Chapter 1

esample space
eevents

eprobability

Probabilitie s and rando m variables

Probabiliyy theowy is asystemati methal for describirg randomnesard uncertainy. It pre-
scribes ase of rules for manipulating and calculatirg probabilities and expectations It has been
applied in many areas gambling insurancethe study of experimenté errar, statisticd inference,
and more.

One standad approab to probability theow (but not the only approach stars from the concept
of a SAMPLE SPACE, which is an exhausive list of possibé outcoma in an experimert or other
situation whetre the resut is uncertain Subset of the list are called EvENTS. For example in the
very simple situation where 3 coins are tossed the sampé spae might be

S = {hhh hht, hth, htt, thh, tht, tth, ttt}.

Notice tha S contairs nothing tha would specify an outcone like “the secoml coin spwn 17
times was in the air for 3.26 secondsrolled 23.7 inches when it landed then endal with heads
facing up”. There is an event correspondig to “the secom coin landed heads; namey,

{hhh, hht, thh, tht}.
Ead elemernt in the sampé spa@ correspond to a uniquely specifiel outcome.

The choiee of a sampé space—thk detal with which possibé outcoma are described—depends
on the sott of event we wish to describe The sampk spae is constructd to malke it easie to
think precisey abou events In many casesyou will find tha you dorit actually neead an explic-
itly definel sampé space it often sufices to manipulae events via asmal numbe of rules (to

be specifi@ soor) without explicitly identifying the event with subsest of a sampé space.

If the outcone of the experimen correspond to a point of a sampé spae belongirg to some
event, one says tha the evert has occurred For example with the outcome hhh ead of the
event {no tails}, {at leag one head, {more head than tails} occurs but the evert {even number
of head$ does not.

The uncertainy is modellel by a PROBABILITY assignd to ead event The probabibility of an
event E is denote by PE. One popula interpretation of P (but not the only interpretatiol is as
along run frequerty: in avety large numbe (N) of repetitiors of the experiment,

(numbe of times E occursyN ~ PE,

provided the experimens are independenof each othe.

As many authos have pointed out, there is somethimg fishy abou this interpretation For exam-
ple, it is difficult to make precie the meanirg of “independehof ead othef without resorting
to explanatiors that degenerag into circular discussior abou the meanirg of probability and in-
dependenceThis fact does not seen to trouble mog supportes of the frequerty theoy. The
interpretatia is regardel as ajustification for the adoption of a se of mathematichrules or ax-
ioms.

The first four rules are eay to remembe if you think of probability as aproportion One more
rule will be addel soon.
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Rules for probabilities

(PD : 0<PE < 1 for every event E.

(P2 : For the empy subse ¢ (= the “impossibke event”), Py = 0,

(P3 : For the whole sampk spae (= the “certain event”), PS= 1.

(P4 : If an evert E is adisjoint union of evenss Ey, Ey, ... then PE = }; PE;.

<1.1> Example. Find P{at leag two head$ for the tossirg of three coins Use the sampé spa@ from
the previous page If we assune tha ead coin is fair and tha the outcome from the coins dori't
affect ead othe (“independence’;)then we mud conclude by symmety (“equally likely”) that

P{hhh} = P{hht} = ... = P{ttt}.
By rule P4 thes eight probabilities add to PS = 1; they mug ead equa 1/8. Again by P4,
P{at leag two head$ = P{hhh} + P{hht} 4+ P{hth} 4+ P{thh} = 1/2.

Probabiliyy theory would be very boring if all problens were solved like that bre& the event
into pieces whose probabilities you know, then add Thing becone mudh more interestirg when
we recogniz tha the assignmenof probabilities depend upan wha we know or have learrt (or
assumgabou the randan situation For example in the lag problem we could have written

P{at leag two head | coins fair, “independencg ...} =...

to indicat that the assignmenis conditiond on certan information (or assumptions) The verti-
cd bar isrea as given we refer to the probability of ... given that ...

