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Chapter 10
Joint densities

Consider the general problem of describing probabilities involving two random vari-
ables,X andY. If both have discrete distributions, witk taking valuesxs, xo, ... andY
taking valuesyy, y», . . ., then everything about the joint behavior ¥fandY can be deduced
from the set of probabilities

P{X=x,Y =y} fori=2,2,...andj=1,2,...

We have been working for some time with problems involving such pairs of random vari-
ables, but we have not needed to formalize the concept of a joint distribution. WherXboth
andY have continuous distributions, it becomes more important to have a systematic way to
describe how one might calculate probabilities of the f@tOX, Y) € B} for various sub-

setsB of the plane. For example, how could one calculBtX < Y} or P{X? 4+ Y2 < 9} or
P{X+Y <7}?

<10.1> Definition.  Say that random variables X and Y have a jointly continuous distribution with
JOINT DENSITY function f(-, -) if

P{(X,Y) e B} = //{(x, y) € B} f (X, y)dxdy

ejoint density

for each subset B of R?. In particular, for a small region A around a point (Xo, Yo),
P{(x,y) € A} ~ (area ofA) f (xo, Yo),
at least if f is continuous at (Xo, Yo). O

To ensure thaP{(X, Y) € B} is nonnegative and that it equals one wHgiis the whole
of R?, we must require

f>0 and / {((x,y) e R% f(x,y)dxdy= 1.

Apart from the replacement of single integrals by double integrals, and the replacement
of intervals of small length by regions of small area, the definition of a joint density is the
same as the definition for densities on the real line in Chapter 6.

The small regionA can be chosen in many ways—small rectangles, small disks, small
blobs, small shapes that don’t have any particular name—whatever suits the needs of a par-
ticular calculation.

<10.2> Example. When X has densityg(x) andY has densityh(y), and X is independent oY/,
the joint density is particularly easy to calculate. letbe a small rectangle with one corner
at (xo, Yo) and small sides of length, > 0 andéy > O:

A={(X,y) €eR*:Xo <X < Xo+ 8 Yo <Y =< Yo+ 3y}
By independence,
P{(X,Y) € A} =P{Xo < X < Xo+&}P{yo <Y < Yo+ 3y}
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Invoke the defining property of the densitigsand h to approximate the last product by
(9(X0)dx + smaller order ternjs(h(yo)éy + smaller order terrr)sw 8x8yg(Xo)h(Yo)

Thus f (X0, Yo) = 9(Xo)h(Yo). That is, the joint densityf is the product of themARGINAL
DENSITIES g andh. The wordmarginalis used here to distinguish the joint density for
(X,Y) from the individual densitieg andh. O

emarginal densities

When pairs of random variables are not independent it takes more work to find a joint
density. The prototypical case, where new random variables are constructed as linear func-
tions of random variables with a known joint density, illustrates a general method for deriv-
ing joint densities.

<10.3> Exercise. SupposeX andY have a jointly continuous distribution with joint density
f(x,y). For constants, b, c, d with ad — bc # 0 define
U =aX+by and V =cX+dY
Find the joint density function (u, v) for (U, V).

SoLuTioN:  Think of the pair(U, V) are defining a new random point R?. That is
(U, V) =T(X,Y), whereT maps the pointx, y) € R? to the point(u, v) € R? with

u=ax+ by and v =CcxX+dy,

or in matrix notation,
a c
(U, v) = (X, YA  whereA= (b d)

Notice that defA = ad—bc. The assumption thatd—bc # 0 ensures that the transformation

is invertible:
_ _ 1 d -—c
1_ 1_
u, VA=Y where A _ad—bc<—b a)
That is,
du—bv_x and —Cu+av
ad—bc ad—bc Y

Notice that deA~! = 1/(ad — bc) = 1/(detA)

It helps to distinguish between the two roles R#, referring to the domain of as the
(X, Y)-plane and the range as tld, V)-plane.

The joint density functiony (u, v) is characterized by the property that
P{up <U < Ug+6u,vo =V < v+38,} = ¥(Uo, v0)dudy

for each(ug, vo) in the (U, V)-plane, and smalié,, §,). To calculate the probability on the
left-hand side we need to find the regi&nin the (X, Y)-plane corresponding to the small
rectangleA, with corners at(ug, vo) and (Ug + 3y, vo + 8,), in the (U, V)-plane.

The linear transformatio~* maps parallel straight lines in th@, V)-plane into par-
allel straight lines in th&X, Y)-plane. The regiorR must be a parallelogram, with vertices

(Xo, Yo + 8y) = (U, vo + 8,) A" and  (Xo+ 8, Yo+ 8y) = (Ug + 8u, vo + 8,) A
(X0, Yo) = (Ug, 1)) A™" and (o + dx, Yo) = (Uo + 8y, vo) A~
More succinctly,

(8. 8y) = (Bu. 8,) A"
= Suay + 8yt where A~ has rowse, anda,.
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<10.4>

<10.5>

(X,Y)-plane (U,V)-plane

(U0, Vo+dy)

(XoYo)+dua+d,0,

(XoYo)+d0ly A
(XoYo) (XoYo)+0.01, (Uo,Vo)

