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Chapter 7

Normal distribution

This Chapter will explain how to approximate sums of Binomial probabilities,

b(n, p, k) = P{Bin(n, p) = k} for k = 0, 1, . . . ,n,

by means of integrals of normal density functions.

The following pictures show two series of barplots for the Bin(n, 0.4), with n =
20, 50, 100, 150, 200.
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For the five plots on the left (the “raw barplots”), the bar of heightb(n, 0.4, k) and width 1
is centered atk, for k = 0, 1, . . . ,n. As predicted by the Tchebychev inequality, the distri-
butions cluster around the expected values,n × 0.4, and they have a spread proportional to
the standard deviationσn =

√
n× 0.4× 0.6 of the Bin(n, 0.4) distribution. Actually you

may not be able to see the part about the standard deviation. To make the effect clearer, for
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the corresponding plots on the right (the “rescaled and recentered barplots”), I have rescaled
the bars by the standard deviation and recentered them at the expected value: the bar with
heightσn × b(n, 0.4, k) and width 1/σn is centered at the point(k− n× 0.4)/σn.

Notice how the plots on the right settle down to a symmetric ‘bell-shaped’ curve. They
illustrate an approximation due to de Moivre (1733):

<7.1> P{Bin(n, p) ≥ np+ x
√

np(1− p)} ≈
∫ ∞

x

exp(−t2/2)√
2π

dt.

De Moivre, of course, expressed the result in a different way. (See pages 243-259 of the
third edition of hisDoctrine of Chances.)

From Problem Sheet 5 you know that theb(n, p, k) probabilities achieve their max-
imum in k at a valuekmax close tonp, the expected value of the Bin(n, p) distribution.
Moreover, the probabilities increase ask increases tokmax, and decrease thereafter. It there-
fore makes sense that a symmetric ‘bell-shaped’ approximating curve should be centered
nearkmax for the raw barplots, and near 0 for the centered barplots. See Problem Sheet 6 for
a partial explanation for why the standard deviation is the appropriate scaling factor.

Put another way, de Moivre’s result asserts that ifXn has a Bin(n, p) distribution then
the standardized random variable(X − np)/

√
np(1− p) is well approximated by the density

functionφ(t) = exp(−t2/2)/
√

2π , in the sense that tail probabilities for the standardized
Binomial are well approximated by tail probabilities for the distribution with densityφ.

<7.2> Definition. A random variable is said to have a standard normal distribution if it
has a continuous distribution with density

φ(x) = exp(−x2/2)√
2π

for −∞ < x <∞

The standard normal is denoted by N(0,1). ¤

Notice how(X − np)/
√

np(1− p) has beenstandardized to have a zero expected•standardized value and a variance of one. Equivalently, we could rescale the standard normal to give it an
expected value of np and a variance of npq, and use that as the approximation. As you will
see from the next Example, De Moivre’s approximation can also be interpreted as:

If X has a Bin(n,p) distribution then it is approximately N(np, np(1-p)) dis-
tributed, in the sense of approximate equalities of tail probabilities.

<7.3> Example. Let Z have a standard normal distribution, Define the random variableY =
µ+ σ Z, whereµ andσ > 0 are constants. Find

(i) the distribution ofY

(ii) the expected value ofY

(iii) the variance ofY

The random variableY has a continuous distribution. For smallδ > 0,

P{y ≤ Y ≤ y+ δ} = P{(y− µ)/σ ≤ Z ≤ (y− µ)/σ + δ/σ }
≈ δ

σ
φ

(
y− µ
σ

)
,

whereφ(·) denotes the density function forZ. The distribution ofY has density function

1

σ
φ

(
y− µ
σ

)
= 1

σ
√

2π
exp

(
− (y− µ)

2

2σ 2

)
which is called theN(µ, σ 2) density. (This method for calculating a density for a function
of a random variable works in more general settings, not just for standard normals.)

For the expected value and variance, note thatEY = µ + σEZ and var(µ + σ Z) =
σ 2var(Z) = σ 2. It therefore suffices if we calculate the expected value and variance for the
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standard normal. (If we worked directly with theN(µ, σ 2) density, a change of variables
would bring the calculations back to the standard normal case.)

EZ = 1√
2π

∫ ∞
−∞

x exp(−x2/2) dx = 0 by antisymmetry.

For the variance use integration by parts:

EZ2 = 1√
2π

∫ ∞
−∞

x2 exp(−x2/2) dx

=
[ −x√

2π
exp(−x2/2)

]∞
−∞
+ 1√

2π

∫ ∞
−∞

exp(−x2/2) dx

= 0+ 1

Thus var(Z) = 1.

