BROWNIAN MOTION

Let $X = \{X_t : t \in \mathbb{R}^+\}$ be a real-valued stochastic process: a familty of real random variables all defined on the same probability space Ω . Define

 \mathcal{F}_t = "information available by observing the process up to time *t*" = what we learn by observing X_s for 0 < s < t

- Call X a standard Brownian motion if
 - (i) $X(, \omega)$ is a continuous function on \mathbb{R}^+ , for each fixed ω
 - (ii) $X(0, \omega) = 0$ for all ω
 - (iii) for each $s \ge 0$,

 $\{X_t - X_s : t \ge s\}$ is independent of \mathcal{F}_s

(iv) $X_t - X_s$ is N(0, t - s) distributed for each $0 \le s < t$

• Another way to express (iii):

(iii)' $X_t - X_s \mid \mathcal{F}_s \sim N(0, t - s)$ for s < t.

• Equivalent way to express (iii) and (iv): for each $0 \le t_1 \le t_2 \le \ldots \le t_k$, the random vector $(X_{t_1}, \ldots, X_{t_k})$ has a multivariate normal distribution with zero means and covariances given by

$$\operatorname{cov}(X_s, X_t) = \min(s, t)$$

USEFUL FACTS.

For a fixed $\tau \ge 0$ define

$$Z_t = X_{\tau+t} - X_\tau \qquad \text{for } t \ge 0$$

Markov property: Z is a Brownian motion independent of $\mathcal{F}_{\tau} =$ information available up to time τ .

Strong Markov property: Same assertion holds for stopping times τ .

Time reversal: Define $Z_t = tX_{1/t}$ for t > 0, with $Z_0 = 0$. Then $\{Z_t : t \in \mathbb{R}^+\}$ is a also a Brownian motion.

Martingale properties:

- Abbreviate $\mathbb{E}(\ldots | \mathcal{F}_t)$ to $\mathbb{E}_t(\ldots)$
- The Brownian motion process is a martingale: for s < t,

$$\mathbb{E}_s(X_t) = \mathbb{E}_s(X_s) + \mathbb{E}_s(X_t - X_s) = X_s \qquad \text{by (iii)'}.$$

• The process $M_t = X_t^2 - t$ is a martingale: for s < t,

$$\mathbb{E}_{s}(M_{t}) = \mathbb{E}_{s} \left(X_{s} + \Delta X \right)^{2} - t \quad \text{where } \Delta X := X_{t} - X_{s}$$
$$= X_{s}^{2} + 2X_{s} \mathbb{E}_{s}(\Delta X) + \mathbb{E}_{s}(\Delta X)^{2} - t$$
$$= M_{s} \quad \text{because } \mathbb{E}_{s}(\Delta X) = 0 \text{ and } \mathbb{E}_{s}(\Delta X)^{2} = t - s.$$

• For each real θ , the process $Y_t = \exp\left(\theta X_t - \frac{1}{2}\theta^2 t\right)$ is a martingale: for s < t,

$$\mathbb{E}_{s}(Y_{t}) = \mathbb{E}_{s}\left(Y_{s}\exp(\theta\Delta X - \frac{1}{2}\theta^{2}(t-s)\right)$$
$$= Y_{s}\mathbb{E}_{s}e^{\theta\Delta X}\exp\left(-\frac{1}{2}\theta^{2}(t-s)\right)$$
$$= Y_{s} \qquad \text{because } \Delta X \mid \mathcal{F}_{s} \sim N(0, t-s).$$

LÉVY'S MARTINGALE CHARACTERIZATION OF BROWNIAN MOTION .

Suppose $\{X_t : 0 \le t \le 1\}$ a martingale with continuous sample paths and $X_0 = 0$. Suppose also that $X_t^2 - t$ is a martingale. Then X is a Brownian motion.

Heuristics. I'll give a rough proof for why X_1 is N(0, 1) distributed.

