
Brownian motion

Let X = {Xt : t ∈ R
+} be a real-valued stochastic process: a familty of real random variables all

defined on the same probability space �. Define

Ft = “information available by observing the process up to time t”

= what we learn by observing Xs for 0 ≤ s ≤ t

• Call X a standard Brownian motion if

(i) X (, ω) is a continuous function on R
+, for each fixed ω

(ii) X (0, ω) = 0 for all ω

(iii) for each s ≥ 0,
{Xt − Xs : t ≥ s} is independent of Fs

(iv) Xt − Xs is N (0, t − s) distributed for each 0 ≤ s < t

• Another way to express (iii):

(iii)′ Xt − Xs | Fs ∼ N (0, t − s) for s < t .

• Equivalent way to express (iii) and (iv): for each 0 ≤ t1 ≤ t2 ≤ . . . ≤ tk , the random vector (Xt1 , . . . , Xtk )

has a multivariate normal distribution with zero means and covariances given by

cov(Xs, Xt ) = min(s, t)

Useful facts.

For a fixed τ ≥ 0 define
Zt = Xτ+t − Xτ for t ≥ 0

Markov property: Z is a Brownian motion independent of Fτ = information available up to time τ .

Strong Markov property: Same assertion holds for stopping times τ .

Time reversal: Define Zt = t X1/t for t > 0, with Z0 = 0. Then {Zt : t ∈ R
+} is a also a Brownian

motion.

Martingale properties:
• Abbreviate E(. . . | Ft )to Et (. . .)

• The Brownian motion process is a martingale: for s < t ,

Es(Xt ) = Es(Xs) + Es(Xt − Xs) = Xs by (iii)’.

• The process Mt = X2
t − t is a martingale: for s < t ,

Es(Mt ) = Es
(
Xs + �X

)2 − t where �X := Xt − Xs

= X2
s + 2XsEs(�X) + Es(�X)2 − t

= Ms because Es(�X) = 0 and Es(�X)2 = t − s.

• For each real θ , the process Yt = exp
(
θ Xt − 1

2θ2t
)

is a martingale: for s < t ,

Es(Yt ) = Es
(
Ys exp(θ�X − 1

2θ2(t − s)
)

= YsEseθ�X exp
( − 1

2θ2(t − s)
)

= Ys because �X | Fs ∼ N (0, t − s).
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Lévy’s martingale characterization of Brownian motion .

Suppose {Xt : 0 ≤ t ≤ 1} a martingale with continuous sample paths and X0 = 0. Suppose also that
X2

t − t is a martingale. Then X is a Brownian motion.

Heuristics. I’ll give a rough proof for why X1 is N (0, 1) distributed.

Let f (x, t) be a smooth function of two arguments, x ∈ R and t ∈ [0, 1]. Define

fx = ∂ f

∂x
and fxx = ∂2 f

∂2x
and ft = ∂ f

∂t
.

Let h = 1/n for some large positive integer n. Define ti = ih for i = 0, 1, . . . , n. Write �i X for
X (ti + h) − X (ti ). Then

E f (X1, 1) − E f (X0, 0) =
∑
i<n

(
E f (Xti +h, ti + h) − E f (Xti , ti )

)

≈
∑
i<n

E
(
(�i X) fx (Xti , ti ) + 1

2 (�i X)2 fxx (Xti , ti ) + h ft (Xti , ti )
)

Independence of �i X from Fti gives a factorization for the i th sumand:

E(�i X)E fx (Xti , ti ) + 1
2 E(�i X)2

E fxx (Xti , ti ) = 0 + 1
2 hE fxx (Xti , ti )

The sum then takes the form of an approxiating sum for the integral∫ 1

0

(
1
2 E fxx (Xs, s) + E ft (Xs, s)

)
ds

If we paid more attention to the errors of approximation we would see that their contributions go to
zero as the {ti } grid gets finer. In the limit we have

E f (X1, 1) − E f (X0, 0) = E

∫ t

0

(
1
2 fxx (Xs, s) + ft (Xs, s)

)
ds

Now specialize to the case f (x, s) = exp
(
θx − 1

2θ2s
)
, with θ a fixed real constant. By direct

calculation, we have

fx = θ f (x, s) and fxx = θ2 f (x, s) and ft = − 1
2θ2 f (x, s)

Thus

Eeθ X1 e−θ2/2 − 1 =
∫ 1

0
0 ds = 0.