The N(µ, σ 2) distribution has expected valueµ+ (σ ×0) = µ and varianceσ 2var(Z) =
σ 2. The expected value and variance are the two parameters that specify the distribution. In
particular, forµ = 0 andσ 2 = 1 we recoverN(0, 1), the standard normal distribution. ¤

The de Moivre approximation: one way to derive it

The representation described in Chapter 6expresses the Binomial tail probability as an in-
complete beta integral:

P{Bin(n, p) ≥ k} = n!

(k− 1)!(n− k)!

∫ p

0
tk−1(1− t)n−k dt

Apply Stirling’s approximation (Appendix B) to the factorials, and replace the logarithm of
the integrandtk−1(1−t)n−k by a Taylor expansion around its maximizing valuet0, to approx-
imate the beta integral by

A
∫ p

0
exp(−B(t − t0)

2) dt

for constantsA and B depending onn, p andk. With a change of variable, the integral
takes on a form close the the right-hand side of<7.1>. For details see Appendix C.

Normal approximation—the grimy details

How does one actually perform a normal approximation? Back in the olden days, one would
interpolate from tables found in most statistics texts. For example, ifX has a Bin(100, 1/2)
distribution,

P{45≤ X ≤ 55} = P
{

45− 50

5
≤ X − 50

5
≤ 55− 50

5

}
≈ P{−1≤ Z ≤ +1}

whereZ has a standard normal distribution. From the tables one finds,

P{Z ≤ 1} ≈ .8413.

By symmetry,
P{Z ≥ −1} ≈ .8413.

so that
P{Z ≤ −1} ≈ 1− .8413.

By subtraction,
P{−1≤ Z ≤ +1} = P{Z ≤ 1} − P{Z ≤ 1} ≈ .6826

That is, by the normal approximation,

P{45≤ X ≤ 55} ≈ .68

More concretely, there is about a 68% chance that 100 tosses of a fair coin will give some-
where between 45 and 55 heads.
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It is possible to be more careful about the atoms of probability at 45 and 55 to improve
the approximation, but the refinement is usually not vital.

These days, many computer packages will calculate areas under the normal density
curve directly. However one must be careful to read the fine print about exactly which curve
and which area is used.

<7.4> Example. In response to a questionnaire filled out by prospective jurors at courthouses in
the Hartford-New Britain Judicial District, persons were supposed to identify themselves as
Hispanic or non-Hispanic. The figures were collected each month:

Hispanic Non-Hispanic unknown total

Apr 96 80 1659 8 1747

May 96 66 1741 15 1822

Jun 96 35 1050 7 1092

Jul 96 57 1421 6 1484

Aug 96 15 387 1 403

Sep 96 80 1436 13 1529

Oct 96 94 1847 23 1964

Nov 96 60 1386 26 1472

Dec 96 59 1140 8 1207

Jan 97 77 1527 8 1612

Feb 97 85 1812 2 1899

Mar 97 95 2137 13 2245

According to the 1990 Census, the over-18 Hispanic population of the District made up
about 6.6% of the total over-18 population (and the proportion was known to have increased
since the Census). The solid line in the next Figure shows the expected numbers of His-
panics for each month, calculated under the assumption that the samples were taken from a
large population containing 6.6% Hispanics.
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The expected counts are larger than the observed counts in every month. Could the dis-
crepancy be due to random fluctations?

Consider a month in which a total ofn questionnaires were collected. Under the model
for random sampling from a population containing a fractionp = 0.066, the number of His-
panics in the sample should be distributed as Bin(n, p), with expected valuenp and variance
np(1− p), which is approximatelyN(np, np(1− p)). The observed count should be larger
than

lower 1%= np− 2.326
√

np(1− p)

with probability approximately 0.99, becauseP{N(0, 1) ≥ −2.236} = 0.99 (approximately).

The lower 1% bound is plotted as a dashed line in the first Figure. Even if all the un-
knowns are counted as Hispanic, for half the months the resulting counts fall below the
lower 1% values. One could hardly accept the explanation that the low observed counts
were merely due to random fluctuations.

The discrepancy is even more striking if a similar calculation is make for the cumula-
tive numbers of Hispanics. (That is, for May 96, add the counts for April and May, to get an
observed 146 Hispanics out of 3569 questionnaires; and so on.)
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For the cumulative plot, the lower boundary corresponds to the values that the normal
approximations would exceed with probability 0.995.

