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Chapter 4

Variances and covariances

The expected value of a random variable gives a crude measure of the “center of loca-
tion” of the distribution of that random variable. For instance, if the distribution is symmet-
ric about a valueµ then the expected value equalsµ.

To refine the picture of a distribution distributed about its “center of location” we need
some measure of spread (or concentration) around that value. The simplest measure to cal-
culate for many distributions is thevariance. There is an enormous body of probability•variance literature that deals with approximations to distributions, and bounds for probabilities and
expectations, expressible in terms of expected values and variances.

<4.1> Definition. The variance of a random variable X with expected value EX = µX is
defined as var(X) = E ((X − µX)

2
)
. The covariance between random variables Y and•covariance Z, with expected values µY and µZ , is defined as cov(Y, Z) = E ((Y − µY)(Z − µZ)). The

correlation between Y and Z is defined as•correlation

corr(Y, Z) = cov(Y, Z)√
var(Y)var(Z)

The square root of the variance of a random variable is called its standard deviation. ¤•standard deviation

As with expectations, variances and covariances can also be calculated conditionally on
various pieces of information.

Try not to confuse properties of expected values with properties of variances. For ex-
ample, if a given piece of “information” implies that a random variableX must take the con-
stant valueC thenE(X | information) = C, but var(X | information) = 0. More generally, if
the information implies thatX must equal a constant then cov(X,Y) = 0 for every random
variableY. (You should check these assertions; they follow directly from the Definition.)

Notice that cov(X, X) = var(X). Results about covariances contain results about vari-
ances as special cases.

A few facts about variances and covariances

Write µY for EY, and so on, as above.

(i) cov(Y, Z) = E(Y Z)− (EY)(EZ) and, in particular, var(X) = E(X2)− (EX)2:

cov(Y, Z) = E (Y Z− µY Z − µZY + µYµZ)

= E(Y Z)− µYEZ − µZEY + µYµZ

= E(Y Z)− µYµZ

(ii) For constantsa, b, c, d, and random variablesU,V,Y, Z,

cov(aU + bV,cY+ d Z)

= accov(U,Y)+ bccov(V,Y)+ adcov(U, Z)+ bdcov(V, Z)
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It is easier to see the pattern if we work with the centered random variablesU ′ =
U − µU , . . . , Z′ = Z − µZ . For then the left-hand side of the asserted equality
expands to

E
(
(aU ′ + bV′)(cY′ + d Z′)

) = E(ac U′Y′ + bc V′Y′ + ad U′Z′ + bd V′Z′)
= acE(U ′Y′)+ bcE(V ′Y′)+ adE(U ′Z′)+ bdE(V ′Z′)

The expected values in the last line correspond to the covariances on the right-hand
side of the asserted equality.

As particular cases of fact (ii) we get two useful identities.

• Put a = b = c = d = 1 andU = Y andV = Z to get

var(Y + Z) = var(Y)+ 2cov(Y, Z)+ var(Z)

It is easy to confuse the formula for var(Y + Z) with the formula forE(Y + Z).
When in doubt, rederive.

• Put U = Y = 1, anda = c, andb = d, andV = Z:

var(c+ d Z) = d2var(Z) for constantsc andd.

Notice how the constantc disppeared, and thed turned intod2. Many students
confuse the formula for var(c+ d Z) with the formula forE(c+ d Z). Again, when
in doubt, rederive.

You will find it easy to confuse variances with expectations. For
example, it is a common blunder for students to confuse the for-
mula for the variance of a difference with the formulaE(Y − Z) =
EY−EZ. If you ever find yourself wanting to assert that var(Y−Z)
is equal to var(Y) − var(Z), think again. What would happen if
var(Z) were larger than var(Y)? Variances can’t be negative.

Uncorrelated versus independent

Two random variablesX andY are said to beindependent if “every event determined•independent
by X is independent of every event determined byY”. For example, independence of the
random variables implies that the events{X ≤ 5} and{5Y3 + 7Y2 − 2Y2 + 11 ≥ 0} are
independent, and that the events{X even} and{7 ≤ Y ≤ 18} are independent, and so on. In-
dependence of the random variables also implies independence of functions of those random
variables. For example, sin(X) must be independent of exp(1+ cosh(Y2− 3Y)), and so on.

<4.2> Example. Suppose a random variableX has a discrete distribution. The expected value
E(XY) can then be rewritten as a weighted sum of conditional expectations:

E(XY) =
∑

x

P{X = x}E(XY|X = x) by rule E4 for expectations

=
∑

x

xP{X = x}E(Y|X = x).

If Y is independent ofX, the information “X = x” does not help with the calculation of the
conditional expectation:

E(Y | X = x) = E(Y) if Y is independent ofX.

The last calculation then simplifies further:

E(XY) = (EY)
∑

x

xP{X = x} = (EY)(EX) if Y independent ofX.

