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Chapter 9

Poisson processes

The Binomial distribution and the geometric distribution describe the behavior of two
random variables derived from the random mechanism that I have called “coin tossing”. The
namecoin tossingdescribes the whole mechanism; the namesBinomial andgeometricrefer
to particular aspects of that mechanism. If we increase the tossing rate to m tosses per sec-
ond and decrease the probability of heads to a small p, while keeping the expected number
of heads per second fixed atλ = mp, the number of heads in at second interval will have
approximately a Bin(mt, p) distribution, which is close to the Poisson(λt). Also, the num-
bers of heads tossed during disjoint time intervals will still be independent random variables.
In the limit, asm→∞, we get an idealization called aPoisson process.•Poisson process

<9.1> Definition. A Poisson process with rate λ on [0,∞) is a random mechanism that gener-
ates “points” strung out along [0,∞) in such a way that

(i) the number of points landing in any subinterval of length t is a random variable with
a Poisson(λt) distribution

(ii) the numbers of points landing in disjoint (= non-overlapping) intervals are indepen-
dent random variables. ¤

The double use of the name Poisson is unfortunate. Much confusion would be avoided
if we all agreed to refer to the mechanism as “idealized-very-fast-coin-tossing”, or some
such. Then the Poisson distribution would have the same relationship to idealized-very-fast-
coin-tossing as the Binomial distribution has to coin-tossing. Obversely, we could create
more confusion by renaming coin tossing as “the binomial process”. Neither suggestion is
likely to be adopted, so you should just get used to having two closely related objects with
the name Poisson.

Why bother about Poisson processes? When we pass to the idealized mechanism of
points generated in continuous time, several awkward artifacts of discrete-time coin tossing
disappear. The Examples and Exercises in this Chapter will illustrate the simplifications.

<9.2> Exercise. Find the distribution of the time to thekth point in a Poisson process on [0,∞)
with rateλ.

Solution: Denote the time to thekth point byTk. It has a continuous distribution, which
is specified by a density function. Fort > 0 and smallδ > 0,

P{t ≤ Tk < t + δ}
= P{exactlyk− 1 points in [0, t), exactly one point in [t, t + δ) } + smaller order terms

The ‘smaller order terms’ contribute probability less than

P{2 or more points in [t, t + δ) } = P{Poisson(λδ) ≥ 2} = e−λδ(λδ)2

2!
+ . . .
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By the independence property (ii) for Poisson processes, the main term factorizes as

P{exactlyk− 1 points in [0, t) }P{exactly one point in [t, t + δ) }
= e−λt (λt)k−1

(k− 1)!

e−δt (λδ)1

1!

= e−λtλktk−1δ

(k− 1)!
+ smaller order terms

That is, the distribution ofTk has density

e−λtλktk−1

(k− 1)!
for t > 0.

¤

Gamma function and gamma density

It is easier to remember the form of the density forTk if one rescales, using an argumentYou should try this
calculation at home. similar to the one for theN(µ, σ 2) distribution in Chapter 7, to show thatλTk has a distri-

bution with density

<9.3>
e−t t k−1

(k− 1)!
for t > 0.

This density is called thegamma(k) density.

More generally, for eachα > 0, the density

e−t tα−1

0(α)
for t > 0

is called thegamma(α) density. The scaling constant,0(α), which ensures that the den-•gamma(α) density
sity integrates to one, is given by

0(α) =
∫ ∞

0
e−xxα−1dx for eachα > 0.

The function0(·) is called thegamma function. Don’t confuse the gamma density with•gamma function
the gamma function.

<9.4> Example. The waiting timeTk from Example<9.2> has expected value

ETk =
∫ ∞

0

te−λtλktk−1

(k− 1)!
dt

= 1

λ

∫ ∞
0

e−xxk

(k− 1)!
dx putting x = λt , (cf. distribution ofλTk)

= k

λ
(Use integration by parts.)

Does it make sense to you thatETk should decrease asλ increases?