Be carful with the interpretation of the 0.99 or 0.995 probabilities. They refer to each
of a sequence comparisons bewtween an observed count and an expected value calculated
from a model. There is no assertion that the observed counts should all, simultaneously,
lie above the boundary. In fact, if we assume independence between the monthly samples,
the probability that all the counts should lie above the lower 1% boundary is approximately
0.9912 ≈ 0.89. For the second Figure, the cumulative counts are dependent, which would
complicate the calculation for simultaneous exceedance of the lower bound. ¤

The central limit theorem

The normal approximation to the binomial is just one example of a general phenomenon cor-
responding to the mathematical result known as thecentral limit theorem. Roughly•central limit theorem

Statistics 241: 13 October 1997 c©David Pollard



Chapter 7 Normal distribution Page 6

stated, the theorem asserts:

If X can be written as a sum of a large number of relatively small, independent
random variables, then it has approximately a N(µ, σ 2) distribution, whereµ =
EX andσ 2 = var(X). Equivalently, the standardized variable(X − µ)/σ has
approximately a standard normal distribution.

To make mathematical sense of this assertion I would need precisely stated mathemat-
ical assumptions, which would take us on a detour into material covered more carefully in
Statistics 600. (In other words, you wouldn’t want to know about it for Statistics 241.)

The normal distribution has many agreeable properties that make it easy to work with.
Many statistical procedures have been developed under normality assumptions, with occa-
sional obeisance toward the central limit theorem. Modern theory has been much concerned
with possible harmful effects of unwarranted assumptions such as normality. The modern fix
often substitutes huge amounts of computing for neat, closed-form, analytic expressions; but
normality still lurks behind some of the modern data analytic tools.

<7.5> Example. The boxplot provides a convenient way of summarizing data (such as grades in
Statistics 241). The method is:

(i) arrange the data in increasing order

(ii) find the split points

LQ = lower quartile: 25% of the data smaller than LQ

M = median: 50% of the data smaller than M

UQ= upper quartile: 75% of the data smaller than UQ

(iii) calculate IQR (= inter-quartile range) = UQ−LQ

(iv) draw a box with ends at LQ and UQ, and a dot or a line at M

(v) draw whiskers out to UQ+ 1.5× IQR and LQ− 1.5× IQR, but then trim them back
to the most extreme data point in those ranges

(vi) draw dots for each individual data point outside the box and whiskers (There are var-
ious ways to deal with cases where the number of observations is not a multiple of
four, or where there are ties, or. . . )

LQ UQM

Where does the 1.5× I QR come from? Considern independent observations from a
N(µ, σ 2) distribution. The proportion of observations smaller than any fixedx should be
approximately equal toP{W ≤ x}, whereW has aN(µ, σ 2) distribution. From normal
tables (or a computer),

P{W ≤ µ+ .675σ } ≈ .75

P{W ≤ µ− .675σ } ≈ .25

and, of course,
P{W ≤ µ} = .5
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For the sample we should expect

LQ ≈ µ− .675σ

UQ≈ µ+ .675σ

M ≈ µ
and consequently,

IQR≈ 1.35σ

Check that 0.675+ (1.5×1.35) = 2.70. Before trimming, the whiskers should approximately
reach to the ends of the rangeµ± 2.70σ . From computer (or tables),

P{W ≤ µ− 2.70σ } = P{W ≥ µ+ 2.70σ } = .003

Only about 0.6% of the sample should be out beyond the whiskers. ¤

Appendix A

Where does the
√

2π in the normal density come from? Why is it that∫ ∞
−∞

exp(−x2/2) dx =
√

2π?

If we write C for the integral on the left-hand side, then

C2 =
∫∫

exp(−(x2+ y2)/2) dx dy,

the double integral running over the whole plane. We can even writeC2 as a triple integral,
by using the fact that ∫ ∞

0
1{r ≤ z}e−z dz= e−r for r > 0.

The indicator function effectively cuts the range of integration to [r,∞).
Replacer by (x2+ y2)/2, then substitute into the double integral to get

C2 =
∫∫ (∫ ∞

0
1{x2+ y2 ≤ 2z} dz

)
dx dy=

∫ ∞
0

(∫∫
1{x2+ y2 ≤ 2z} dx dy

)
dz.

With the change in order of integration, the double integral is now calculating the area of a
circle centered at the origin and with radius

√
2z. The triple integral reduces to∫ ∞

0
π
(√

2z
)2

e−z dz=
∫ ∞

0
π2ze−z dz= 2π

That is,C = √2π , as asserted.

Appendix B: Stirling’s Formula

For positive integersn, the formula asserts that

<7.6> n! ≈
√

2πnn+1/2 exp(−n),

in the sense that the ratio of both sides tends to 1 asn goes to infinity.