It follows that cov(X,Y) = 0 if Y is independent ofX. ¤
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A pair of random variablesX andY is said to beuncorrelated if cov(X,Y) =•uncorrelated 0. The Example shows (at least for the special case where one random variable takes only
a discrete set of values) that independent random variables are uncorrelated. The converse
assertion—that uncorrelated should imply independent—is not true in general, as shown by
the next Example.

<4.3> Example. For two independent rolls of a fair die, letX denote the value rolled the first
time andY denote the value rolled the second time. The random variablesX andY are
independent, and they have the same distribution. Consequently cov(X,Y) = 0, and
var(X) = var(Y).

The two random variablesX + Y and X − Y are uncorrelated:

cov(X + Y, X − Y) = cov(X, X)+ cov(X,−Y)+ cov(Y, X)+ cov(Y,−Y)

= var(X)− cov(X,Y)+ cov(Y, X)− var(Y)

= 0.

The two random variablesX + Y and X − Y are not independent:

P{X + Y = 12} = P{X = 6}P{Y = 6} = 1

36
but

P{X + Y = 12 | X − Y = 5} = P{X + Y = 12 | X = 6,Y = 1} = 0

¤

If Y and Z are uncorrelated, the covariance term drops out from the expression for the
variance of their sum, leaving

var(Y + Z) = var(Y)+ var(Z) for Y and Z uncorrelated.

Similarly, if X1, . . . , Xn are random variables for which cov(Xi , Xj ) = 0 for eachi 6= j then

var(X1+ . . .+ Xn) = var(X1)+ . . .+ var(Xn) for “pairwise uncorrelated” rv’s.

You should check the last assertion by expanding out the quadratic in the variablesXi −EXi ,
observing how all the cross-product terms disappear because of the zero covariances.

Probability bounds

Tchebychev’s inequality asserts that if a random variableX has expected valueµ•Tchebychev’s inequality
then, for eachε > 0,

P{|X − µ| > ε} ≤ var(X)/ε2

The inequality becomes obvious if we define a new random variableZ that takes the value 1
when |X − µ| > ε, and 0 otherwise: clearlyZ ≤ |X − µ|2/ε2, from which it follows that
P{|X − µ| > ε} = EZ ≤ E|X − µ|2/ε2.

In the Chapter on the normal distribution you will find more refined probability approx-
imations involving the variance.

The Tchebychev bound explains an important property of sample means. Suppose
X1, . . . , Xn are uncorrelated random variables, each with expected valueµ and varianceσ 2.
Let X equal the average. Its variance decreases like 1/n:

var(X) = (1/n)2var

(∑
i≤n

Xi

)
= 1/n2

∑
i≤n

var(Xi ) = σ 2/n.

From the Tchebychev inequality,

P{|X − µ| > ε} ≤ (σ 2/n)/ε2 for eachε > 0

In particular, for each positiveC,

P{|X − µ| > Cσ/
√

n} ≤ 1/C2
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For example, there is at most a 1% chance thatX lies more than 10σ/
√

n away fromµ. (A
normal approximation will give a much tighter bound.) Note well the dependence onn.

Variance as a measure of concentration in sampling theory

<4.4> Example. Suppose a finite population of objects (such as human beings) is numbered
1, . . . , N. Suppose also that to each object there is a quantity of interest (such as annual
income): objectα has the valuef (α) associated with it. The population mean is

f̄ = f (1)+ . . .+ f (N)

N

Often one is interested in̄f , but one has neither the time nor the money to carry out a
complete census of the population to determine eachf (α) value. In such a circumstance, it
pays to estimatef̄ using arandom sample from the population.•random sample

The Bureau of the Census uses sampling heavily, in order to estimate properties of the
U.S. population. The “long form” of the Decennial Census goes to about 1 in 6 households.
It provides a wide range of sample data regarding both the human population and the hous-
ing stock of the country. It would be an economic and policy disaster if the Bureau were
prohibited from using sampling methods. (If you have been following Congress lately you
will know why I had to point out this fact.)

The mathematically simpler method to sample from a population requires each object
to be returned to the population after it is sampled (“sampling with replacement”). It is pos-
sible that the same object might be sampled more than once, especially if the sample size is
an appreciable fraction of the population size. It is more efficient, however, to sample with-
out replacement, as will be shown by calculations of variance.

Consider first a sampleX1, . . . , Xn taken with replacement. TheXi are independent
random variables, each taking values 1, 2, . . . , N with probabilities 1/N. The random vari-
ablesYi = f (Xi ) are also independent, with

EYi =
∑
α

f (α)P{Xi = α} = f̄

var(Yi ) =
∑
α

(
f (α)− f̄

)2P{Xi = α} = 1

N

∑
α

(
f (α)− f̄

)2
Write σ 2 for the variance.