More generally, forα > 0,

0(α + 1) =
∫ ∞

0
e−xxαdx

= [−e−xxα
]∞

0 + α
∫ ∞

0
e−xxα−1dx

= α0(α)
In particular,

0(k) = (k− 1)0(k− 1)

= (k− 1)(k− 2)0(k− 2)

= . . .
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= (k− 1)(k− 2)(k− 3) . . . (2)(1)0(1)

= (k− 1)!

because0(1) = ∫∞0 e−xdx = 1. Compare with the fact that the gamma(k) density in<9.3>

integrates to one. ¤

Exponential distribution

Specializing the gamma(k) to the casek = 1 we get the density

e−t for t > 0,

which is called the (standard)exponential distribution. The time to the first point in•exponential distribution
the Poisson process has density

λe−λt for t > 0,

an exponential distribution with expected value 1/λ. Don’t confuse the exponential density
with the exponential function.

Notice the parallels between the negative binomial distribution (in discrete time) and the
gamma distribution (in continuous time). Each distribution corresponds to the waiting time
to thekth occurrence of something, for various values ofk. Just as (see Problem Sheet 4)
the negative binomial can be written as a sum of independent random variables, each with a
geometric distribution, so can the gamma(k) be written as a sum ofk independent random

cts. time↔ discrete time
gamma↔ neg. binomial
exponential↔ geometric

For counts:
Poisson↔ Binomial

variables, each with an exponential distribution. The times between points in a Poisson pro-
cess are independent, exponentially distributed, random variables.

The gamma distribution turns up in a few unexpected places.

<9.5> Exercise. If Z has a standard normal distribution, with densityφ(t) = exp(−t2/2)/
√

2π
for −∞ < t <∞, show thatZ2/2 has a gamma(1/2) distribution.

Solution: Write Y for Z2/2. It has a continuous distribution concentrated on the posi-
tive half line (0,∞). For y > 0, andδ > 0 small,

P{y < Y < y+ δ} = P{2y < Z2 < 2y+ 2δ}
= P{

√
2y < Z <

√
2y+ 2δ or −

√
2y+ 2δ < Z < −

√
2y}

Notice the two contributions; the square function is not one-to-one. Students who memorize
and blindly apply transformation formulae quite often overlook such multiple contributions.

Calculus gives a good approximation to the length of the short interval from
√

2y to√
2y+ 2δ. Temporarily writeg(y) for

√
2y. Then√

2y+ 2δ −
√

2y = g(y+ δ)− g(y)

≈ δg′(y)
= δ/

√
2y

The interval from−√2y+ 2δ to −√2y has the same length. Using the approximation

P{x < Z < x + ε} ≈ εφ(x) for small ε > 0,

deduce that

P{y < Y < y+ δ} ≈ δ√
2y
φ(
√

2y)+ δ√
2y
φ(−

√
2y)

= 2δ√
2y

1√
2π

exp

(
−
(√

2y
)2
/2

)
= δ√

π
y−1/2e−y

That is,Y has the distribution with density

1√
π

y−1/2e−y for y > 0.
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Compare with the gamma(1/2) density,

y1−1/2e−y

0(1/2)
for y > 0.

The distribution ofZ2/2 is gamma (1/2), as asserted.

Note: From the fact that the density must integrate to 1, we get a bonus:

0(1/2) =
∫ ∞

0
y1/2−1e−ydy= √π

Actually, you could arrive at the same conclusion by making the change of variabley =
x2/2 in the integral—which is effectively what we have done in finding the density for the
random variableZ2/2. ¤

The Poisson process is often used to model the arrivals of customers in a waiting line,
or the arrival of telephone calls at an exchange. The underlying idea is that of a large pop-
ulation of potential customers, each of whom acts independently of all the others. The next
Example will derive probabilities related to waiting times for Poisson processes of arrivals.
As part of the calculations we will need to find probabilities by conditioning on the values
of a random variable with a continuous distribution. As before, the trick is first to condition
on a discretized approximation to the the variable, and then pass to a limit.

SupposeT has densityf (·), and letX be another random variable. Ifδ ≈ 0, then

E(X | T = t) ≈ E(X | t ≤ T < t + δ)
Break the whole range forT into small intervals. Rule E4 for expectations gives

EX =
∞∑

j=−∞
E(X | j δ ≤ T < ( j + 1)δ)P{ j δ ≤ T < ( j + 1)δ}

Approximate the last probability byf ( j δ)δ. Temporarily writingg(t) for E(X | T = t), we
then get

∞∑
j=−∞

g( j δ) f ( j δ)δ

as an approximation toE(X). Think of the sum as an approximation to
∫∞
−∞ g(t) f (t) dt.