From the formula in the Appendix, the parallelogrdrhas area

. 58,
[det(Suar, 8uer,)| = dusi| det(A™Y) | = detA

For smallé, > 0 ands$, > O,
¥ (Uo, v0)dudy = P{(U, V) € A}
=P{(X,Y) € R}
~ (area ofR) f (X0, Yo)
~ udy f (X0, Yo) /| det(A)|
It follows that (U, V) have joint density

_ 1 _ -1
¥(u,v) = TdetA) f(x,y) where(X, y) = (u, v) A

In effect, we have calculated a Jacobian by first principles. a

Example. SupposeX andY are independent random variables, each distribixéal 1).
By Example<10.2>, the joint density for(X, Y) equals

1 X2 + y2
f(X,y) = —exp| —
o= Low(-E 1Y)
By Exercise<10.3>, the joint distribution of the random variables
U =aX+byY and V =cX+dY

has the joint density

S, ) = 1 ex 1/du—bv\%? 1/—cu+av)?
0= 27 (ad — bo) P\ 72\ ad—bc 2\ ad—hc
B (¢ + d®)u? — 2(db+ ac)uv + (@ + b2)v2>

= ex
2 (ad — bo) p( 2(ad — boc)?
You'll learn more about joint normal distributions in Chapter 12. O

The calculations in Exercise10.3> for linear transformations gives a good approxi-
mation for more generamoothtransformations when applied to small regions. Densities

describe the behaviour of distributions in small regions; in small regions smooth transfor-
mations are approximately linear; the density formula for linear transformations gives the

density formula for smooth transformations in small regions.

Exercise. Suppose X and Y are independent random variables, with X having a gamnma

distribution and Y having a gamng@) distribution. Show thaiX/(X + Y) has a beta, 8)
distribution, independent oX + Y, which has a gamnga + g) distribution.

SorLuTioN:  Write U for X/(X+Y) andV for X+Y. The pair(X,Y) takes values ranging

over the positive quadrari®, oo)?, with joint density function

x¥—lg=X yﬂ—le—y
f = f 0 0.
X, y) r@) X ) orx>0,y>
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The pair(U, V) takes values in the strifd, 1) ® (0, c0). Thatis, 0< U <1 and 0< V <
oco. The joint density functiony (u, v), for (U, V) remains to be determined.

Considery (-, -) near a pointug, vo) in the strip. IfU = ug andV = vg then
X =UV = ugug and Y=V -UV =(1-uguv
Moreover, (U, V) lies near(ug, vg) when (X, Y) lies near(xo, Yo), Where
Xo = Ugug and Yo = (1— Ugpvo

Notice how eachuy, vp) with 0 < up < 1 and O< vg < oo corresponds to a uniqueo, Yo)
with 0 < Xg < 0o and O< Yy < o0.

For small positives, ands,, determine the regioR in the (X, Y) quadrant correspond-
ing to the small rectangle

A ={(U,v) 1Up U =< Ug+ 8y, vo <v =< vp+ 3}
in the (U, V) strip. First locate the points corresponding to the cornera .of
(Uo + 8u, vo) > (Xo, Yo) + (8uvo, —duvo)
(Ug, vo + 8y) > (Xo, Yo) + (8yUo, 8, (1 — Uo))
(Ug + 8u, vo + 8,) = (Xo, Yo) + (Buvo + SyUo, —8uvo + 8, (1 — Ug)) + (8udy, —Budy)
In matrix notation,

(Uo. Vo) + (8u, 0) > (X0, Yo) + (81, 0)  whereJ = (”0 Y )
Up 1-—ug
(u03 UO) + (03 31}) = (X()s yO) + (O’ 81))‘-]
(Ug, vo) + (8y, 8y) — (Xo, Yo) + (8u, 8,)J + smaller order terms
You might recognizel as theJACOBIAN MATRIX Of partial derivatives
ax Ay
au au
ax Ay
Jv  dv
evaluated atug, vg). For small perturbations, the transformation frém v) to (x, y) is ap-

proximately linear.

eJacobian matrix

(X,Y)-quadrant (U,V)-strip
Vo+d, 4 '
A
(Xo,VO)@ Vo + T::
% %
Uo u0"'6u

The regionR is approximately a rectangle, with the edges oblique to the coordinate
axes. To a good approximation, the areaRofs equal tos, s, times the area of the rectangle
with corners at

(0,0) and a = (vg, —vp) and b= (ug, 1 — up) and a+b
From the Appendix, the area of this rectangle equdkst(J)| = vo.
The rest of the calculation of the joint density-, -) for (U, V) is easy:
$uby ¥ (Uo, vo) =~ P{(U, V) € A}
=P{(X,Y) e R}
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~ f (X, Yo)(area ofR)
_xgte lgxo yb- la—Yo
[(e) I'(B)
Substitutexy = Ugug andyg = (1 — Ug)vg, then rearrange factors, to get the joint density

(Su 81) Vo

ug lvg 1e—u0v0 (1 _ uo)ﬁflvoﬂflefvoJruovo

¥ (Uo, vo) = r@ NG Vo
If we write
a—1¢1 _ 1\B-1
g(u) = % the betao, B) density
h vcH—/S—le—v H '
v) = —F(a o the gamméx + B) density
then