Let f(x, t) be a smooth function of two arguments, $x \in \mathbb{R}$ and $t \in [0, 1]$. Define

$$f_x = \frac{\partial f}{\partial x}$$
 and $f_{xx} = \frac{\partial^2 f}{\partial^2 x}$ and $f_t = \frac{\partial f}{\partial t}$

Let h = 1/n for some large positive integer *n*. Define $t_i = ih$ for i = 0, 1, ..., n. Write $\Delta_i X$ for $X(t_i + h) - X(t_i)$. Then

$$\mathbb{E}f(X_1, 1) - \mathbb{E}f(X_0, 0) = \sum_{i < n} \left(\mathbb{E}f(X_{t_i + h}, t_i + h) - \mathbb{E}f(X_{t_i}, t_i) \right)$$
$$\approx \sum_{i < n} \mathbb{E}\left((\Delta_i X) f_X(X_{t_i}, t_i) + \frac{1}{2} (\Delta_i X)^2 f_{XX}(X_{t_i}, t_i) + h f_t(X_{t_i}, t_i) \right)$$

Independence of $\Delta_i X$ from \mathcal{F}_{t_i} gives a factorization for the *i*th sumand:

$$\mathbb{E}(\Delta_i X)\mathbb{E}f_x(X_{t_i}, t_i) + \frac{1}{2}\mathbb{E}(\Delta_i X)^2\mathbb{E}f_{xx}(X_{t_i}, t_i) = 0 + \frac{1}{2}h\mathbb{E}f_{xx}(X_{t_i}, t_i)$$

The sum then takes the form of an approxiating sum for the integral

$$\int_0^1 \left(\frac{1}{2} \mathbb{E} f_{xx}(X_s, s) + \mathbb{E} f_t(X_s, s) \right) ds$$

If we paid more attention to the errors of approximation we would see that their contributions go to zero as the $\{t_i\}$ grid gets finer. In the limit we have

$$\mathbb{E}f(X_1,1) - \mathbb{E}f(X_0,0) = \mathbb{E}\int_0^t \left(\frac{1}{2}f_{xx}(X_s,s) + f_t(X_s,s)\right) ds$$

Now specialize to the case $f(x, s) = \exp(\theta x - \frac{1}{2}\theta^2 s)$, with θ a fixed real constant. By direct calculation, we have

$$f_x = \theta f(x, s)$$
 and $f_{xx} = \theta^2 f(x, s)$ and $f_t = -\frac{1}{2}\theta^2 f(x, s)$

Thus

$$\mathbb{E}e^{\theta X_1}e^{-\theta^2/2} - 1 = \int_0^1 0 \, ds = 0.$$

That is, X_1 has the moment generating function $\exp(\theta^2/2)$, which identifies it as having a N(0, 1) distribution.

How to build a Brownian motion

• In Euclidean space with e_1, \ldots, e_N orthogonal unit vectors, if $z \in \text{span}\{e_1, \ldots, e_N\}$ then

$$z = \sum_{i \le N} \alpha_i e_i$$
 with $\alpha_i = \langle z, e_i \rangle$ (inner product)

• For real-valued functions f and g on (0, 1] define

$$\langle f, g \rangle = \int_0^1 f(x)g(x) \, dx$$
 and $||f|| = \sqrt{\langle f, f \rangle}.$

• Let e_1, \ldots, e_N be real-valued functions on (0, 1] with

$$\langle e_i, e_j \rangle := \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

If $f, g \in \mathcal{E}_N := \operatorname{span}\{e_1, \ldots, e_N\}$ then

$$f(x) = \sum_{i \le N} \alpha_i e_i(x) \quad \text{with } \alpha_i = \langle f, e_i \rangle$$
$$g(x) = \sum_{i \le N} \beta_i e_i(x) \quad \text{with } \beta_i = \langle g, e_i \rangle$$

Consequence:

$$\langle f,g \rangle = \sum_{i,j} \alpha_i \beta_j \langle e_i, e_j \rangle = \sum_{i \le N} \alpha_i \beta_i = \sum_{i \le N} \langle f, e_i \rangle \langle g, e_i \rangle$$

RANDOM COEFFICIENTS.

Write \mathcal{L}^2 for the set of functions f on (0, 1] with $\int_0^1 f(x)^2 dx < \infty$.

• Let η_1, η_2, \ldots be independent, each N(0, 1) distributed. For each f in \mathcal{L}^2 define

$$Z_N(f) := \sum_{i \le N} \langle f, e_i \rangle \eta_i$$

• The random variables $\{Z_N(f) : f \in \mathcal{L}^2\}$ have a joint normal distribution with zero means and covariances given by

$$\operatorname{cov}(Z_N(f), Z_N(g)) = \sum_{i,j} \langle f, e_i \rangle \operatorname{cov}(\eta_i, \eta_j) \langle g, e_j \rangle = \sum_{i \le N} \langle f, e_i \rangle \langle g, e_i \rangle$$

In particular, if $f, g \in \mathcal{E}_N$ then

$$\operatorname{cov}(Z_N(f), Z_N(g)) = \langle f, g \rangle$$
 and $Z_N(f) \sim N(0, ||f||^2).$