As δ tends to zero, the errors of approximation to both the expectation and the integral tend
to zero, leaving (in the limit)

EX =
∫
E(X | T = t) f (t) dt for each random variableX.

As a special case, whenX is replaced by the indicator function of an event, we get

<9.6> PA =
∫
P(A | T = t) f (t) dt for each eventA,

Rule E4 for expectations strikes again!

<9.7> Example. Suppose an office receives two different types of inquiry: persons who walk
in off the street, and persons who call by telephone. Suppose the two types of arrival are
described by independent Poisson processes, with rateλw for the walk-ins, and rateλc for
the callers. What is the distribution of the number of telephone calls received before the first
walk-in customer?

Write T for the arrival time of the first walk-in, and letN be the number of calls in
[0, T). The timeT has a continuous distribution, with the exponential density

f (t) = λwe−λw t for t > 0.

We need to calculateP{N = i } for i = 0, 1, 2, . . .. Invoke formula<9.6>, with A equal
to {N = i }.

P{N = i } =
∫ ∞

0
P{N = i | T = t} f (t) dt
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The conditional distribution ofN is affected by the walk-in process only insofar as that pro-
cess determines the length of the time interval over whichN counts. GivenT = t , the ran-
dom variableN has a Poisson(λct) conditonal distribution. Thus

P{N = i } =
∫ ∞

0

e−λct (λct)i

i !
λwe−λw t dt

= λw λ
i
c

i !

∫ ∞
0

(
x

λc + λw

)i

e−x dx

λc + λw putting x = (λc + λw)t

= λw

λc + λw

(
λc

λc + λw

)i 1

i !

∫ ∞
0

xi e−xdx

The 1/ i ! and the last integral cancel. (Compare with0(i + 1).) Writing p for λw/(λc + λw)
we have

P{N = i } = p(1− p)i for i = 0, 1, 2, . . .

Compare with the geometric(p) distribution. The random variableN has the distribution of
the number of tails tossed before the first head, for independent tosses of a coin that lands
heads with probabilityp.

Such a nice clean result couldn’t happen just by accident. Maybe we don’t need all the
calculus to arrive at the distribution forN. In fact, the properties of the Poisson distribution
and Problem 7.3 show what is going on, as I will now explain.

Consider the process of all inquiries, both walk-ins and calls. In an interval of lengtht ,
the total number of inquiries is the sum of a Poisson(λwt) distributed random variable and
an independent Poisson(λct) distributed random variable; the total has a Poisson(λwt + λct)
distribution. Both walk-ins and calls contribute independent counts to disjoint intervals; the
total counts for disjoint intervals are independent random variables. It follows that the pro-
cess of all arrivals is a Poisson process with rateλw + λc.

Now consider an interval of lengtht in which there areX walk-ins andY calls. From
Problem 7.3, given thatX + Y = n, the conditional distribution ofX is Bin(n, p), where

p = λwt

λwt + λct
= λw

λw + λc

That is, X has the conditional distribution that would be generated by the following mecha-
nism:

(1) Generate inquiries as a Poisson process with rateλw + λc.

(2) For each inquiry, toss a coin that lands heads with probabilityp = λw/(λw + λc). For
a head, declare the arrival to be a walk-in, for a tail declare it to be a call.

A formal proof that this two-step mechanism does generate a pair of independent Pois-
son processes, with ratesλw andλc, would involve:

(1′) Prove independence between disjoint intervals. (Easy)

(2′) If step 2 generatesX walk-ins andY calls in an interval of lengtht , show that

P{X = i,Y = j } = P{X = i }P{Y = j }
X ∼ Poisson(λwt) and Y ∼ Poisson(λct)

You should be able to write out the necessary conditioning argument for 2′.
The two-step mechanism explains the appearance of the geometric distribution in the

problem posed at the start of the Example. The classification of each inquiry as either a
walk-in or a call is effectively carried out by a sequence of independent coin tosses, with
probability p of a head (= a walk-in). The problem asks for the distribution of the number
of tails before the first head. The embedding of the inquiries into continuous time is irrele-
vant. ¤
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