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Chapter 5

Unexpected symmetry

The sampling problem in Chapter 4 made use of a symmetry property to simplify cal-
culations of variances and covariances: ifX1, X2, . . . identify the successive balls taken from
an urn (with or without replacement) then eachXi has the same distribution, and each pair
(Xi , Xj ) with i 6= j has the same distribution. Without the symmetry simplification, calcula-
tion of covariances for sampling without replacement would have been a fearsome task.

You should always look for symmetry properties before slogging your way through cal-
culations with what might seen the obvious method. Symmetry, like a fairy godmother, can
turn up in unexpected places.

<5.1> Example. Suppose an urn initially contains r red balls and b black balls. Suppose balls
are sampled from the urn one at a time, but after each drawk + 1 balls of the same color
are returned to the urn (with thorough mixing between draws, blindfolds, and so on). Ifk =
0, the procedure is just sampling with replacement. The number of red balls in the first n
draws would then have a Bin(n,r/(r+b)) distribution. Ifk = −1, the procedure is sampling
without replacement. Ifk ≥ 1 we will need a very big urn if we intend to sample for a long
time; there will ber + b+ ki balls in the urn after thei th sampling.

The return of multiple balls to the urn gives a crude model for contagion, whereby the
occurrence of an event (such as selection of a red ball) makes the future occurrence of simi-
lar events more likely. The model is known as thePolya urn scheme.•Polya urn
Questions (for general k):

(a) What is the distribution of the number of red balls in the firstn draws?

(b) What is the probability that thei th ball drawn is red?

(c) What is the expected number of red balls in the firstn draws?

To answer these questions we do not need to keep track of exactly which ball is selected at
each draw; only its color matters. The questions involve only the events

Ri = {i th ball drawn from urn is red}
and their complementsBi , for i = 1, 2, . . .. ClearlyPR1 = r/(r + b).

To get a feel for what is going on, start with some simple calculations for the first few
draws, using straightforward conditioning.

PR2 = PR1R2+ PB1R2

= PR1P(R2 | R1)+ PB1P(R2 | B1)

= r

r + b
× r + k

r + b+ k
+ b

r + b
× r

r + b+ k

= r (r + k)+ rb

(r + b)(r + k+ b)

= r

r + b
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Slightly harder:

PR3 = P(R1R2R3)+ P(R1B2R3)+ P(B1R2R3)+ P(B1B2R3)

= r

r + b
× r + k

r + b+ k
× r + 2k

r + b+ 2k

+ r

r + b
× b

r + b+ k
× r + k

r + b+ 2k

+ b

r + b
× r

r + b+ k
× r + k

r + b+ 2k

+ b

r + b
× b+ k

r + b+ k
× r

r + b+ 2k
Each summand has the same denominator:

(r + b)(r + b+ k)(r + b+ 2k),

corresponding to the fact that the number of balls in the urn increases byk after each draw.
The sum of the numerators rearranges to(

r (r + k)(r + 2k)+ r (r + k)b
)+ (rb(r + k)+ rb(b+ k)

)
= r (r + k)(r + 2k+ b)+ rb(r + 2k+ b)

= r (r + k+ b)(r + 2k+ b)

The last two factors,r+k+b andr+2k+b, cancel with the same factors in the denominator,
leavingPR3 = r/(r + b).

Remark:There is something wrong with the calculation ofPR3 in the caser = 1
andk = −1 if we interpret each of the factors in a product like

r

r + b
× r + k

r + b+ k
× r + 2k

r + b+ 2k
as a conditional probability. The third factor would become(−1)/(b − 1), which
is negative: the urn had run out of balls after the previous draw. Fortunately the
second factor reduces to zero. The product of these factors is zero, which is the
correct value forP(R1R2R3) whenr = 1 andk = −1. The oversight did not
invalididate the final answer.Moral: The value of a conditional probability needn’t
make sense if it is to be multiplied by zero.

By now you probably suspect that the answer to question (b) isr/(r + b), no matter
what the value ofk. A symmetry argument will prove your suspicions correct. Look for the
pattern in probabilities likeP(R1R2B3 . . .) when expressed as a ratio of two products. The
successive factors in the denominator correspond to the numbers of balls in the urn before
each draw. The same factors will appear no matter what string ofRi ’s and Bi ’s is involved.
In the numerator, the first appearance of anRi contributes anr , the second appearance con-
tributes anr + k, and so on. TheBi ’s contributeb, thenb+ k, thenb+ 2k, and so on. For
example,

P(R1R2B3B4R5B6R7) = r (r + k)(r + 2k)(r + 3k)b(b+ k)(b+ 2k)

(r + b)(r + b+ k)(r + b+ 2k)(r + b+ 3k) . . . (r + b+ 6k)

You might like to rearrange the order of the factors in the numerator to make the representa-
tion as a product of conditional probabilities clearer.