• For $0 \le t \le 1$ define $f_t(x) = \begin{cases} 1 & \text{if } x \le t \\ 0 & \text{otherwise} \end{cases}$. Then

$$\langle f_s, f_t \rangle = \int_0^1 1\{x \le s\} 1\{x \le t\} dx = \min(s, t).$$

- If $f_t \in \mathcal{E}_N$ then $Z_N(f_t) \sim N(0, t)$
- If $f_t, f_s \in \mathcal{E}_N$ then $\operatorname{cov}(Z_N(f_s), Z_N(f_t)) = \min(s, t)$.
- Let N tend to ∞ . Convergence? In the limit (if it exists) we have a Gaussian stochastic process $\{Z(f_t): 0 \le t \le 1\}$ with the means and variances desired for Brownian motion.

CONTINUITY OF SAMPLE PATHS.

• For k = 0, 1, ... and $0 \le i < 2^k$ define functions on (0, 1] by

$$H_{i,k}(x) = 1\{i2^{-k} < x \le (i+1/2)2^{-k}\} - 1\{(i+1/2)2^{-k} < x \le (i+1)2^{-k}\}$$

Note that $|H_{i,k}|$ is the indicator function of the interval $J_{i,k} = (i/2^k, (i+1)/2^k]$ and

$$\int_0^1 H_{i,k}(x)^2 \, dx = \int \{x \in J_{i,k}\} \, dx = 2^{-k}$$

• (Haar basis) The functions $e_{i,k}(x) = 2^{k/2} H_{i,k}(x)^2$ satisfy

$$\langle e_{i,k}, e_{i',k'} \rangle = \begin{cases} 1 & \text{if } i = i' \text{ and } k = k' \\ 0 & \text{otherwise} \end{cases}$$

Moreover, each $e_{i,k}$ is orthogonal to the constant function $U(x) \equiv 1$, in the sense that $\langle e_{i,k}, U \rangle = 0$.

• Redefine \mathcal{E}_N to be

$$\mathcal{E}_N = \text{span}\left(\{U\} \cup \{e_{i,k} : 0 \le i < 2^k, \ k = 0, 1, \dots, N\}\right)$$

It is not hard to show that \mathcal{E}_N consists of all those real-valued functions on (0, 1] that take a constant value on each $J_{i,k}$ subinterval.

• Let η and $\eta_{i,k}$ for $0 \le i < 2^k$ and k = 0, 1, ... be independent N(0, 1) random variables. Using the Haar basis functions we have, for $0 \le t \le 1$,

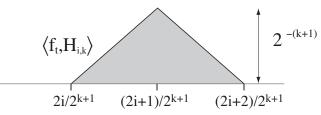
$$Z_N(f_t) = \langle f_t, U \rangle \eta + \sum_{k=0}^N \sum_{0 \le i < 2^k} \langle f_t, e_{i,k} \rangle \eta_{i,k}$$

= $t\eta + \sum_{k=0}^N 2^{k/2} X_k(t)$ where $X_k(t) = \sum_{0 \le i < 2^k} \langle f_t, H_{i,k} \rangle \eta_{i,k}$

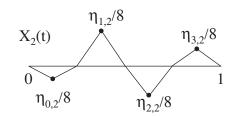
<1>

©David Pollard, 2004

• As a function of t, each $\langle f_t, H_{i,k} \rangle$ is nonzero only in the interval $J_{i,k}$, within which it is piecewise linear, achieving its maximum value of $2^{-(k+1)}$ at the midpoint, $(2i + 1)/2^{k+1}$:



• The process $X_k(t)$ has continuous, piecewise linear sample paths. It takes the value 0 at $t = i/2^k$ for $i = 0, 1, ..., 2^k$. It takes the value $\eta_{i,k}/2^{k+1}$ at the point $(2i + 1)/2^{k+1}$.



- Thus $\max_t |X_k(t)| = 2^{-(k+1)} \max_i |\eta_{i,k}|.$
- From HW sheet 5,

$$\mathbb{E}\max_{t} |X_k(t)| = 2^{-(k+1)} \mathbb{E}\max_{i} |\eta_{i,k}| \le 2^{-(k+1)} \sqrt{2\log(2^k)}$$

and hence

$$\mathbb{E}\sum_{k=0}^{\infty} 2^{k/2} \max_{t} |X_k(t)| \le \sum_{k=0}^{\infty} 2^{k/2} 2^{-(k+1)} \sqrt{2\log(2^k)} < \infty.$$

The random variable

$$\sum_{k=0}^{\infty} 2^{k/2} \max_t |X_k(t)|$$

has a finite expectation. It must be finite everywhere, except possibly on a set Ω_0^c with zero probability. For all sample points ω in Ω_0 , the sum in <1> converges uniformly in *t*. The sample paths of the limit process, being uniform limits of functions continuous in *t*, are continuous, at least for ω in Ω_0 .

