BROWNIAN MOTION

Let X = {X, : t € R"} be a real-valued stochastic process: a familty of real random variables all

defined on the same probability space 2. Define

F, = “information available by observing the process up to time ¢”

= what we learn by observing X, for 0 <s <7t

Call X a standard Brownian motion if
(1) X(, w) is a continuous function on R, for each fixed w
(i) X (0, w) =0 for all w
(iii) for each s > 0,
(X, — X :t > 5} is independent of ¥
(iv) X, — X is N(0,t — s) distributed for each 0 < s < ¢
Another way to express (iii):
(i) X;— X, | Fy~ N, t —s) fors < t.

Equivalent way to express (iii) and (iv): for each 0 < <# < ... <, the random vector (X, ...

has a multivariate normal distribution with zero means and covariances given by

cov(X,, X;) = min(s, t)

USEFUL FACTS.

For a fixed T > O define
Zt:X‘L’Jrl_X‘[ fOI‘lZO

»XT]()

Markov property: Z is a Brownian motion independent of ¥, = information available up to time t.

Strong Markov property: Same assertion holds for stopping times 7.

Time reversal: Define Z, = tX;/, for t > 0, with Zy = 0. Then {Z, : + € R*} is a also a Brownian

motion.

Martingale properties:
Abbreviate E(... | F)to E,(...)
The Brownian motion process is a martingale: for s < 7,

Es(Xr) = Eo(Xy) + Eo (X, — X)) = X by (iii)’.
The process M, = X> — ¢t is a martingale: for s < 1,
E,(M,) = E, (X, + AX)" =t  where AX := X, — X,
= X2 4+ 2X,E,(AX) + E,(AX)? — ¢
= M, because E,(AX) =0 and Ej(AX)> =1 — .
For each real 6, the process Y; = exp (9Xt - %Gzt) is a martingale: for s < ¢,
E,(Y;) = E, (Y, exp(0AX — 10%(t —5))
= Y,E, " exp (— 16°(t — 5))
=Y, because AX | Fy ~ N, t — s).
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LEVY’S MARTINGALE CHARACTERIZATION OF BROWNIAN MOTION .

Suppose {X; : 0 <t < 1} a martingale with continuous sample paths and Xy = 0. Suppose also that
X? —t is a martingale. Then X is a Brownian motion.

Heuristics. I'll give a rough proof for why X, is N(0, 1) distributed.
Let f(x,t) be a smooth function of two arguments, x € R and 7 € [0, 1]. Define

af *f af
fxza and fxx:% and j‘t:a
Let h = 1/n for some large positive integer n. Define t; = ih fori =0, 1,...,n. Write A; X for

X(# +h) — X(#;). Then
Ef(X:,1) —Ef(Xo,0) = Z (Bf Xysn, ti + 1) —Ef (X, 1))

i<n

~ Y B ((AX) (X 1) + 5 (A X) fux (X0 1) + hfi (X, 1))

Independence of A; X from JF,, gives a factorization for the ith sumand:
E(AXEfo(Xy. 1) + 3E(AX)E fer (X 1) = 0+ 3hE fer (X, 1)

The sum then takes the form of an approxiating sum for the integral

1
/ (%]Efxx(xm s) + Ef (X;, S)) ds
0

If we paid more attention to the errors of approximation we would see that their contributions go to
zero as the {#;} grid gets finer. In the limit we have

Ef(X1. 1) — Ef(Xo,0) = Ef (Lo (Xye5) + fi(Xor ) ds
0

Now specialize to the case f(x,s) = exp (Gx - %925), with 0 a fixed real constant. By direct
calculation, we have

fi =0f(x,s) and  fi,=0f(x,s) and  fi=—16"f(x,s)
Thus

1
EefX1e70/2 _ | = / 0ds = 0.
0

That is, X, has the moment generating function exp(f?/2), which identifies it as having a N (0, 1)
distribution.

How TO BUILD A BROWNIAN MOTION
In Euclidean space with ey, ..., ey orthogonal unit vectors, if z € span{ey, ..., ey} then

z= ZisN aje; with o; = (z,¢;)  (inner product)

For real-valued functions f and g on (0, 1] define

1
(f. &) =/0 f@gx)ydx  and | fll =V (S f)

Let ey, ..., ey be real-valued functions on (0, 1] with
_Jrifi=j
(e €j) = {0 ifi# )
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<l>

If f,g € Ey :=spanfey, ..., ey} then
f@ =) yuea®  witha = (f )
gy =) _ Bt with B = (g.¢)

Consequence:

(fg)=) abilene)=)  ap=) _ (fege)

RANDOM COEFFICIENTS.

Write L2 for the set of functions f on (0, 1] with fol f(x)2dx < oo.
Let 1y, 12, . .. be independent, each N (0, 1) distributed. For each f in L2 define

Zy(f) =),y foem

The random variables {Zy (f) : f € £?} have a joint normal distribution with zero means and covariances
given by
CoV(Zy(f). Zn(9) = ), (f.ecovinnig.ep) =) (f.e)(s. e)

In particular, if f, g € Ey then
coV(Zn(f), Zn(g) = (f,8)  and  Zy(f) ~ N, | fI).