For fixed conditionirg information the CONDITIONAL PROBABILITIES P{... | info} satisfy
rules (P1) throudh (P4). For example IP’((ZJ | info) = 0, and so on. If the conditionirg infor-
mation stays fixed throughot the analysis one usually doesnit bothe with the “given ...”, but
if the information changs during the analyss this conditiond probability notation become most
useful.

The final rule for (conditiona) probabilities lets us bre& occurrene of an evert into a succession
of simple stageswhos conditionad probabilities might be easie to calculae or assign Often

the succesive stage correspod to the occurrene of ead of a sequene of events in which case
the notatian is abbeviated:

econditional probabilities

P(... | evert A has occurrel AND previous info)

or
P(... | AN previous info) where N mears intersection
or
P(... | A, previous info)
or

P(... | A) if the “previous info” is understood

The comna in the third expressia is open to misinterpretationbut its conveniene recommends
it.

| mug confes to soe inconsisteny in my use of parentheseard braces If the”...” is ade
scription in words then {...} denotea the subsé of S on which the descriptia is true, ard P{.. .}
or P{... | info} seens the naturd way to denot the probability attache to tha subset How-
ever, if the “...” stard for an expressim like AN B, the notation P(AN B) or IE”(AO B | info)
looks nicer to me It is had to maintan a convention that covers all cases You shout nat at-
tribute muah significane to difference in my notatian involving a choiee betwea parentheses
and braces.
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Rule for conditional probability

(P5) : if AandB are events then
P(AB | info) = P(A |info) -P(B | A, info).
The frequency interpretation might make it easier for you to appreciate this rule. Suppose that in
N “independent” repetitions (given the same initial conditioning information)
A occursNy times
AN B occursNang times

Then, for bigN,

P(A | info) ~ Na/N

P(ANB | info) &~ Naqg/N.
If we ignore those repetitions where A fails to occur then we hidyerepetitions given the orig-
inal informationand occurrence ofA, in Nang of which B occurs. ThuéP(B | A, info) R
Nans/Na. The rest is division.
<1.2> Example. What is the probability that a hand of 5 cards contains four of a kind?

Let usassumeeverything fair and aboveboard, so that simple probability calculations can be car-
ried out by appeals to symmetry. The fairness assumption could be carried along as part of the
conditioning information, but it would just clog up the notation to no useful purpose.

Start by breaking the event of interest into 13 disjoint pieces:
13
{four of a kind = U F
i=1
where
F. = {four aces, plus something e}se
F, = {four twos, plus something else

F13 = {four kings, plus something else

By symmetry each has the same probability, which means we can concentrate on just one of

them. By rule P4,
13
P{four of a kind = Y " PF, = 13PF,.
1

Now breakF; into simpler pieces,

5
Fi=JF
j=1

whereF;; = {four aces with jth card not an aceAgain by disjointness and symmet®F; =
5PF; 1.

Decompose the everf 1 into five “stages”,
F]_,j_: NiN AN AzN AsN As,
where

N, = {first card is not an age
A; = {first card is an age
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and so on. To save on space, | will omit the intersection signs, wrking, Az A4 instead of
Ni; N A, N Az N A4, and so on. By rule P5,
PF11 =PNiP(Az | ND)P(Az | N1Ap) ... P(A5 | N1 A AgAy)
48 4 3 2 1
= — X — X — X — X —.
52 51 50 49 48

Thus 48 4 3 2 1
P{four of a kind = 1 — X — X — X — X — &~ .0002
{four of a kind 3x5x52x51x50x49x48 00024
| Can you see any hidden assumptions in this analysis?

| wrote out many of the gory details to show you how the rules reduce the calculation to a se-
quence of simpler steps. In practice, one would be less explicit, to keep the audience awake.

The next example is taken from the delightful little boeikty Challenging Problems in Probabil-
ity by Frederick Mosteller. The book is one of my favourite sources for elegant examples. One
could learn a lot of probability by trying to solve all fifty problems.