In short, the probability of a particular string ofRi ’s and Bi ’s, corresponding to a par-
ticular sequence of draws from the urn, depends only on the number ofRi and Bi terms, and
not on their ordering.

Answer to question (a)

For i = 0, 1, . . . ,n, we need to calculate the probability of getting exactlyi red balls
amongst the firstn draws. There are

(n
i

)
different orderings for the firstn draws that would
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give exactlyi reds. (Think of the number of ways to choose thei positions for the red from
the n available). The event{i reds in firstn draws} is a disjoint union of

(n
i

)
equally likely

events, whence

P{i reds in firstn draws}
=
(

n

i

)
PR1R2 . . . Ri Bi+1Bi+2 . . . Bn

=
(

n

i

)
r (r + k) . . . (r + k(i − 1))b(b+ k) . . . (b+ k(n− i − 1))

(r + b)(r + b+ k) . . . (r + b+ k(n− 1))

As a quick check, notice that when k=0, the probability reduces to(
n

i

)(
r

r + b

)i ( b

r + b

)n−i

,

as it should be for a Bin(n, r/(r + b)) distribution.

For the special case of sampling without replacement (k = −1), the probability becomes(
n

i

)
r (r − 1) . . . (r − i + 1)b(b− 1) . . . (b− n+ i + 1)

(r + b)(r + b− 1) . . . (r + b− n+ 1)

= n!

i !(n− i )!

r !

(r − i )!

b!

(b− n+ i )!

(r + b− n)!

(r + b)!

= r !

i !(r − i )!

b!

(n− i )!(b− n+ i )!

n!(r + b− n)!

(r + b)!

=
(

r

i

)(
b

n− i

)/(r + b

n

)
<5.2>

Notice that (
r

i

)
= number of ways to choosei from r reds(

b

n− i

)
= number of ways to choosen− i from b blacks(

r + b

n

)
= number of ways to choosen from r + b in urn

Compare<5.2> with the direct calculation based on a sample space where all possible sub-
sets from the urn are given equal probability.

Unless you subscribe to tricky conventions about factorials or binomial coefficients, you
might want to restrict the last calculation to values ofi andn for which

0≤ i ≤ r

0≤ n− i ≤ b

1≤ n ≤ r + b

A random variable that takes on values ofi in the range determined by these constraints,
with the probabilities expressed by<5.2>, is said to have ahypergeometric distribution.•hypergeometric

Answer to question (b)

The symmetry property that lets us ignore the ordering when calculating probabilities for
particular sequences of draws also lets us eliminate much of the algebra we first used to find
PR3. Reconsider that case. We broke the eventR3 into four disjoint pieces:

(R1R2R3) ∪ (R1B2R3) ∪ (B1R2R3) ∪ (B1B2R3) .

Each triple ends with anR3, with the first two positions giving all possibleR and B combi-
nations. The probability for each triple is unchanged if we permute the subscripts, because
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ordering does not matter. Thus

PR3 = P(R3R2R1)+ P(R3B2R1)+ P(B3R2R1)+ P(B3B2R1)

Notice how the triple for each term now ends in anR1 instead of anR3. The last sum is just
a decomposition forPR1 obtaining by splitting according to the outcome of the second and
third draws. It follows thatPR3 = PR1. Similarly,

P{i th ball is red} = PR1 = r/(r + b) for eachi .

Answer to question (c)

You should resist the urge to use the answer to question (a) in a direct attack on ques-
tion (c). Instead, write the number of reds inn draws asX1 + . . . + Xn, whereXi denotes
the indicator of the eventRi , that is,

Xi =
{

1 if i th ball red
0 otherwise

From the answer to question (b),

EXi = 1P{Xi = 1} + 0P{Xi = 0} = PRi = r/(r + b).

It follows that the expected number of reds in the sample ofn is nr/(r + b). This expected
number does not depend onk; it is the same fork = 0 (sampling with replacement, draws
independent) andk 6= 0 (draws are dependent), provided we exclude cases where the urn
gets emptied out before thenth draw. ¤

The next Example illustrates a slightly different type of argument, where the symmetry
enters conditionally.

