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Chapter 12

Multivariate normal distributions

The multivariate normal is the most useful, and most studied, of the standard joint dis-
tributions in probability. A huge body of statistical theory depends on the properties of fam-
ilies of random variables whose joint distribution is at least approximately multivariate nor-
mal. The bivariate case (two variables) is the easiest to understand, because it requires a
minimum of notation; vector notation and matrix algebra becomes necessities when many
random variables are involved.

The general bivariate normal is often used to model pairs of dependent random vari-
ables, such as : the height and weight of an individual; or (as an approximation) the score a
student gets on a final exam and the total score she gets on the problem sets; or the heights
of father and son; and so on. Many fancy statistical procedures implicitly require bivariate
(or multivariate, for more than two random variables) normality.

Bivariate normal

The most general bivariate normal can be built from a pair of independent random vari-
ables,X andY, each distributedN(0, 1). For a constantρ with −1 < ρ < 1, define random
variables

U = X and V = ρX +
√

1− ρ2 Y

That is,

(U,V) = (X,Y)A where A =
(

1 ρ

0
√

1− ρ2

)
Notice thatEU = EV = 0,

var(V) = ρ2var(X)+ (1− ρ2)var(Y) = 1= var(U ),

and
cov(U,V) = ρcov(X, X)+

√
1− ρ2 cov(X,Y) = ρ.

Consequently,
correlation(U,V) = cov(U,V)/

√
var(U )var(V) = ρ

From Chapter 10, the joint density for(U,V) is

1

| detA| f
(
(u, v)A−1

)
,

where

f (x, y) = 1

2π
exp

(
−x2+ y2

2

)
all x, y

The matrix A has determinant
√

1− ρ2 and inverse

A−1 =
(√

1− ρ2 −ρ
0 1

)
/
√

1− ρ2
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If (x, y) = (u, v)A−1 then

x2+ y2 = (u, v)A−1(A−1)′(u, v)′

= (u, v)
(

1 −ρ
−ρ 0

)
(u, v)′/(1− ρ2)

= u2− 2ρuv + v2

1− ρ2

ThusU andV have joint density

1

2π
√

1− ρ2
exp

(
−u2− 2ρuv + v2

2(1− ρ2)

)
for all u, v.

The joint distribution is sometimes called thestandard bivariate normal distribution•standard bivariate normal with correlationρ.

The symmetry ofψ in u andv implies thatV has the same marginal distribution asU ,
that is,V is alsoN(0, 1) distributed. The calculation of the marginals densities involves the
same integration for both variables.

Whenρ equals zero, the joint density factorizes into

1√
2π

exp(−u2/2)
1√
2π

exp(−v2/2)

which implies independence ofU andV . That is, for random variables with a bivariate nor-
mal distribution, zero correlation is equivalent to independence. The equivalence for bivari-
ate normals probably accounts for the widespread confusion between the properties of in-
dependence and zero correlation. In general, independence implies zero correlation, but not
conversely.

<12.1> Definition. Random variables S and T are said to have a bivariate normal distribution,
with parameters ES = µS, ET = µT , var(S) = σ 2

S, var(T) = σ 2
T , and correlation ρ if

the standardized random variables (S− µS)/σS and (T − µT )/σT have a standard bivariate
normal distribution with correlation ρ. ¤

Problem 11.1 shows how to calculate explicitly the joint density forS andT .

Conditional distributions

The construction ofU andV from the independentX andY makes the calculation of the
conditional distribution ofV given U = u a triviality:

ρX +
√

1− ρ2 Y | X = x

has the distribution ofρx +
√

1− ρ2 N(0, 1). That is,

<12.2> V | U = u ∼ N(ρu, 1− ρ2)

The symmetry of the joint distribution ofU andV implies that

U | V = v ∼ N(ρv, 1− ρ2),

a fact that you could check by explicit calculation of the ratio of joint to marginal densities:

ψ(u, v)
/∫ ∞
−∞

ψ(u, v)du= 1√
2π
√

1− ρ2
exp

(
− (v − ρu)2

2(1− ρ2)

)
<12.3> Example. Let X denote the height (in inches) of a randomly chosen father, and letY de-

note the height (in inches) of his son at maturity. Suppose each ofX andY has aN(µ, σ 2)

distribution withµ = 69 andσ = 2. Suppose also thatX andY have a bivariate normal
distribution with correlationρ = .3.

If Sam has a height of 74 inches, what would one predict about the ultimate height of
his son Elmer?
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In standardized units,

U = (X − µ)/σ = Sam’s standardized height, which happens to equal 2.5

V = (Y − µ)/σ = Elmer’s standardized ultimate height.

By assumption, before the value ofU was known, the pair(U,V) has a standard bivariate
normal distribution with correlationρ. From the analog of formula<12.2>,

V | U = 2.5∼ N(2.5ρ, 1− ρ2)

In the original units,

Elmer’s height| Sam’s height = 74 inches∼ N(µ+ 2.5ρσ, (1− ρ2)σ 2) = N(70.5, 3.64)

Notice that Elmer’s expected height (given that Sam is 74 inches) is less than his fa-
ther’s height. This fact is an example of a general phenomenon called “regression towards
the mean”. The termregression, as a synonym for conditional expectation, has become•regression
commonplace in Statistics. ¤

Multivariate densities

Random variablesX1, X2, . . . are said to have a jointly continuous distribution with joint
density function f (x1, x2, . . . , xn) if

P{(X1, X2, . . . , Xn) ∈ A} =
∫∫

. . .

