have any particular name—whatever suits the needs of a par-
ticular calculation.

<10.2> Example. When X has densityg(x) andY has densityh(y), and X is independent ofY,
the joint density is particularly easy to calculate. Let1 be a small rectangle with one corner
at (x0, y0) and small sides of lengthδx > 0 andδy > 0:

1 = {(x, y) ∈ R2 : x0 ≤ x ≤ x0+ δx, y0 ≤ y ≤ y0+ δy}
By independence,

P{(X,Y) ∈ 1} = P{x0 ≤ X ≤ x0+ δx}P{y0 ≤ Y ≤ y0+ δy}
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Invoke the defining property of the densitiesg and h to approximate the last product by

(g(x0)δx + smaller order terms)
(
h(y0)δy + smaller order terms

) ≈ δxδyg(x0)h(y0)

Thus f (x0, y0) = g(x0)h(y0). That is, the joint densityf is the product of themarginal•marginal densities
densities g andh. The wordmarginal is used here to distinguish the joint density for
(X,Y) from the individual densitiesg andh. ¤

When pairs of random variables are not independent it takes more work to find a joint
density. The prototypical case, where new random variables are constructed as linear func-
tions of random variables with a known joint density, illustrates a general method for deriv-
ing joint densities.

<10.3> Exercise. SupposeX andY have a jointly continuous distribution with joint density
f (x, y). For constantsa, b, c, d with ad− bc 6= 0 define

U = aX+ bY and V = cX+ dY

Find the joint density functionψ(u, v) for (U,V).

Solution: Think of the pair(U,V) are defining a new random point inR2. That is
(U,V) = T(X,Y), whereT maps the point(x, y) ∈ R2 to the point(u, v) ∈ R2 with

u = ax+ by and v = cx+ dy,

or in matrix notation,

(u, v) = (x, y)A where A =
(

a c
b d

)
Notice that detA = ad−bc. The assumption thatad−bc 6= 0 ensures that the transformation
is invertible:

(u, v)A−1 = (x, y) where A−1 = 1

ad− bc

(
d −c
−b a

)
That is,

du− bv

ad− bc
= x and

−cu+ av

ad− bc
= y

Notice that detA−1 = 1/(ad− bc) = 1/(detA)

It helps to distinguish between the two roles forR2, referring to the domain ofT as the
(X,Y)-plane and the range as the(U,V)-plane.

The joint density functionψ(u, v) is characterized by the property that

P{u0 ≤ U ≤ u0+ δu, v0 ≤ V ≤ v + δv} ≈ ψ(u0, v0)δuδv

for each(u0, v0) in the (U,V)-plane, and small(δu, δv). To calculate the probability on the
left-hand side we need to find the regionR in the (X,Y)-plane corresponding to the small
rectangle1, with corners at(u0, v0) and(u0+ δu, v0+ δv), in the (U,V)-plane.

The linear transformationA−1 maps parallel straight lines in the(U,V)-plane into par-
allel straight lines in the(X,Y)-plane. The regionR must be a parallelogram, with vertices

(x0, y0+ δy) = (u0, v0+ δv)A−1 and (x0+ δx, y0+ δy) = (u0+ δu, v0+ δv)A−1

(x0, y0) = (u0, v0)A
−1 and (x0+ δx, y0) = (u0+ δu, v0)A

−1

More succinctly,

(δx, δy) = (δu, δv)A
−1

= δuαu + δvαv where A−1 has rowsαu andαv.
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(u0+δu,v0+δv)

(x0,y0)
(u0,v0)

(X,Y)-plane (U,V)-plane

∆
R

(x0,y0)+δuαu

(x0,y0)+δvαv

(x0,y0)+δuαu+δvαv

From the formula in the Appendix, the parallelogramR has area∣∣det
(
δuα
′
u, δvα

′
v

)∣∣ = δuδv| det
(
A−1

)′ | = δuδv

| detA|
For smallδu > 0 andδv > 0,

ψ(u0, v0)δuδv ≈ P{(U,V) ∈ 1}
= P{(X,Y) ∈ R}
≈ (area ofR) f (x0, y0)

≈ δuδv f (x0, y0)/| det(A)|
It follows that (U,V) have joint density

ψ(u, v) = 1

| detA| f (x, y) where(x, y) = (u, v)A−1

In effect, we have calculated a Jacobian by first principles. ¤

<10.4> Example. SupposeX andY are independent random variables, each distributedN(0, 1).
By Example<10.2>, the joint density for(X,Y) equals

f (x, y) = 1

2π
exp

(
−x2+ y2

2

)
By Exercise<10.3>, the joint distribution of the random variables

U = aX+ bY and V = cX+ dY

has the joint density

ψ(u, v) = 1

2π(ad− bc)
exp

(
−1

2

(
du− bv

ad− bc

)2

− 1

2

(−cu+ av

ad− bc

)2
)

= 1

2π(ad− bc)
exp

(
− (c

2+ d2)u2− 2(db+ ac)uv + (a2+ b2)v2

2(ad− bc)2

)
You’ll learn more about joint normal distributions in Chapter 12. ¤

The calculations in Exercise<10.3> for linear transformations gives a good approxi-
mation for more generalsmoothtransformations when applied to small regions. Densities
describe the behaviour of distributions in small regions; in small regions smooth transfor-
mations are approximately linear; the density formula for linear transformations gives the
density formula for smooth transformations in small regions.