<5.3> Example. A pack of cards consists of 26 reds and 26 blacks. I shuffle the cards, then deal
them out one at a time, face up. You are given the chance to win a big prize by correctly
predicting when the next card to be dealt will be red. You are allowed to make the predic-
tion for only one card, and you must predict red, not black. What strategy should you adopt
to maximize your probability of winning the prize?

First let us be clear on the rules. Your strategy will predict that cardτ + 1 is red, where
τ is one of the values 0, 1, . . . ,51. That is, you observe the firstτ cards then predict that
the next one will be red. The value ofτ is allowed to depend on the cards you observe. For
example, a decision to chooseτ = 3 can be based on the observed colors of cards 0, 1, 2,
and 3; but it cannot use information about cards 4, 5, . . . ,52. (In the probability jargon,τ
is called a stopping rule, or stopping time, or several other terms that make sense in other
contexts.)

Here are some simple-minded strategies: always choose the first card (probability 1/2
of winning); always choose the last card (probability 1/2 of winning). A more complicated
strategy: if the first card is black choose card 2, otherwise choose card 52, which gives

P{win} = P{first red, last red} + P{first black, second red}
= 1

2
· 25

51
+ 1

2
· 26

51

= 1

2
.

Notice the hidden appeal to (conditional) symmetry to calculate

P{last red| first red} = P{second red| first red} = 25

51
.

All three stategies give the same probability of a win.

We have to be a bit more cunning. How about: wait until the proportion of reds in the
remaining cards is high enough and then go for the next card. As you will soon see, the
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extra cunning gets us nowhere, because all strategies have the same probability, 1/2, of win-
ning. Amazing!

Consider first an analogous problem for a pack of 3 red and 3 black cards. Why
doesn’t the following strategy improve one’s chances of winning?

Wait until
number of reds observed is < number of blacks observed,

then choose the next card.

With such a small deck we are able to list all possible ways that the cards might appear,
calculateτ for each outcome, then calculate the probability of a win. There are

(6
3

) = 20
possible orderings of 3 reds and 3 blacks, each equally likely. (Here I am treating all red
cards as equivalent. You could construct a more detailed sample space, with 6! orderings for
the 6 cards, but the calculations would end up with the same conclusion.) With r denoting a
red card, and b a black card, the outcomes are:

pattern value of τ win?
bbbrrr 1
bbrbrr 1
bbrrbr 1
bbrrrb 1
brbbrr 1 X
brbrbr 1 X
brbrrb 1 X
brrbbr 1 X
brrbrb 1 X
brrrbb 1 X
rbbbrr 3
rbbrbr 3 X
rbbrrb 3 X
rbrbbr 5 X
rbrbrb ?
rbrrbb ?
rrbbbr 5 X
rrbbrb ?
rrbrbb ?
rrrbbb ?

Where possible I have underlined the card that the strategy would predict to be red.
Even though the game ends after the card is predicted, I have written out the whole string,
to make calculation of probabilities a mere matter of counting up equally probable events.
Notice that in 5 cases (rbrbrb,. . . ,rrrbbb) the strategy fails to predict. We could modify the
strategy by adding

. . . , but if only one card remains, choose it.

Notice that the addendum has no effect on the probability of a win. There are still only
10 of the 20 equally likely cases that lead to win. The strategy again has probability 1/2 of
winning.

The enumeration of outcomes gives a clue to why we keep coming back to 1/2. Look,
for example, at the block of ten outcomes beginningb?????. Each of them givesτ = 1.
There are only ten possible continuations, each having conditional probability 1/10. The
strategyτ has conditional probability 6/10 of leading to a win; six of the ten possible con-
tinuations have an r whereτ wants it. By symmetry, six of the ten possible continuations
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have an r in the last position. Thus

P{τ wins | b?????} = P{br????| b?????} = P{b????r | b?????}.
It follows that τ has the same conditional probability for a win as the strategy for which
τ ≡ 5.

Now try the same idea on the original problem. Consider a stringx1, x2, . . . , x52 of 26
reds and 26 blacks in some order such that a strategyτ would choose cardi . The strategy
must be using information from only the firsti cards. We must haveτ = i for all strings

x1, x2, . . . , xi , ?. . .?

with the samei cards at the start. Conditioning on this starting fragment, which triggered
the choiceτ = i , we get

P{τ wins | x1, x2, . . . , xi , ?. . .? } = P{x1, x2, . . . , xi , r, ?. . .? | x1, x2, . . . , xi , ?. . .? }
= P{x1, x2, . . . , xi , ?. . .?r | x1, x2, . . . , xi , ?. . .? }.