∫
{(x1, x2, . . . xn) ∈ A} f (x1, x2, . . . , xn) dx1 dx2 . . . dxn

for each subsetA of Rn. The densityf must be nonnegative and integrate to 1 overRn.

It is convenient to writeX for the random vector (X1, . . . , Xn), andx for the•random vector
generic point(x1, . . . , xn) in Rn. Then the defining property for the joint density becomes

P{X ∈ A} =
∫
{x ∈ A} f (x) dx for A ⊆ Rn

where
∫
. . .dx should be understood as ann-fold integral.

<12.4> Example. If the random variablesX1, . . . , Xn are independent, the joint density function
is equal to the product of the marginal densities for eachXi , and conversely. The proof is
similar to the proof for the bivariate case.

For example, if the{Xi } are independent and eachXi has aN(0, 1) distribution, the
joint density is

f (x1, . . . , xn) = 1

(2π)n/2
exp

(
−
∑
i≤n

x2
i /2

)
for all x1, . . . , xn

= 1

(2π)n/2
exp(−‖x‖2/2) for all x

The distribution is denoted byN(0, In). It is sometimes called the “spherical normal distri-
bution”, because of the spherical symmetry of the density. ¤

The methods for finding joint densities for random variables defined as functions of
other random variables with jointly continuous distributions—as explained over the last two
Chapters—extend to multivariate distributions. There is a problem with the drawing ofn-
dimensional pictures, to keep track of the transformations, and one must remember to say
“n-dimensional volume” instead of area, but otherwise calculations are not much more com-
plicated than in two dimensions.

Rotation of coordinate axes

The spherical symmetry of the densityf (·) is responsible for an important property of multi-
variate normals. Letq1, . . . ,qn be a new orthonormal basis forRn, and let

Z = W1q1+ . . .+Wnqn
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be the representation forZ in the new basis.

<12.5> Theorem. The W1, . . . ,Wn are also independent N(0, 1) distributed random variables.

In two dimensions, the assertion follows from the transformation formulae of Chap-
ter 10. If the axes are rorated through an angleθ , then

W1 = Z1 cos(θ)+ Z2 sin(θ)

W2 = −Z1 sin(θ)+ Z2 cos(θ)

That is,

(W1,W2) = (Z1, Z2)Aθ where Aθ =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
The matrix Aθ has determinant 1 and inverseA−θ . It is an orthogonal matrix; it preserves
lengths. The joint density of(W1,W2) is

1

2π
exp

(−‖(w1, w2)A
−1‖2/2) = 1

2π
exp

(−(w2
1 + w2

2)/2
)

z1

z2

w1

w2

    ball B (in Z-coordinates) =  ball B* (in W-coordinates)

A more intuitive explanation is based on the approximation

P{Z ∈ B} ≈ f (z)(volume of B)

for a small ballB centered atz. The transformation fromZ to W corresponds to a rotation,
so

P{Z ∈ B} = P{W ∈ B∗},
whereB∗ is a ball of the same radius, but centered at the pointw = (w1, . . . , wn) for which
w1q1+ . . .+ wnqn = z. The last equality implies‖w‖ = ‖z‖, from which we get

P{W ∈ B∗} ≈ (2π)−n/2 exp(− 1
2‖w‖2)(volume of B∗).

That is,W has the asserted spherical normal density.

<12.6> Definition. Let Z = (Z1, Z2, . . . , Zn) have a spherical normal distribution N(0, In). The
chi-square, χ2

n , is defined as the distribution of ‖Z‖2 = Z2
1 + . . .+ Z2

n. ¤•chi-square

To prove results about the spherical normal it is often merely a matter of transforming
to an appropriate orthonormal basis.

<12.7> Exercise. SupposeZ1, Z2, . . . , Zn are independent, each distributedN(0, 1). Define

Z̄ = Z1+ . . .+ Zn

n
and T =

∑
i≤n

(Zi − Z̄)2

Show thatZ̄ has aN(0, 1/n) distribution independently ofT , which has aχ2
n−1 distribution.
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Solution: Choose the new orthonormal basis withq1 = (1, 1, . . . ,1)′/
√

n. Choose
q2, . . . ,qn however you like, provided they are orthogonal unit vectors, all orthogonal to
q1. In the new coordinate system,

Z = W1q1+ . . .+Wnqn

We could calculate eachWi by dotting the sum on the right- hand side withqi : only Wi

would survive. In particular,

W1 = Z · q1 = Z1+ . . .+ Zn√
n

= √nZ̄.

From Theorem<12.5> we know thatW1 has aN(0, 1) distribution. It follows thatZ̄ has a
N(0, 1/n) distribution.

The random variableT equals the squared length of the vector

(Z1− Z̄, . . . , Zn − Z̄) = Z − Z̄(
√

nq1) = Z −W1q1 = W2q2+ . . .+Wnqn

That is,
T = ‖W2q2+ . . .+Wnqn‖2 = W2

2 + . . .+W2
n ,

a sum of squares ofn − 1 independentN(), 1) random variables, which has aχ2
n−1-

distribution.

Finally, notice thatZ̄ is a function ofW1, whereasT is a function of the independent
random variablesW2, . . . ,Wn. The independence of̄Z andT follows. ¤

Exercise for the reader: SupposeX1, . . . Xn are independent, each distributedN(µ, σ 2).
Apply the results from the last Exercise, withZi = (Xi − µ)/σ , to deduce that̄X is dis-
tributed N(µ, σ 2/n) independently of∑

i≤n

(Xi − X̄)2/σ 2,

which has aχ2
n−1 distribution.
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