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Fair prices: appendix to Chapter 2

Probability could be studied purely as a piece of mathematics, divorced from any interpreta-
tion, but then one would lose much of the intuition that accompanies the interpretation. The most
widely accepted view interprets probabilities and expectations as long run averages, anticipating
the formal laws of large numbers that make precise a sense in which averages should settle down
to expectations over a long sequence of independent trials. As an aid to intuition I prefer another
interpretation, which does not depend on a prelimininary concept of independence, and which
concentrates attention on the linearity properties of expectations.

Consider a situation—a bet if you will—where you stand to receive an uncertain returnX.
You could think ofX as a random variable, a real-valued function on a sample spaceS. For the
moment forget about any probability measure onS. Suppose you considerp(X) the fair price to
pay in order to receiveX. What properties mustp(·) have?

Your net return will be the random quantityX′(ω) = X(ω)− p(X). Call the random variable
X′ a fair bet. Unless you start worrying about utilities you should find the following properties•fair bet reasonable.

(i) fair + fair = fair. That is, if you considerp(X) fair for X and p(Y) fair for Y then•fair + fair = fair you should be prepared to make both bets, payingp(X)+ p(Y) to receiveX + Y.

(ii) constant × fair = fair. That is, you shouldn’t object if I suggest you pay 2p(X) to•constant × fair = fair receive 2X (actually, that particular example is a special case of (i)) or 3.76p(X) to re-
ceive 3.76X, or −p(X) to receive−X. The last example corresponds to willingness to
take either side of a fair bet. In general, to receivecX you should paycp(X), for con-
stantc.

Properties (i) and (ii) imply that the collection of all fair bets is a vector space.

There is a third reasonable property that goes by several names:coherency or nonex-•coherency
istence of a Dutch book, theno-arbitrage requirement, or theno-free-lunch
principle:

(iii) There is no fair returnX′ for which X′(ω) ≥ 0 for all ω with strict inequality for at least
oneω.

If you were to declare such anX′ to be fair I would be delighted to offer you the opportunity to
receive a net return of−10100X′. I couldn’t lose.

<1> Lemma. Properties (i), (ii), and (iii) imply that p(·) is an increasing linear functional on ran-
dom variables.

Proof. For constantsα andβ, and random variablesX andY with fair prices p(X) and p(Y),
consider the combined effect of the following fair bets:

you pay meαp(X) to receiveαX

you pay meβp(Y) to receiveβY

I pay you p(αX + βY) to receive(αX + βY).

Your net return is a constant,

c = p(αX + βY)− αp(X)− βp(Y).

If c > 0 you violate (iii); if c < 0 take the other side of the bet to violate (iii). That proves
linearity.

To prove thatp(·) is increasing, supposeX(ω) ≥ Y(ω) for all ω. If you claim that p(X) <
p(Y) then I would be happy for you to accept the bet that delivers

(Y − p(Y))− (X − p(X)) = −(X − Y)− (p(Y)− p(X)) ,
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which is always< 0.¤

<2> Corollary. A random return X is fair if and only if it has a zero fair price: p(X) = 0.

As a special case, consider the bet that returns 1 if an eventF occurs, and 0 otherwise. If
you identify the eventF with the random variable taking the value 1 onF and 0 onFc (that is,
the indicator of the eventF), then it follows directly from Lemma<.1> that p(·) is additive:
p(F1 ∪ F2) = p(F1) + p(F2) for disjoint eventsF1 and F2. That is, p defines a finitely additive
set-function on events. As an exercise you might show thatp(∅) = 0 and p(S) = 1. The set
function p(·) has most of the properties required of a probability measure.

Contingent bets

Things become much more interesting if you are prepared to make a bet to receive an amountX,
but only when some eventF occurs. That is, the bet is madecontingent on the occurrence•contingent
of F . Typically, knowledge of the occurrence ofF should change the fair price, which we could
denote byp(X | F). Let me writeZ for the indicator function of the eventF , that is,

Z =
{

1 if event F occurs
0 otherwise

Then the net return from the contingent bet is(X − p(X | F)) Z, which is fair. The indicator
function Z ensures that money changes hands only whenF occurs. By linearity ofp(·), it fol-
lows that

(∗) 0= p (X Z− p(X | F)Z) = p(X Z)− p(X | F)p(F)

Multiple appeals to this identity generate rule E4 for expectations:If S is partitioned into disjoint
events F1, . . . , Fk, then

p(X) =
k∑

i=1

p(Fi )p(X | Fi ).

To verify the assertion, writeZi for the indicator function ofFi . Notice that
∑

i Zi = 1. Then

p(X) = p

(∑
i

X Zi

)
=
∑

i

p (X Zi )

=
∑

i

p(X | Fi )p(Fi ) by (∗),

as asserted.

If you rewrite p(X) as the expected valueEX, and p(F) asPF , you will have an exam-
ple of a useful probability calculation based on linearity properties of expectations. Perhaps you
wonder why we should use two different symbols for the price attached to the random return, de-
pending on whether it takes only values 0 and 1 or not. If so, you have seen one of the virtues of
the linear functional notation that is sometimes adopted in more mathematical works on probabil-
ity theory

If you already knew about the possibility of infinite expectations, you would have realized
that I should have imposed some restrictions on the class of random variables for which fair
prices were defined, if I were seriously trying to construct a rigorous system of axioms.

See Bruno de Finetti,Theory of Probability, Vol. 1, (Wiley, New York), for a detailed dis-
cussion of expectations as fair prices.
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