That is, X1 has the moment generating function exp(θ2/2), which identifies it as having a N (0, 1)

distribution.

How to build a Brownian motion

• In Euclidean space with e1, . . . , eN orthogonal unit vectors, if z ∈ span{e1, . . . , eN } then

z =
∑

i≤N
αi ei with αi = 〈z, ei 〉 (inner product)

• For real-valued functions f and g on (0, 1] define

〈 f, g〉 =
∫ 1

0
f (x)g(x) dx and ‖ f ‖ =

√
〈 f, f 〉.

• Let e1, . . . , eN be real-valued functions on (0, 1] with

〈ei , ej 〉 :=
{

1 if i = j
0 if i �= j
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If f, g ∈ EN := span{e1, . . . , eN } then

f (x) =
∑

i≤N
αi ei (x) with αi = 〈 f, ei 〉

g(x) =
∑

i≤N
βi ei (x) with βi = 〈g, ei 〉

Consequence:
〈 f, g〉 =

∑
i, j

αiβj 〈ei , ej 〉 =
∑

i≤N
αiβi =

∑
i≤N

〈 f, ei 〉〈g, ei 〉

Random coefficients.

Write L2 for the set of functions f on (0, 1] with
∫ 1

0 f (x)2dx < ∞.

• Let η1, η2, . . . be independent, each N (0, 1) distributed. For each f in L2 define

Z N ( f ) :=
∑

i≤N
〈 f, ei 〉ηi

• The random variables {Z N ( f ) : f ∈ L2} have a joint normal distribution with zero means and covariances
given by

cov(Z N ( f ), Z N (g)) =
∑

i, j
〈 f, ei 〉cov(ηi , ηj )〈g, ej 〉 =

∑
i≤N

〈 f, ei 〉〈g, ei 〉
In particular, if f, g ∈ EN then

cov(Z N ( f ), Z N (g)) = 〈 f, g〉 and Z N ( f ) ∼ N (0, ‖ f ‖2).

• For 0 ≤ t ≤ 1 define ft (x) =
{

1 if x ≤ t
0 otherwise

. Then

〈 fs, ft 〉 =
∫ 1

0
1{x ≤ s} 1{x ≤ t} dx = min(s, t).

• If ft ∈ EN then Z N ( ft ) ∼ N (0, t)

• If ft , fs ∈ EN then cov(Z N ( fs), Z N ( ft )) = min(s, t).

• Let N tend to ∞. Convergence? In the limit (if it exists) we have a Gaussian stochastic process
{Z( ft ) : 0 ≤ t ≤ 1} with the means and variances desired for Brownian motion.

Continuity of sample paths.

• For k = 0, 1, . . . and 0 ≤ i < 2k define functions on (0, 1] by

Hi,k(x) = 1{i2−k < x ≤ (i + 1/2)2−k} − 1{(i + 1/2)2−k < x ≤ (i + 1)2−k}
Note that |Hi,k | is the indicator function of the interval Ji,k = (i/2k, (i + 1)/2k] and∫ 1

0
Hi,k(x)2 dx =

∫
{x ∈ Ji,k} dx = 2−k .

• (Haar basis) The functions ei,k(x) = 2k/2 Hi,k(x)2 satisfy

〈ei,k, ei ′,k ′ 〉 =
{

1 if i = i ′ and k = k ′

0 otherwise
Moreover, each ei,k is orthogonal to the constant function U (x) ≡ 1, in the sense that 〈ei,k, U 〉 = 0.

• Redefine EN to be
EN = span

({U } ∪ {ei,k : 0 ≤ i < 2k, k = 0, 1, . . . , N })
It is not hard to show that EN consists of all those real-valued functions on (0, 1] that take a constant
value on each Ji,k subinterval.