1 ifx <t

For 0 <t <1 defi = .
orv=r= efine fi(x) 0 otherwise

Then

I
(fs, f1) 2/ 1{x < s}1{x < t}dx = min(s, t).
0

If f; € Ey then Zy(f;) ~ N(O, 1)

If f;, fy € En then cov(Zy (fy), Zn(f;)) = min(s, t).

Let N tend to oco. Convergence? In the limit (if it exists) we have a Gaussian stochastic process
{Z(f:) : 0 <t < 1} with the means and variances desired for Brownian motion.

CONTINUITY OF SAMPLE PATHS.

For k=0,1,...and 0 < i < 2% define functions on (0, 1] by
Hip(x) =12 <x < ((+ 1227 = HG+ 1027  <x < (i +1)27"}
Note that |H; ;| is the indicator function of the interval J;; = (i /2*, (i + 1)/2*] and

i
/ Hip(x)*dx = /{x € Jixydx =27%,
0

(Haar basis) The functions e; ; (x) = 2%/2H; ; (x)? satisfy

1 ifi=iandk=Fk

0 otherwise

Moreover, each ¢; ; is orthogonal to the constant function U (x) = 1, in the sense that (e; x, U) = 0.
Redefine €y to be

(eik, e i) =

Ev=span({U}U{ex:0<i <25 k=0,1,...,N})

It is not hard to show that €y consists of all those real-valued functions on (0, 1] that take a constant
value on each J;; subinterval.

Letpand n;; for0<i <2*and k=0,1,... be independent N (0, 1) random variables. Using the Haar
basis functions we have, for 0 <r <1,

IV = o U+ Y e S o eidmin

N
=m+Y 2P Xu(0)  where Xe(®) =) (fi Hit) i
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As a function of ¢, each (f;, H; ) is nonzero only in the interval J; ;, within which it is piecewise linear,
achieving its maximum value of 2=**1 at the midpoint, (2i + 1)/2¢+!:

(f,H,,) 27

f | I
2i/2k+1 (2i+1)/2k+1 (2i+2)/2k+1

The process X (¢) has continuous, piecewise linear sample paths. It takes the value 0 at t = i /2% for
i =0,1,...,2% It takes the value n;;/2¢*! at the point (2i + 1)/2+1.

n1,2/8

X,H(t) /\ N;,/8
PN
0> \/ 1

Np./8 n,.,/8

Thus max, | X (t)| = 2~%FD max; |n;x].
From HW sheet 5,

E max | X(r)| = 2~ DR max [n; 4| < 27D /210g(2)

and hence

EY 2 max, [Xe()] < D7 222700 /210g(25) < oo,

The random variable o
Zk:o 2K max, | X (1)]

has a finite expectation. It must be finite everywhere, except possibly on a set Q2§ with zero probability.
For all sample points w in €2y, the sum in <1> converges uniformly in ¢#. The sample paths of the limit
process, being uniform limits of functions continuous in 7, are continuous, at least for w in €.

Fix sample paths for w € 7

TOTAL VARIATION AND QUADRATIC VARIATION OF A FUNCTION
Let f be a real-valued function on [0, 1]. Define the total variation of f by
V(f) = sup Y o f ) = F@)l,

where G ranges over all finite grids 0 = 7y < #1,... < fz = 1. Say that f is of bounded variation if
V(f) < oo.

Define quadratic variation of f for a grid G as
Q(f,G) = Z,- |f(tiz1) — F()]>  where Gisthe grid 0 =1 < 1y,... < fx = 1.

Fact: If f is continuous and has bounded variation then Q(f, G) — 0 as mesh(G) — 0, where
mesh(G) = max; ltiv1 — t].

Proof. Given € > 0, there exists a 6 > 0 such that | f(s) — f(¢)| < € whenever |s —¢| < §. (The function
f is also uniformly continuous on [0, 1]. ) For any grid G with mesh(G) < § we have

AfC) <Y el fltip) — Fa)] < €V(S)

And so on.
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TOTAL VARIATION AND QUADRATIC VARIATION OF BROWNIAN MOTION SAMPLE PATHS

Let {X; : 0 <t < 1} be the initial chunk of a standard Brownian motion.
Fact: Almost almost all sample paths of X have infinite total variation.
Proof. Write V(w) for the total variation of the sample path X (-, ). For each positive integer n, define
V(o) = Z,- |X (tip1, w) — X(t;, )|  where ; =i/n fori =0,1,...,n.

The absolute value of the increments A; X = X (#;41, w) — X (t;, w) are independent with mean co/+/n and
variance less than c¢;/n, for some constants ¢y and c¢;. Thus
EV, = coa/n and var(V,) < cy.
By Tchebychev’s inequality,
var(V,)
 Geov/n)?
Complete the proof by noting that V(@) > V,(w) for every n.

— 1 as n — oQ.

P{V, > Scov/n} = P{V, — cov/n = —3co/n} = 1

Fact: For any sequence of grids G, with mesh(G,) — 0,
AUX(,w), G, — 1 in probability

Proof. Abbreviate Q(X (-, ), G,) to Q,(w). That is,
9,(w) = Zi(AiX )? where §; X are the increments in X for grid G,,.
Notice that

EQ, =) E@AXY =) (s —1) =1

and, by the independence of the increments,
var(Q,) = Y var (AX)?) = D EAX) £ ¢ ) (ti1 — 1) = camesh(G,) — 0,

for some constant ¢;.
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