<10.5> Exercise. Suppose X and Y are independent random variables, with X having a gamma(α)

distribution and Y having a gamma(β) distribution. Show thatX/(X + Y) has a beta(α, β)
distribution, independent ofX + Y, which has a gamma(α + β) distribution.

Solution: Write U for X/(X+Y) andV for X+Y. The pair(X,Y) takes values ranging
over the positive quadrant(0,∞)2, with joint density function

f (x, y) = xα−1e−x

0(α)
× yβ−1e−y

0(β)
for x > 0, y > 0.
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The pair(U,V) takes values in the strip(0, 1) ⊗ (0,∞). That is, 0< U < 1 and 0< V <

∞. The joint density function,ψ(u, v), for (U,V) remains to be determined.

Considerψ(·, ·) near a point(u0, v0) in the strip. IfU = u0 andV = v0 then

X = U V = u0v0 and Y = V −U V = (1− u0)v0

Moreover,(U,V) lies near(u0, v0) when(X,Y) lies near(x0, y0), where

x0 = u0v0 and y0 = (1− u0)v0

Notice how each(u0, v0) with 0 < u0 < 1 and 0< v0 <∞ corresponds to a unique(x0, y0)

with 0< x0 <∞ and 0< y0 <∞.

For small positiveδu andδv, determine the regionR in the (X,Y) quadrant correspond-
ing to the small rectangle

1 = {(u, v) : u0 ≤ u ≤ u0+ δu, v0 ≤ v ≤ v0+ δv}
in the (U,V) strip. First locate the points corresponding to the corners of1.

(u0+ δu, v0) 7→ (x0, y0)+ (δuv0,−δuv0)

(u0, v0+ δv) 7→ (x0, y0)+ (δvu0, δv(1− u0))

(u0+ δu, v0+ δv) 7→ (x0, y0)+ (δuv0+ δvu0,−δuv0+ δv(1− u0))+ (δuδv,−δuδv)

In matrix notation,

(u0, v0)+ (δu, 0) 7→ (x0, y0)+ (δu, 0)J where J =
(
v0 −v0

u0 1− u0

)
(u0, v0)+ (0, δv) 7→ (x0, y0)+ (0, δv)J
(u0, v0)+ (δu, δv) 7→ (x0, y0)+ (δu, δv)J + smaller order terms

You might recognizeJ as theJacobian matrix of partial derivatives•Jacobian matrix ( ∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

)
evaluated at(u0, v0). For small perturbations, the transformation from(u, v) to (x, y) is ap-
proximately linear.

u0 u0+δu

(x0,y0)

v0+δv

v0

(X,Y)-quadrant (U,V)-strip

∆R

The regionR is approximately a rectangle, with the edges oblique to the coordinate
axes. To a good approximation, the area ofR is equal toδuδv times the area of the rectangle
with corners at

(0, 0) and a = (v0,−v0) and b = (u0, 1− u0) and a+ b

From the Appendix, the area of this rectangle equals| det(J)| = v0.

The rest of the calculation of the joint densityψ(·, ·) for (U,V) is easy:

δuδvψ(u0, v0) ≈ P{(U,V) ∈ 1}
= P{(X,Y) ∈ R}
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≈ f (x0, y0)(area ofR)

≈ xα−1
0 e−x0

0(α)

yβ−1
0 e−y0

0(β)
δu δv v0

Substitutex0 = u0v0 and y0 = (1− u0)v0, then rearrange factors, to get the joint density

ψ(u0, v0) = uα−1
0 vα−1

0 e−u0v0

0(α)

(1− u0)
β−1v

β−1
0 e−v0+u0v0

0(β)
v0

If we write

g(u) = uα−1(1− u)β−1

B(α, β)
the beta(α, β) density

h(v) = vα+β−1e−v

0(α + β) the gamma(α + β) density

then

ψ(u, v) = g(u)h(v)
B(α, β)0(α + β)

0(α)0(β)
for 0< u < 1 and 0< v <∞

I have dropped the subscripting zeros because I no longer need to keep your attention fixed
on a particular(u0, v0) in the (U,V) strip. The jumble of constants involving beta and
gamma functions must reduce to the constant 1, because

1= P{0< U < 1, 0< V <∞}
=
∫∫
{0< u < 1, 0< v <∞}ψ(u, v)du dv

=
∫ 1

0
g(u) du

∫ ∞
0

h(v) dv
B(α, β)0(α + β)
0(α)0(β)

Notice how the double integral has split into a product of two single integrals because the
joint density factorized into a product of a function ofu and a function ofv. Both the single
integrals equal 1 because bothg and h are density functions. We have earned a bonus,

beta vs. gamma

B(α, β) = 0(α)0(β)

0(α + β) for α > 0 andβ > 0

which is a useful expression relating beta and gamma functions.