• Let η and ηi,k for 0 ≤ i < 2k and k = 0, 1, . . . be independent N (0, 1) random variables. Using the Haar
basis functions we have, for 0 ≤ t ≤ 1,

Z N ( ft ) = 〈 ft , U 〉η +
∑N

k=0

∑
0≤i<2k

〈 ft , ei,k〉ηi,k

= tη +
∑N

k=0
2k/2 Xk(t) where Xk(t) =

∑
0≤i<2k

〈 ft , Hi,k〉ηi,k<1>
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• As a function of t , each 〈 ft , Hi,k〉 is nonzero only in the interval Ji,k , within which it is piecewise linear,
achieving its maximum value of 2−(k+1) at the midpoint, (2i + 1)/2k+1:

2i/2k+1 (2i+1)/2k+1 (2i+2)/2k+1

〈ft,Hi,k〉 2 
−(k+1)

• The process Xk(t) has continuous, piecewise linear sample paths. It takes the value 0 at t = i/2k for
i = 0, 1, . . . , 2k . It takes the value ηi,k/2k+1 at the point (2i + 1)/2k+1.

0 1
η0,2/8

η1,2/8

η2,2/8

η3,2/8X2(t)

• Thus maxt |Xk(t)| = 2−(k+1) maxi |ηi,k |.
• From HW sheet 5,

E max
t

|Xk(t)| = 2−(k+1)
E max

i
|ηi,k | ≤ 2−(k+1)

√
2 log(2k)

and hence
E

∑∞
k=0

2k/2 maxt |Xk(t)| ≤
∑∞

k=0
2k/22−(k+1)

√
2 log(2k) < ∞.

The random variable ∑∞
k=0

2k/2 maxt |Xk(t)|
has a finite expectation. It must be finite everywhere, except possibly on a set �c

0 with zero probability.
For all sample points ω in �0, the sum in <1> converges uniformly in t . The sample paths of the limit
process, being uniform limits of functions continuous in t , are continuous, at least for ω in �0.

• Fix sample paths for ω ∈ �c
0?

Total variation and quadratic variation of a function

• Let f be a real-valued function on [0, 1]. Define the total variation of f by

V( f ) = sup
G

∑
i
| f (ti+1) − f (ti )|,

where G ranges over all finite grids 0 = t0 < t1, . . . < tk = 1. Say that f is of bounded variation if
V( f ) < ∞.

• Define quadratic variation of f for a grid G as

Q( f, G) =
∑

i
| f (ti+1) − f (ti )|2 where G is the grid 0 = t0 < t1, . . . < tk = 1.

• Fact: If f is continuous and has bounded variation then Q( f, G) → 0 as mesh(G) → 0, where
mesh(G) = maxi |ti+1 − ti |.
Proof. Given ε > 0, there exists a δ > 0 such that | f (s)− f (t)| ≤ ε whenever |s − t | ≤ δ. (The function
f is also uniformly continuous on [0, 1]. ) For any grid G with mesh(G) ≤ δ we have

Q( f, G) ≤
∑

i
ε| f (ti+1) − f (ti )| ≤ εV( f )

And so on.�
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Total variation and quadratic variation of Brownian motion sample paths

Let {Xt : 0 ≤ t ≤ 1} be the initial chunk of a standard Brownian motion.

• Fact: Almost almost all sample paths of X have infinite total variation.

Proof. Write V (ω) for the total variation of the sample path X (·, ω). For each positive integer n, define

Vn(ω) =
∑

i
|X (ti+1, ω) − X (ti , ω)| where ti = i/n for i = 0, 1, . . . , n.

The absolute value of the increments �i X = X (ti+1, ω) − X (ti , ω) are independent with mean c0/
√

n and
variance less than c1/n, for some constants c0 and c1. Thus

EVn = c0
√

n and var(Vn) ≤ c1.

By Tchebychev’s inequality,

P{Vn ≥ 1
2 c0

√
n} = P{Vn − c0

√
n ≥ − 1

2 c0
√

n} ≥ 1 − var(Vn)

( 1
2 c0

√
n)2

→ 1 as n → ∞.

Complete the proof by noting that V (ω) ≥ Vn(ω) for every n.�

• Fact: For any sequence of grids Gn with mesh(Gn) → 0,

Q(X (·, ω), Gn) → 1 in probability

Proof. Abbreviate Q(X (·, ω), Gn) to Qn(ω). That is,

Qn(ω) =
∑

i
(�i X)2 where δi X are the increments in X for grid Gn.

Notice that
EQn =

∑
i
E(�i X)2 =

∑
i

(
ti+1 − ti

) = 1

and, by the independence of the increments,

var(Qn) =
∑

i
var

(
(�i X)2

) ≤
∑

i
E(�i X)4 ≤ c2

∑
i

(
ti+1 − ti

)2 ≤ c2mesh(Gn) → 0,

for some constant c2.�
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