<1.3> Example. (The Prisoner's Dilemma) Three prisoners, A, B, and C, with apparently equally
good records have applied for parole. The parole board has decided to release two of the three,
and the prisoners know this but not which two. A warder friend of prisoner A knows who are
to be released. Prisoner A realizes that it would be unethical to ask the warder if he, A, is to be
released, but thinks of asking for the name of one prisotieer than himselfvho is to be re-
leased. He thinks that before he asks, his chances of release are 2/3. He thinks that if the warder
says “B will be released,” his own chances have now gone down to 1/2, because either A and B
or B and C are to be released. And so A decides not to reduce his chances by asking. However,
A is mistaken in his calculations. Explain.

It is quite tricky to argue through this problem without introducing any notation, because of some
subtle distinctions that need to be maintained.

The interpretation that | propose requires a sample space with only four items, which | label sug-
gestively

= both A and B to be released, warder must say B

= both A and C to be released, warder must say C

= both B and C to be released, warder says B

= both B and C to be released, warder says C.
There are three events to be considered

A = {A to be released= {[aB| , [aC}
B = {B to be releasdd= {[aB| , [Bc/|, [bC|}
B* = {warder says B to be releages {[aB], [Bc|}.
Apparently prisoner A thinks tha(A | B*) = 1/2.
How should we assign probabilities? The words “equally good records” suggest (compare with

Rule P4)
P{A and B to be releaséd
=P{B and C to be releaséd
= P{C and A to be releaséd
=1/3

That is,

P{(aB|} = P{[aCl} = P{[Bcl} + P{[bCl} = 1/3.

What is the split betweenBc| and [bC|? | think the poser of the problem wants us to give 1/6
to each outcome, although there is nothing in the wording of the problem requiring that alloca-
tion. (Can you think of another plausible allocation that would change the conclusion?)
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e Shee 1, #4

<1l.4>

With those probabilities we calculate

PANB*=P{aBl} = 1/3
PB* = P{[aB|} + P{[Bc/} = 1/3+1/6 = 1/2,
from which we dedue (via rule P5) that
. PANB* 1/3
P(A|B)_W_m_2/3_]wl.
The extra information B* shout nat change prisone A’s perceptia of his probability of being
released.

Notice that
PANB 1/3

PA1B) = 53 T 1/2+1/6+1/6

=1/2 # PA.

Perhag A was confusirg P(A | B*) with P(A | B).
The problem is more subtk than you might suspect Reconside the conditionirg argumert from

the point of view of prisone C, who overheas the converstaim betwea A and the warde. With
C denotirg the event

{C to be releaseyi= {[aC , [Bc/, [bCl},

he would calculaé aconditiond probability

P{Bc 1/6
(Bd) _ 16 b
PB* 1/2
The warde might have nominatel C as aprisone to be released The fact that he didn't do so
conveys sone information to C. Do you see why A ard C can infer differert information from

the wardets reply?

P(C | B*) =

The lag patt of the Example concernirg the bad news for prisone C, is aversim of a famous
puzzle tha recenty causd astom in ateacyp when it was posel in a newspape column If
we replae “stay in prisori’ by “win aprize’ then asmal variation on Quiz ContestahProblem
emeges The lessm is: Be prepare to deferd your assignmerstof conditiond probabilities.

You might have the impressim at this stage that the first step towards the solution of a proba-
bility problam is always aspecificatio of a sampé space In fact one seldan need an explicit
listing of the sampé space an assignmenof (conditiona) probabilities to well chos@ event is
usually enoudn to se the probability machire in action Only in case of possibé confusio (as
in the lag Example) or grea mathematichprecision do | find alist of possibé outcome worth-
while to contemplate.

In the next Example as is often the case constuctim of a sampk spae would be anontivial
exercise.

Exampl e. Hereis acoin tossing gane tha illustrates how conditionirg can bre&k a compkx
randon mechanim into a sequene of simple stages Imagire tha | have afair coin, which |
toss repeatedl. Two players M and R, obseve the sequene of tossesead waiting for a partic-
ular patten on consecute tosses.

M waits for hhh
R waits for tthh.
The one whos patten appeas first is the winner. Wha is the probability tha M wins?