The factorization of the joint density implies that the random variablesU andV are in-
dependent. To see why, consider any pair of subsetsA and B of the real line. The defining
property of the joint density gives

P{U ∈ A} = P{U ∈ A, 0< V <∞}
=
∫∫
{u ∈ A, 0< v <∞}ψ(u, v)du dv

=
∫
{u ∈ A}ψU (u) du

whereψU (u) =
∫∞

0 ψ(u, v)dv. That is, we get themarginal density ψU (u) for U by
integrating the joint density with respect toV over its whole range. Specifically,

ψU (u) =
∫ ∞

0
g(u)h(v)dv = g(u)

That is,
U has a beta(α, β) distribution.

Similarly, V has a continuous distribution with density

ψV (v) =
∫ 1

0
ψ(u, v)du=

∫ 1

0
g(u)h(v) du= h(v)

That is,V has a gamma(α + β) distribution.
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Finally,

P{U ∈ A, V ∈ B} =
∫∫
{u ∈ A, v ∈ B}ψ(u, v)du dv

=
∫
{u ∈ A}g(u) du

∫
{v ∈ A}h(v) dv

= P{U ∈ A}P{V ∈ B}
The events{U ∈ A} and{V ∈ B} are independent, for all choices ofA and B. That is, the
random variablesU andV are independent. ¤

Remarks: In Chapter 9 we discovered that0(1/2) = √π . This fact also follow from the
equality

0(1/2)0(1/2)

0(1)
= B(1/2, 1/2)

=
∫ 1

0
t−1/2(1− t)−1/2 dt

=
∫ π/2

0

1

sin(θ) cos(θ)
2 sin(θ) cos(θ) dθ putting t = sin2(θ)

= π
¤

Remarks: It is worthwhile to remember the method for deriving marginal densities from
a joint density: In general, if X and Y have a jointly continuous distribution with densitymarginal densities

from joint density function f(x,y) then the (marginal) distribution of X is continuous, with (marginal) density∫ ∞
−∞

f (x, y) dy,

and the (marginal) distribution of Y is continuous, with (marginal) density∫ ∞
−∞

f (x, y) dx,

Remember that the word marginal is redundant; it serves merely to stress that a calculation
refers only to one of the random variables.¤

<10.6> Example. If X1, X2, . . . , Xk are independent random variables, withXi distributed
gamma(αi ) for i = 1, . . . , k, then

X1+ X2 ∼ gamma(α1+ α2),

X1+ X2+ X3 = (X1+ X2)+ X3 ∼ gamma(α1+ α2+ α3)

X1+ X2+ X3+ X4 = (X1+ X2+ X3)+ X4 ∼ gamma(α1+ α2+ α3+ α4)

. . .

X1+ X2+ . . .+ Xk ∼ gamma(α1+ α2+ . . .+ αk)

A particular case has great significance for Statistics.

SupposeZ1, . . . Zk are independent random variables, each distributed N(0,1). From
Chapter 9, the random variablesZ2

1/2, . . . , Z2
k/2 are independent gamma(1/2) distributed

random variables. The sum
(Z2

1 + . . .+ Z2
k)/2

must have a gamma(k/2) distribution with densitytk/2−1e−t/0(k/2) for t > 0. The sum
Z2

1 + . . .+ Z2
k has density

(t/2)k/2−1e−t/2

20(k/2)
for t > 0
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This distribution is called thechi-squared on k degrees of freedom, usually denoted by•chi-squared
χ2

k . The letterχ is a lowercase Greek chi. ¤

Appendix: area of a parallelogram

Let R be a rectangle in the planeR2 with corners at0 = (0, 0), a = (a1,a2), b =
(b1, b2), anda+ b. The area ofR is equal to the absolute value of the determinant of the
matrix

J =
(

a1 b1

a2 b2

)
= (a, b)

Proof. Let θ denotes the angle betweena andb. Remember that

‖a‖ × ‖b‖ × cos(θ) = a · b
With the side from0 to a, which has length‖a‖, as the base,

0

a

b

a+b

θ

the vertical height is‖b‖ × | sinθ |. The absolute value of the
area equals‖a‖ × ‖b‖ × | sinθ |. The square of the area equals

‖a‖2‖b‖2 sin2(θ) = ‖a‖2‖b‖2− ‖a‖2‖b‖2 cos2(θ)

= (a · a)(b · b)− (a · b)2

= det

(
a · a a · b
a · b b · b

)
= detJ ′J
= (detJ)2

If you are not sure about the properties of determinants used in the last two lines, you
should rewrite the area as an explicit function ofa1,a2, b2, b2 then grind out the algebra.

¤

If you know about Jacobians you should recognize what was going on in the proof.
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