As the first step towards a proof, write

logn! = log 1+ log 2+ . . .+ logn

as a sum of integrals of indicator functions:

logn! =
n∑

i=1

∫ n

1
1{1≤ x < i }1

x
dx =

∫ n

1

n∑
i=1

1{1≤ x < i }1
x

dx
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The sum of indicator functions counts the number of integers in the range 1, 2, . . . ,n that
are greater thanx. It equalsn−bxc, wherebxc denotes the integer part ofx. The difference
ψ(x) = x − bxc lies in the range [0, 1); it gives the fractional part ofx.

The integral representating log(n!) is equal∫ n

1

n− bxc
x

dx =
∫ n

1

n− x + ψ(x)
x

dx = n logn− n+
∫ n

1

ψ(x)

x
dx

The last integral diverges, because the contribution from the interval [i, i + 1) equals∫ i+1

i

x − i

x
dx =

∫ 1

0

t

t + i
dt ≈ 1

2i
.

For the approximation I have treated thet + i in the denominator as approximately equal toi
and then noted that

∫ 1
0 t dt = 1/2. The sum of the contributions increases like1/2 logn.

It seems we have to subtract off an extra
1

2
logn = 1

2

∫ n

1

1

x
dx

to keep the remainder term under control. Splitting the integral into contributions from inter-
vals [i, i + 1), we then get

<7.7> log(n!)− (n+ 1/2) logn− n =
n∑

i=1

∫ 1

0

t − 1/2

t + i
dt

With the subtraction of the 1/2 we will get some cancellation between the negative contribu-
tion for 0≤ t ≤ 1/2 and the positive contribution for 1/2< t ≤ 1.

Make the change of variables = 1/2− t for the integral over [0, 1/2], and the change
of variables= t − 1/2 over(1/2, 1].∫ 1

0

t − 1/2

t + i
dt =

∫ 1/2

0

−s

i + 1/2− s
ds+

∫ 1/2

0

s

i + 1/2+ s
ds

= −2
∫ 1/2

0

s2

(i + 1/2)2− s2
ds

The last expression is bounded in absolute value byi−2. The sum of the integrals forms a
convergent series. That is, for some constantc,∫ n

1

ψ(x)− 1/2

x
dx→ c asn→∞

Equivalently, from<7.7>,

n!

nn+1/2e−n
→ ec asn→∞

This result is equivalent to formula<7.6>, except for the identification ofC = ec as the
constant

√
2π . See the Remark at the end of Appendix C for a way of deriving the value of

the constant.

For an alternative derivation of Stirling’s formula, see Feller I, pages 52–53.

Appendix C

I will explain one method for proving the approximation<7.1>, based on the beta-
integral representation. To avoid a lot of ugly factors, I will replacek by k + 1 andn by
n+ 1. It has no great effect on the approximation. The de Moivre approximation works with
k of the formnp+ xσ , with σ = √npq, for q = 1− p.

Start from the equality

P{Bin(n+ 1, p) ≥ k+ 1} = (n+ 1)!

k!(n− k)!

∫ p

0
tk(1− t)n−k dt
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The integrand equals exp(H(t)), where

H(t) = k log t + (n− k) log(1− t)

By Calculus,

H ′(t) = k

t
− n− k

1− t
and H ′′(t) = − k

t2
− n− k

(1− t)2

The maximum occurs at thet0 whereH ′(t0) = 0, that is, att0 = k/n ≈ p. The second
derivative att0 is

H ′′(t0) = − n3

k(n− k)
≈ − n

pq
= n2

σ 2
for k ≈ np

By Tayor’s theorem,

H(t) ≈ H(t0)− n2

2σ 2
(t − t0)

2 neart0.

Thus

P{Bin(n+ 1, p) ≥ k+ 1} ≈ (n+ 1)n!

k!(n− k)!

∫ p

0
exp

(
H(t0)− n2

2σ 2
(t − t0)

2

)
dt

Put Stirling’s formula,

n! ≈ Cnn+1/2e−n whereC =
√

2π,

to work on the factorials sitting in front of the integral.

(n+ 1)n!

k!(n− k)!
exp(H(t0)) ≈ nCnn+1/2e−n

Ckk+1/2e−kC(n− k)n−k+1/2e−n+k

(
k

n

)k (n− k

n

)n−k

= n3/2

Ck1/2(n− k)1/2

For k nearnp, the factork1/2(n− k)1/2 is close to(n2 pq)1/2 = √nσ . Thus

P{Bin(n+ 1, p) ≥ k+ 1} ≈ n

Cσ

∫ p

0
exp

(
−n2(t − t0)2

2σ 2

)
dt for k ≈ np.