B(a, )T (o + B)
'(@)I'(B)

| have dropped the subscripting zeros because | no longer need to keep your attention fixed

on a particulanug, vo) in the (U, V) strip. The jumble of constants involving beta and

gamma functions must reduce to the constant 1, because

1=P0<U <1,0<V <o}

¥(u, v) = g(wh(v) forO<u<landO<v < oo

:/ {0O<u<1,0<v<ooly(u,v)ydudy

B, AT (@ + )
d h(v) dv
/g(“) ”/ R TR0

Notice how the double integral has split into a product of two single integrals because the
joint density factorized into a product of a function wfand a function ofv. Both the single
integrals equal 1 because bajtand h are density functions. We have earned a bonus,

_ Tr'(p)
B(a, B) = T@ip) 5 fora >0andg >0

which is a useful expression relating beta and gamma functions.

The factorization of the joint density implies that the random variablesndV are in-
dependent. To see why, consider any pair of sub8easd B of the real line. The defining
property of the joint density gives

PlUe Al=PUcA 0<V < o0}
:/ flue A, 0<v < oo}y(u,v)dudv

beta vs. gamma

= f{u € AlYy (u)du

whereyy (u) = [;° ¥ (u, v)dv. That is, we get therARCINAL DENSITY vy (u) for U by
integrating the joint density with respect 6 over its whole range. Specifically,

YuU) = /O g(wh()dv = g(u)

That is,
U has a beta, 8) distribution.

Similarly, V has a continuous distribution with density

1 1
Yv(v) = /O Y(u,v)du= /O g(wh(v) du = h(v)
That is,V has a gamm@ + g) distribution.
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Finally,

P{U e A Ve B}:f {ue A,v e Bly(u,v)dudv

= /{u € A}g(u)du/{v € Ath(v) dv
=P{U € AJP{V € B}
The eventdU € A} and{V € B} are independent, for all choices éfand B. That is, the
random variablet) andV are independent. |
Remarks: In Chapter 9 we discovered thR{(1/2) = /z. This fact also follow from the
equality
I'(1/2I(1/2)

T B(1/2,1/2)

1
= / =21 —t)"Y2dt
0

/2 1
= —— __2sin®) cogH) db uttingt = sir?(9
/0 Sin@) cosd) n(0) cosv) putting ©)
=T
O
Remarks: It is worthwhile to remember the method for deriving marginal densities from
marginal densities a joint density: In general, if X and Y have a jointly continuous distribution with density
from joint density function f(x,y) then the (marginal) distribution of X is continuous, with (marginal) density
f f(x, y)dy,
and the (marginal) distribution of Y is continuous, with (marginal) density
/ f(x,y)dx,

Remember that the word marginal is redundant; it serves merely to stress that a calculation
O refers only to one of the random variables.

<10.6> Example. If X3, Xo, ..., Xk are independent random variables, wkh distributed
gammde;) fori =1,...,Kk, then
X1+ X2 ~ gammda; + o),
X1+ Xo + X3 = (X1 + Xp) + X3 ~ gammdoy + a2 + o3)
X1+ Xo+ Xz + Xg = (X1 + Xz + X3) + X4 ~ gammday + oz + oz + a4)

X1+ Xo+ ... 4+ Xy~ gammdog + a2 + ... + ak)
A particular case has great significance for Statistics.

SupposeZy, ... Zx are independent random variables, each distributed N(0,1). From
Chapter 9, the random variabl@$/2, ..., Z2/2 are independent gamiiig2) distributed
random variables. The sum

(Z3+...+ 292
must have a gamngl/2) distribution with densityt*/2~1e~t/I"'(k/2) fort > 0. The sum
Z? + ...+ ZZ has density
(t/z)k/Z—le—t/Z
2r'(k/2)
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This distribution is called then1-sQuARED on k degrees of freedom, usually denoted by

hi- d ; i
echi-square x2. The lettery is a lowercase Greek chi. O

APPENDIX: AREA OF A PARALLELOGRAM

Let R be a rectangle in the plar®? with corners aD = (0,0), a = (a;, &), b =
(b1, bp), anda + b. The area ofR is equal to the absolute value of the determinant of the

matrix 5
_ (@ b1y _
J_(a2 bZ)_(a,b)

Proof. Let# denotes the angle betwearandb. Remember that
llall x [Ib]l x cos®) =a-b
atb  With the side from0 to a, which has lengthjal|, as the base,

the vertical height igb|| x |sind|. The absolute value of the
b area equalgall x ||b|| x |sinf|. The square of the area equals

lall? b)) sir?(6) = [|all?[[b]|* — l|a]l?[Ib]|* cos'(6)
=(a-a)b-b) — (a-b)?
a-a a-b
a :d6t<a-b b-b)
= detJ’J
0 = (detJ)?
If you are not sure about the properties of determinants used in the last two lines, you

should rewrite the area as an explicit functionagf a,, b, b, then grind out the algebra.
|

If you know about Jacobians you should recognize what was going on in the proof.
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