• Fix sample paths for $\omega \in \Omega_0^c$?

TOTAL VARIATION AND QUADRATIC VARIATION OF A FUNCTION

• Let f be a real-valued function on [0, 1]. Define the total variation of f by

$$\mathcal{V}(f) = \sup_{\mathbb{G}} \sum_{i} |f(t_{i+1}) - f(t_i)|,$$

where \mathbb{G} ranges over all finite grids $0 = t_0 < t_1, \ldots < t_k = 1$. Say that f is of bounded variation if $\mathcal{V}(f) < \infty$.

• Define quadratic variation of f for a grid \mathbb{G} as

$$\mathcal{Q}(f,\mathbb{G}) = \sum_{i} |f(t_{i+1}) - f(t_i)|^2 \quad \text{where } \mathbb{G} \text{ is the grid } 0 = t_0 < t_1, \ldots < t_k = 1.$$

• Fact: If f is continuous and has bounded variation then $\Omega(f, \mathbb{G}) \to 0$ as mesh(\mathbb{G}) $\to 0$, where mesh(\mathbb{G}) = max_i $|t_{i+1} - t_i|$.

Proof. Given $\epsilon > 0$, there exists a $\delta > 0$ such that $|f(s) - f(t)| \le \epsilon$ whenever $|s - t| \le \delta$. (The function f is also uniformly continuous on [0, 1].) For any grid \mathbb{G} with mesh(\mathbb{G}) $\le \delta$ we have

$$Q(f, \mathbb{G}) \leq \sum_{i} \epsilon |f(t_{i+1}) - f(t_i)| \leq \epsilon \mathcal{V}(f)$$

 \Box And so on.

©David Pollard, 2004

Let $\{X_t : 0 \le t \le 1\}$ be the initial chunk of a standard Brownian motion.

• Fact: Almost almost all sample paths of *X* have infinite total variation.

Proof. Write $V(\omega)$ for the total variation of the sample path $X(\cdot, \omega)$. For each positive integer n, define

$$V_n(\omega) = \sum_i |X(t_{i+1}, \omega) - X(t_i, \omega)| \quad \text{where } t_i = i/n \text{ for } i = 0, 1, \dots, n.$$

The absolute value of the increments $\Delta_i X = X(t_{i+1}, \omega) - X(t_i, \omega)$ are independent with mean c_0/\sqrt{n} and variance less than c_1/n , for some constants c_0 and c_1 . Thus

$$\mathbb{E}V_n = c_0\sqrt{n}$$
 and $\operatorname{var}(V_n) \le c_1$.

By Tchebychev's inequality,

$$\mathbb{P}\{V_n \ge \frac{1}{2}c_0\sqrt{n}\} = \mathbb{P}\{V_n - c_0\sqrt{n} \ge -\frac{1}{2}c_0\sqrt{n}\} \ge 1 - \frac{\operatorname{var}(V_n)}{(\frac{1}{2}c_0\sqrt{n})^2} \to 1 \quad \text{as } n \to \infty.$$

- \Box Complete the proof by noting that $V(\omega) \ge V_n(\omega)$ for every *n*.
- Fact: For any sequence of grids \mathbb{G}_n with $\operatorname{mesh}(\mathbb{G}_n) \to 0$,

 $Q(X(\cdot, \omega), \mathbb{G}_n) \to 1$ in probability

Proof. Abbreviate $Q(X(\cdot, \omega), \mathbb{G}_n)$ to $Q_n(\omega)$. That is,

 $\mathfrak{Q}_n(\omega) = \sum_i (\Delta_i X)^2$ where $\delta_i X$ are the increments in X for grid \mathbb{G}_n .

Notice that

$$\mathbb{E}\mathfrak{Q}_n = \sum_i \mathbb{E}(\Delta_i X)^2 = \sum_i (t_{i+1} - t_i) = 1$$

and, by the independence of the increments,

$$\operatorname{var}(\mathfrak{Q}_n) = \sum_i \operatorname{var}\left((\Delta_i X)^2\right) \le \sum_i \mathbb{E}(\Delta_i X)^4 \le c_2 \sum_i \left(t_{i+1} - t_i\right)^2 \le c_2 \operatorname{mesh}(\mathbb{G}_n) \to 0,$$

 \Box for some constant c_2 .