Make the change of variables = n(t − t0)/σ . The lower terminal becomes−nt0/σ ≈
−np/

√
npq≈ −∞, if n is large. The upper terminal becomesn(p−t0)/σ , which equals−x

if k = np+ xσ . The change of variable also soaks up then/σ outside the integral, leaving

P{Bin(n+ 1, p) ≥ k+ 1} ≈ 1

C

∫ −x

−∞
exp

(
−s2

2

)
ds for k = np+ xσ.

The final integral is not quite in the form asserted by<7.1>, but symmetry of the inte-
grand lets us replace the integral from−∞ to −x by the integral fromx to∞; and then we
have de Moivre’s approximation.

Stirling’s formula gives the value of the constantC as
√

2π . We could also have de-
duced the value ofC by observing that the Binomial probability on the left-hand side tends
to 1 whenx→−∞, while the right-hand side tends to

1

C

∫ ∞
−∞

exp

(
−s2

2

)
ds=

√
2π

C
.

De Moivre himself (page 244 of theDoctrine of Chances) was not originally aware of the
correct value for the constant. Referring to his calculation of the ratio of the maximum term
in the expansion of(1+ 1)n to the sum, 2n, he wrote:

When I first began that inquiry, I contented myself to determine at large the Value
of B, which was done by the addition of some Terms of the above-written Series; but
as I perceived that it converged but slowly, and seeing at the same time that what I
had done answered my purpose tolerably well, I desisted from proceeding further till my
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worthy and learned Friend Mr. James Stirling, who had applied himself after me to
that inquiry, found that the Quantity B did denote the Square-root of the Circumfer-
ence of a Circle whose Radius is Unity, so that if that Circumference be called c, the
Ratio of the middle Term to the Sum of all the Terms will be expressed by 2√

nc
.

Maybe you agree with De Moivre, who called the approximation“the hardest Problem
that can be proposed on the Subject of Chance”. My treatment has made little use of two and a
half centuries of probability theory. The approximation is usually presented by methods that
lead to simple proofs, but at the cost of disguising the reasons for why it works. Look at
any standard text to see what I mean.

z z z z z z z z z z z z z z z z

A. De Moivre, The Doctrine of Chances: or, A Method of Calculating the Probabilities of
Events in Play, 3rd edition (1756), pages 242–243. (Photographic reprint of final edi-
tion by Chelsea Publishing Company, 1967.)

Corollary.

From this it follows, that if after taking a great number of Experiments, it should be perceived
that the happenings and failings have been nearly in a certain proportion, such as of 2 to 1, it may
safely be concluded that the Probabilities of happening or failing at any one time assigned will be very
near in that proportion, and that the greater the number of Experiments has been, so much nearer the
Truth will the conjectures be that are derived from them.

But suppose it should be said, that notwithstanding the reasonableness of building Conjectures
upon Observations, still considering the great Power of Chance, Events might at long run fall out in a
different proportion from the real Bent which they have to happen one way or the other; and that sup-
posing for Instance that an Event might as easily happen as not happen, whether after three thousand
Experiments it may not be possible it should have happened two thousand times and failed a thousand;
and that therefore the Odds against so great a variation from Equality should be assigned, whereby the
Mind would be the better disposed in the Conclusions derived from the Experiments.

In answer to this, I’ll take the liberty to say, that this is the hardest Problem that can be pro-
posed on the Subject of Chance, for which reason I have reserved it for the last, but I hope to be for-
given if my Solution is not fitted to the capacity of all Readers; however I shall derive from it some
Conclusions that may be of use to every body: in order thereto, I shall here translate a Paper of mine
which was printed November 12, 1733, and communicated to some Friends, but never yet made public,
reserving to myself the right of enlarging my own Thoughts, as occasion shall require.

Novemb. 12, 1733

A Method of approximating the Sum of the Terms of the Binomial a+ b\n ex-
panded into a Series, from whence are deduced some practical Rules to
estimate the Degree of Assent which is to be given to Experiments.

Altho’ the Solution of problems of Chance often requires that several Terms of the Binomial a+ b\n
be added together, nevertheless in very high Powers the thing appears so laborious, and of so great dif-
ficulty, that few people have undertaken that Task; for besides Jamesand Nicolas Bernouilli, two
great Mathematicians, I know of no body that has attempted it; in which, tho’ they have shown very
great skill, and have the praise that is due to their Industry, yet some things were further required;
for what they have done is not so much an Approximation as the determining very wide limits, within
which they demonstrated that the Sum of the Terms was contained.
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