For example the sequene ththhttthh. .. would resut in awin for R, but ththhthhh .. would re-
sult in awin for M.

At first though one might imagire tha M has the advantage After all, surel it mug be easier
to get a patten of lengh 3 than a patten of lengh 4. You'll discover tha the solution is nat that
straightforward.
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The possible states of the game can be summarized by recording how much of his pattern each
player has observed (ignoring false starts, such as hht for M, which would leave him back where
he started, although R would have matched the first t of his pattern.).

States M partial pattern R partial pattern
— —
h -
- t
- tt
hh -
h tth
M wins hhh ?
? tthh

By claiming that these states summarize the game | am tacitly assuming that the coin has no
“memory”, in the sense that the conditional probability of a head given any particular past se-
quence of heads and tails is 1/2 (for a fair coin). The past history leading to a particular state
does not matter; the future evolution of the game depends only on what remains for each player
to achieve his desired pattern.

The game is nicely summarized by a diagram with states represented by little boxes joined by
arrows that indicate the probabilities of transition from one state to another. Only transitions with
a nonzero probability are drawn. In this problem each nonzero probability equals 1/2. The solid
arrows correspond to transitions resulting from a head, the dotted arrows to a tail.

For example, the arrows leading fronS to to to correspond to heads; the
game would progress in exactly that way if the first three tosses gave hhh. Similarly the arrows
from [S|to [T/to [TT|correspond to tails.

The arrow looping from back into itself corresponds to the situation where, aftett, both
players progress no further until the next head. Once the game progresses down the Enow
the step into becomes inevitable. Indeed, for the purpose of calculating the probabil-
ity that M wins, we could replace the side branch by:

~
Se—-

The new arrow from |T|to would correspond to a sequence of tails followed by a head.
With the state removed, the diagram would become almost symmetric with respect to M

and R. The arrow from[HH] back to would show that R actually has an advantage: the first

h in the tthh pattern presents no obstacle to him.

Once we have the diagram we can forget about the underlying game. The problem becomes one
of following the path of a particle that moves between the states according to the transition prob-
abilities on the arrows. The original game haS| as its starting state, but it is just as easy to
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solve the problem for a particle starting from any of the states. The method that | will present
actually solves the problems for all possible starting states by setting up equations that relate the
solutions to each other. Define probabilities for the particle:

Ps = P{reach | start at [S}
P; = P{reach | startat [T]}

and so on. I'll still refer to the solid arrows as “heads”, just to distinguish between the two ar-
rows leading out of a state, even though the coin tossing interpretation has now become irrele-
vant.

Calculate the probability of reachingM wins] , under each of the different starting circum-
stances, by breaking according to the result of the first move, and then conditioning.

Ps = P{reach , headd start at [S§]} + P{reach , tails | start at [S]}
= P{heads start at [S }P{reach | start at [S], head$
+ P{tails | start at [S] }P{reach | start at (S, tails).

The lack of memory in the fair coin reduces the last eXpI’ESSiO%’PiQ—l— %PT. Notice how “start
at , heads” has been turned into “start at|” and so on. We have our first equation:

Ps= 3Py + 3Pr.
Similar splitting and conditioning arguments for each of the other starting states give
Py = 3Pr + 3PhH
Puw =3+ 3Pr
Pr=3Pu+3Prr
Prr=3Prr+ 3Prru
Prrn=3Pr +0.
We could use the fourth equation to substitute Ryfr, leaving
Pr = 1Py + 3Prrh.

This simple elimination of thé®; 1 contribution corresponds to the excision of th&T| state
from the diagram. If we hadn'’t noticed the possibility for excision the algebra would have ef-
fectively done it for us. The six splitting/conditioning arguments give six linear equations in six
unknowns. If you solve them you should ge¢ = 5/12, Py = 1/2, Pr = 1/3, Pyy = 2/3, and

O Prtw = 1/6. For the original problem, M has probability 5/12 of winning.

