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Written very late at night. Not yet checked. Very tired. Brain imploding. Do not
invest money based on the calculations in this handout.

GEOMETRIC BROWNIAN MOTION AND THE BLACK-SCHOLES MODEL

From the handout on the Itd formula, you know that
S; = exp (a B, + at) with B a Brownian motion

then
S,=l+aSoBt+(a+%az)Sou, where U; = 1.

In particular if we put @« = p — %02, for a constant u, then
Ss=14+0SeB, +uSel;,

or, in more traditional notation,

ds
dS[ ZUStdBt+/.LS[dt or ?’zadB[+Mdt.

t
Over a small time interval, [¢, ¢ 48] the proportional change AS/S; in S is approximately
N (18, 028) distributed.
In the special case where u is zero, S; = 1 + oS e B, which is a martingale.
The process S from <1> with @ = pu— %az is called a geometric Brownian motion.
It is often used to model a stock price over time.

Notice that I have implicitly standardized the price so that So = 1. In effect, S;
measures the price relative to the initial price. I will also make another standardization
by assuming that the interest rate is zero, so that I don’t have to discount future returns
or introduce a bond into the calculations.

Stochastic integrals with respect to stochastic integrals

To apply the Itd formula in the arbitrage argument in the next section I will need a little
piece of the calculus for stochastic integrals, namely

Ge(HeX)=(GH)e X.

Let me prove the equality only for elementary processes
Gt,w) =) " &@t <1 <ti1)

n
Hto)=) " hi@lt <1< fin).

I postpone to a more rigorous course the formal passage to the limit from the elementary
case to a case general enough to handle the process in the next section.

There is no loss of generality in assuming that both G and H are step functions
for the same grid (we could always work with a common refinement of the grid for G
and the grid for H) and that we wish to establish equality <2> at a grid point (we
could always add extra points to the grid). Writing Z for the process H e X, we have
Zy, =Y, hiAiX, so that

MZ =24, —Zy =i A X,
and
GeZ, =)  &MNZ=) ghdiX=(GH) eX,

as asserted.
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The Black-Scholes partial differential equation

Suppose we are trying to price an option that returns an amount ¥ (S;) at time ¢ = 1,
where ¥ is a known function, such as ¥ (x) = (x — K)* with K constant. We might
hope that the price at time ¢ would be a function f(S;, #) of the stock price and time.
That is, we could try to find a function f such that the payment of P, = f(S;, ) at
time ¢ for a return ¥ (S;) at time ¢t = 1 presents no arbitrage opportunities.

We must have P; = 1/ (S)), for therwise there is an obvious arbitrage involving
buying and selling at time ¢ = 1.

Assuming suitable smoothess for f, we get via the Itd formula a stochastic integral
representation for the price,

P=f(1,0)+ Fr oS +1F 0A +F,el,
where
Fe() = f(S ) and  Fo(t) = fuu(S, 1) and  Fy(0) = f3(Si, 1)

and A, is the compensator for oS e B,, the martingale part of S;. We know B has
compensator U. And from Lemma 16 on the stochastic integral handout, we know that
oS e B has compensator A, = (6%5?) o U. Thus

Fiy @ A, = Fy 0 ((075%) o U) = 07 (FyS?) o U, by <2>.
If we denote the as-yet-unknown constant f(1,0) by co then <3> becomes
Pr—co=Fc oS+ (30°Frr + Fy) o Uy
The final term vanishes if f satisfies the partial differential equation
3020 foc (e, ) + fr(x, ) =0
If f also satisfies the boundary condition f(x, 1) = 1 (x) then
Pr—co=F, 08 and Pr =¥ (S).

Interpret F o S; as the profit from the trading strategy F, up to time ¢. The last equation
then says that we can arrange to make ¥ (S;) — ¢o by a trading scheme. If we could
obtain ¥ (S;) by paying any price but ¢y at time ¢t = 0 then we could make a riskless
profit.

Exercise. Show that P, is the price to pay at time ¢ if there is to be no arbitrage
opportunity.

You can learn how to solve the PDE with boundary condition f(x, 1) = ¥ (x) by
consulting a book such as Wilmott, Howison & Dewynne (1995, Chapter 5).

Change of measure

If you don’t like solving PDEs you might prefer a sneakier way to get at the solution,
but it depends on some heavier machinery from stochastic calculus.

Fact. Suppose Z is a random variable that might depend on the whole Brownian
motion sample path B(-, w) (in a suitably measurable way). If EZ?> < oo (or even under
some slightly weaker assumptions), there exists a constant C and an (adapted, ...)
process H such that Z =C + H e B;.

REMARK. If you are prepared to tackle some rigorous probability, you will find
a fairly self-contained proof in Pollard (2001, Section 9.7). The proof could even be
simplified a bit by an appeal to the the Itd formula.