The sample average,

Y = 1

n
(Y1+ . . .+ Yn),

has expected value

EY = 1

n
(EY1+ . . .+ EYn) = f̄ (no independence needed here)

and variance

var(Y) = 1

n2
var(Y1+ . . .+ Yn)

= 1

n2
(var(Y1)+ . . .+ var(Yn)) by independence

= σ 2

n

The sample averageY concentrates around̄f with a standard deviationσ/
√

n that tends to
zero asn gets larger.

Now consider a sampleX1, . . . , Xn taken without replacement. By symmetry, eachXi

has the same distribution as before, and

EYi = f̄ and var(Yi ) = σ 2.
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This time the dependence between theXi has an important effect on the variance ofY.

By symmetry, for each pairi 6= j , the pair(Xi , Xj ) takes each of theN(N − 1) values
(α, β), for 1≤ α 6= β ≤ N, with probabilities 1/N(N − 1). Consequently, fori 6= j ,

cov(Yi ,Yj ) = 1

N(N − 1)

∑
α 6=β

(
( f (α)− f̄ )( f (β)− f̄ )

)
If we added the ‘diagonal’ terms( f (α)− f̄ )2 to the sum we would have the expansion for∑

α

(
f (α)− f̄

)∑
β

(
f (β)− f̄

)
,

which equals zero becauseN f̄ =∑a f (α). The expression for the covariance simplifies to

cov(Yi ,Yj ) = 1

N(N − 1)

(
02−

∑
α

( f (α)− f̄ )2
)
= − σ 2

N − 1

If N is large, the covariance between anyYi andYj , for i 6= j , is small; but there a lot
of them:

var(Y) = 1

n2
var(Y1+ . . .+ Yn)

= 1

n2
E
(
(Y1− f̄ )+ . . .+ (Yn − f̄ )

)2
If you expand out the last quadratic you will getn terms of the form(Yi − f̄ )2 andn(n− 1)
terms of the form(Yi − f̄ )(Yj − f̄ ) with i 6= j . Take expectations:

var(Y) = 1

n2
(nvar(Y1)+ n(n− 1)cov(Y1,Y2))

= σ 2

n

(
1− n− 1

N − 1

)
= N − n

N − 1

σ 2

n

Compare with theσ 2/n for var(Y) under sampling with replacement. Thecorrection•correction factor
factor (N − n)/(N − 1) is close to 1 if the sample sizen is small compared with the
population sizeN, but it can decrease the variance ofY appreciably ifn/N is not small.
For example, ifn ≈ N/6 (as with the Census long form) the correction factor is approxi-
mately 5/6. If n = N, the correction factor is zero. That is, var(Y) = 0 if the whole popu-
lation is sampled. Why? What value mustY take if n = N? (As an exercise, see if you can
use the fact that var(Y) = 0 whenn = N to rederive the expression for cov(Y1,Y2).) ¤

You could safely skip the rest of this Chapter, at least for the moment.

z z z z z z z z z z z z z z z z

Variances via conditioning

SupposeF = {F1, F2, . . .} is a partition of the sample space into disjoint events. LetX be a
random variable. Writeyi for E(X | Fi ) andvi for

var(X | Fi ) = E(X2 | Fi )− (E(X | Fi ))
2 .

Define two new random variables by the functions

Y(s) = yi for s ∈ Fi

V(s) = vi for s ∈ Fi
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Notice thatE(Y | Fi ) = yi , becauseY must take the valueyi if the eventFi occurs. By rule
E4 for expectations,

EY =
∑

i

E(Y | Fi )PFi

=
∑

i

yiPFi

=
∑

i

E(X | Fi )PFi

= EX by E4 again

Similarly,

var(Y) = EY2− (EY)2

=
∑

i

E(Y2 | Fi )PFi − (EY)2

=
∑

i

y2
i PFi − (EX)2

The random variableV has expectation

EV =
∑

i

E(V | Fi )PFi

=
∑

i

viPFi

=
∑

i

(
E(X2 | Fi )− y2

i

)
PFi

= EX2−
∑

i

y2
i PFi

Add, cancelling out the common sum, to get

var(Y)+ EV = EX2− (EX)2 = var(X),

a formula that shows how a variance can be calculated using conditioning.

When written in more suggestive notation, the conditioning formula takes on a more
pleasing appearance. WriteE(X | F) for Y and var(X | F) for V . The symbolic “| F” can
be thought of as conditioning on the “information one obtains by learning which event in the
partition F occurs”. The formula becomes

var(E(X | F))+ E (var(X | F)) = var(X)

and the equalityEY = EX becomes

E (E(X | F)) = EX

In the special case where the partition is defined by another random variableZ taking
valuesz1, z2, . . ., that is,Fi = {Z = zi }, then the conditional expectation is usually written as
E(X | Z) and the conditional variance as var(X | Z). The expectation formula becomes

E (E(X | Z)) = EX

The variance formula becomes

var(E(X | Z))+ E (var(X | Z)) = var(X)

When I come to make use of the formula I will say more about its interpretation.
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