There is a more systematic way to carry out the analysis in the last problem without drawing
the diagram. The transition probabilities can be installed into an 8 by 8 matrix whose rows and
columns are labeled by the states:

[TTH] [M wins] [R wins]

n

0 1/2 12 0 0 0 0 0
0O 0 12 12 o0 0 0 0

0O /2 0 0 12 0 0 0

o _ [HH O 0 12 0 0 0 12 0
= (17 o 0 0 0 Y2 12 0 0
TTH O 0 12 0 0 0 0 12

O 0 0 O 0 0 1 0

O 0 0 O 0 0 0 1

If we similarly define a column vector,

7 = (Ps, Pu, Pr, Pun, Prr, Prow, Put winss PR wins)'s
then the equations that we needed to solve could be written as

Pr =m.
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efransition matrix

eindependence

eMarkov chain

<1.5>

Actually I didn't bothe with addirg the equatiors Py wins = 1 and Pr wins = O to the list of
equationsthey correspod to the isolated terms 1/2 and 0 on the right-hard sides of the equa-
tions for Py and Prrh.

The matrix P is called the TRANSITION MATRIX. The elemem in row i and colummn j gives the
probability of a transition from stak i to stak j. For example the third row, which is labeled
, gives transitin probabilities from state . If we multiply P by itself we get the matrix P2,
which gives the “two-steg transitian probabilities For example the elemen of P2 in row
ard column is given by

ZPT,,-PJ-,TTH =Z]P’{stqotoj|stalt at [T]}P{ste to | stat at j}.
j

J

Here j runs over all statesbut only j = ad j = contribute nonzeo terms Substitut-
ing
P{reach in two stefs | stat at , step to j}

for the secoml factar in the sum we get the splitting/conditioniry decompositia for

P{reach in two stefs | stat at 1,
a two-step transitin possibility.

Questions Wha do the elemens of the matrix P" represer® Wha happes to this matrix as n
tends to infinity? See the outpu from the MatLab m-file Markov.m.

In both Examples <3> ard <4> we had situatiors where certan pieces of information could be
ignored in the calculation of certan conditiona probabilities:

P(A | BY) = P(A),
P(next toss aheal | pag sequene of tosse$ = 1/2.

Both situatiors are instance of a propery called INDEPENDENCE.

Definition.  Call events E and F conditionally independent given a particular piece of informa-
tion if

P(E | F, information) = P(E | information).
If the “information” is understood, just call E and F independent.

The apparehasymmety in the definition can be renoved by an appeéto rule P5 from which
we dedue that

P(E N F | information) = P(E | informationP(F | informatior)

for conditionaly independenevents E ard F. Excep for the conditionirg information the last
quality is the traditiond definition of independenceSone authos prefe tha form becaus it
includes various case involving event with zemo (conditiona) probability.

The name MARKOV CHAIN iS given to any proces representalel as the movemer of a particle
betwea states (boxe9 accordimg to transition probabilities attaché to arrows connectilg the vari-
ous states The sum of the probabilities for arrows leaving a stat shoutl add to one All the past
histoly except for identificatian of the currert stae is regardel as irrelevart to the next transition;
given the currert state the pag is conditionallyy independenof the future.

Conditiona independengis one of the mog importart simplifying assumptios used in prob-
abilistic modeling It allows one to redu@ consideratia of compkx sequencgof events to an
analyss of eat evert in isolation Severd standad mechanism are built arourd independence.
The prime exampk for thes notes is independen“coin-tossing” independenrepetitian of a
simple experimen (sudh as the tossirg of a coin) tha has only two possibé outcomes By estab-
lishing anumbe of bast facts abou coin tossirg | will build a se of tools for analyzirg prob-
lems tha can be reducel to a mechanim like coin tossing usualy by mears of well-chos& con-
ditioning.
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<1.6> Example. Suppos acoin has probability p of landing head on any particula toss indepen-
dert of outcomses of othe tosses In asequene of sud tosseswha is the probability that the
first heal appeas on the kth toss (for k =1, 2, ...)?