If we write LAST for the strategy of always choosing the 52nd card, the equality becomes

P{τ wins | x1, x2, . . . , xi , ?. . .? } = P{LAST wins | x1, x2, . . . , xi , ?. . .? }
Multiply both sides byP{x1, x2, . . . , xi , ?. . .?} then sum over all possible starting fragments
that trigger a choice forτ to deduce that

P{τ wins} = P{LAST wins} = 1/2.

Maybe the LAST strategy is not so simple-minded after all. ¤

z z z z z z z z z z z z z z z z

The strategy of waiting for the the proportion of red cards left in the deck to ex-
ceed 1/2, then betting on the next red, works except when the proprtion of reds never gets
above 1/2. How likely is that? The answer can be deduced from a result known as the
Ballot Theorem. According to that Theorem (see the next Example), if a deck contains•Ballot Theorem n+ 1 red cards andn black cards then

P{#reds sampled > #blacks sampled, always} = 1

2n+ 1
.

If we condition on the first card being red, then we get

1

2n+ 1
= n+ 1

2n+ 1
P{subsequent #reds≥ #blacks| first card red},

where the conditional probability is the same as the probability, for a deck ofn red cards
andn black cards, that the number of black cards dealt never strictly exceeds the number of
red cards dealt. Solving for that probability, we find that the strategy of waiting for a higher
proportion of reds in the deck will fail with probability 1/(n + 1) for a deck ofn red and
n black cards. The probability might not seem very large, but apparaently it is just large
enough to offset the slight advantage gained when the strategy works.

<5.4> Example. Suppose an urn containsr red balls andb black balls, withr > b. As balls
are sampled without replacement from the urn, keep track of the total number of red balls
removed and the total number of black balls removed after each draw. Show that the proba-
bility of ‘the number of reds removed always strictly exceeds the number of blacks removed’
is equal to(r − b)/(r + b).

For simplicity, I will refer to the event whose probability we seek as “red always
leads”.

The sampling scheme should be understood to imply that all(r + b)! orderings of the
balls (treating balls of the same color as distinguishable for the moment) are equally likely.
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There is a sneaky way to generate a random permutation, which will lead to an elegant solu-
tion to the problem.

Imagine that the balls are placed into a circular track as they are removed, without any
special marker to indicate the position of the first ball. After all the balls are placed in the
track, choose a starting position at random, with each of ther + b possible choices equally
likely, then select the balls in order moving clockwise from the starting position.

To calculateP{red always leads}, condition on the “circle”, the ordering of the balls
around the cirular track. I will show that

<5.5> P{red always leads| circle} = r − b

r + b
,

for every circle configuration. Regardless of the probabilities of the various circle configura-
tion, the weighted avarage of these conditional probabilities must give the asserted result.

The calculation of the conditional probability in<5.5> reduces to a simple matter of
counting: How many of ther +b possible starting positions generate a “GOOD” permutation
where red always leads?

BAD

BAD

BAD

BAD

B
A

D

BAD

GOOD

G
O

O
D

Imagine ther + b positions labelled as GOOD or BAD, as in the picture. Somewhere
around the circle there must exist a pair red-black, with the black ball immediately following
the red ball in the clockwise ordering.

Two of the positions—the one between the red-black pair, and the one just before the
inital red—are obviously bad. (Look at the first few balls in the resulting permutation.)

Consider the effect on the total number (not probability) of GOOD starting positions
if the red-black pair is removed from the track. Two BAD starting positions are eliminated
immediately. It is less obvious, but true, that removal of the pair has no effect on any of the
other starting positions: a GOOD starting position stays GOOD, and a BAD starting position
stays BAD. (Consider the effect on the successive red and black counts.) The total number
of GOOD starting positions is unchanged.

Repeat the argument with the new circle configuration ofr +b−2 balls, eliminating one
more red-black pair but leaving the total GOOD count unchanged. And so on.

After removal ofb red-black pairs allr−b remaining balls are red, and allr−b starting
positions are GOOD. Initally, therefore, there must also have beenr − b of the GOOD posi-
tions out of ther + b available. The assertion<5.5>, and thence the main assertion, follow.
¤
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