Write H; for the evert {heal on the ith tosg. Then for a fixed k (an integer greate than or equal
to 1),

P{first heal on kth tosg
= P(HFHS ... HS 1 Ho
=PHH)PHS ... HS ;He | HY) by rule P5.

By the independene assumptionthe conditionirg information is irrelevant Also PHf = 1— p
becaus PH; + PH; = 1. Why? Thus

P{first heal on kth tosg = (1 — p)P(H5 ... HS ;Hy).
Similar conditionirg argumens let us strip off ead of the outcome for tosse 2to k — 1, leaving
P{first head on kthtosg = (1— p)*tp fork=1,2,....

The exampk would have bee slightly neate if we had had a nane for the toss on which the
first hea occurs Suppos we define

X = the position at which the first heal occurs
Then we could write

P(X=kl=@Q—-p*ip fork=12....
The X is an exampk of a RANDOM VARIABLE.

Formally, a randam variabk is just a function tha attache anumbe to ead item in the sample
space Typically we dor't neal to specify the sampé spae precisey before we study a random
variable Wha mattes more is the se of values that it can take ard the probabilities with which
it takes those values This information is called the pisTrRIBUTION Of the randon variable.

erandom variable

edistribution
For example we sa tha arandan variabke Z has a GEOMETRIC(p) DISTRIBUTION if it can

take values 1, 2, 3, ... with probabilities

P{Z=kj=1-p*tp fork=12....
The resut from the lag exampk asses tha the numbe of tosse required to get the first head
has ageometri€¢p) distribution.

Warning some authos would use geometri¢p) to refer to the distribution of the numbe of tails
before the first head which correspond to the distribution of Z — 1, with Z as alove.

egeometric(p) distribution

Why the nane “geometric’? Recal the geometrt series,
[e¢]
Y ark=a/1-r) forr| <1
k=0

Notice, in particula, that if 0 < p < 1, and Z has ageometri¢p) distribution,
Y PZ=k=) pa-p'=1
k=1 j=0

Wha does tha tell you abou coin tossing?

The next example also borrowed from the Mostelle book is built arourd a“geometri¢ mecha-
nism.

<1.7> Example. (The Three-Cornerg Duel) A, B, ard C are to fight a three-cornera pistd duel.
All know that A’'s chane of hitting his target is 0.3 C'sis 0.5 and B never misses They are to
fire at their choice of target in successin in the orda A, B, C, cyclically (but a hit man loses
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further turns and is no longer shot at) until only one man is left unhit. What should A's strategy
be?

What could A do? If he shoots at C and hits him, then he receives a bullet between the eyes
from B on the next shot. Not a good strategy:

P(A survives | he kills C firs) = 0.

If he shoots at C and misses then B naturally would pick off his more dangerous oppenent, C,
leaving A one shot before B finishes him off too. That single shot from A at B would have to
succeed:

PP(A survives | he misses first shpt= 0.3.

If A shoots first at B and misses the result is the same. What if A shoots at B first and succeeds?
Then A and C would trade shots until one of them was hit, with C taking the first shot. We

could solve this part of the problem by setting up a Markov chain diagram, or we could argue

as follows: For A to survive, the fight would have to continue,

{C misses, A hits
or
{C misses, A misses, C misses, A hits
or
{C misses, (A misses, C misses) twice, A hits

and so on. The general piece in the decomposition consists of some number of repetitions of (A
misses, C misses) sandwiched between the initial “C misses” and the final “A hits.” The repeti-
tions are like coin tosses with probabilitg — 0.3)(1 — 0.5) = .35 for the double miss. Inde-
pendence between successive shots (or should it be conditional independence, given the choice of
target?) allows us to multiply together probabilities to get

PP(A survives | he first shoots B

= ZIP’{C misses, (A misses, C misses) k times, A hits

k=0

= (5(35(.3
k=0

=.15/(1-0.35 by the rule of sum of geometric series

~ .23

In summary:
PP(A survives | he kills C firs) =0
P(A survives | he kills B first) ~ .23
P(A survives | he misses with first shpt= .3
O Somehow A should try to miss with his first shot. Is that allowed?
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