Let me creep up on the main argument with tiny steps.
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First you need to know what a change of measure is. If g(w) is a nonnegtive
random variable, living on a set 2 already equipped with a probability, define

QA =Ep (q(0){w € A}) for A C Q.
The subscript P on the expectation will be needed to avoid confusion when we have

more than one probability defined on 2. Provided Epg = 1, the new Q is a genuine
probability. It satisfies all the usual properties, such as

Q (Unen Ay) Z QA for disjoint events {A,}
and Q¥ = 0 and Q2 = 1. More useful is the formula
EoX =Ep(Xq) for a random variable X.
The random variable g is often called the density of Q with respect to P.
Example. Suppose X1, ..., X; are independent random variables with X; ~ N (0, criz),

under the probability distribution P. For arbitrary constants {c;} define a new probabil-
ity, Q, by means of the density

q :exp(zi(a,x - —a o; ))

Recall the formula exp(fu + %0202) for the moment generating function E exp(6Z) for
a random variable Z with a N(u, o%) distribution. Together with the independence of
the X;’s under P, this formula ensures that

Epg = exp ( - Zi otiza,»z) l_[l. Ep exp(e; X;)
= exp ( - Zi ozizaiz) l_[i exp(%aizoz) = 1.

The Q is a genuine probability distribution.
We can calculate the joint moment generating function of X, ..., X; under QQ by
a similar argument. For constants 6, ..., 6,

Egexp (Zl 9,~X,~) = Epexp (Z 0; X; + Z,(aiX, 2a a ))
= 1_[ Epexp ((9 + o)X — %oe 012)
= 1_[ exp (9 + ;)0 — alzglz)
= l_L exp 501-201-2 + 0;a;0; )
The last expression is a product of moment generating functions for N(e;0?, 0?)

distributions. Under QQ the random variables X1, ..., X, are still independent normals,
with the same variances as under PP, but now the means have changed: EgX; = ;0.

The change-of-measure trick also works for infinite collections of normally
distributed random variables.

Example. Suppose {B; : 0 <t < 1} is a standard Brownian motion under PP. For a
fixed constant «, define
q(@) = exp (¢ By (0) — 30)

Note that Epg = 1 because B; ~ N (0, 1) under P.

If we change the measure to the Q defined by the density g with respect to P, we do
not change the continuity of the sample paths of B. Suppose0 =7 <, < ... <ty =1
is a grid with corresponding increments A; B for B. Under PP the increments are
independent with A;B ~ N (0, §;), where §; = t;y; — t;. The density g can also be

written as
q = exp (Zizo(aAiB — %az&‘)) .
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From Example <6> with o = §;, deduce that the increments are again independent
under Q with A; B ~ N(aé;, ), or A;B —ad; ~ N(0, §;). The process B, =B, —at
has all the properties needed to characterize it as a Brownian motion under Q.

Now reconsider the stock prices modelled as a geometric Brownian motion,
S; = exp (GB, + (u — %az)t) with B a Brownian motion under P.
If Q has density
q =exp(—puBi — 511%)
with respect to P then B, = B, + wut is Brownian motion under Q and
S; = exp (03, — %a%) with B a Brownian motion under Q.

With the change of measure we have effectively eliminated the drift coefficient p.
Under Q, the stock price is a martingale driven by the Brownian motion B.

Once again consider an option that promises to deliver a random amount Z at
time ¢t = 1. The variable could depend of the stock price history in a complicated way.
For example, we could contemplate a most exotic option that delivers

233 1
2 . 3
7 = 0rr;tagxl S; — ' 2107 SlOO/j sin(S;/1000) +/(; cos(S;) dt
j=

at time 7 = 1. What matters most is that Z can also be thought of as a (weird) function of
the B sample path: just insert exp(o B; — %azt) wherever you see an S; in the definition
of Z, for various ¢. The function also depends on o, but there is no u in sight.

The dramatic moment arrives.
Appeal to Fact <5> for the Brownian motion B to express Z as
Z=C+HeB

for some constant C and some adapted process H. (Maybe you should check that
E@22 < oo for the Z you have in mind.) If we could trade directly in B, we could
interpret H o Basa trading scheme. We need to convert to a scheme trading in the stock
price by means of the representation

S,=1+0SeB, under Q.

The equality <2> again comes to the rescue, if we integrate the process 1/S, with
respect to the processes on both sides of the previous display.

(1/S)e S, =(1/S)e 1,4+ (1/S)e (cS e B),
=040(S5/S5) e B, cf. increments of a constant process
=0 B,.
Similarly,
HoE:éHo@U&oﬁﬁi?Hﬂh&.
Write K, for (1/0)(H/S);. Then we have a trading scheme to recover the amount Z —C

at time t = 1:
Z=C+KelS

You might be a bit disappointed that you know only how to trade under Q if in fact
you live in the world where IP is in control and S is not a martingale because of that
pesky, unknown . (You did say that you knew the value of o, didn’t you?)

Not to worry. Think of K as a shorthand for a sequence of elementary processes,

Ko@) =) knj@)tnj <1 <t j41)
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for which K, e § converges to K e S. The trading scheme K, can be spelled out as

for each j: buy k, ; shares at time ¢, ; then sell them at time #,

At this point I need to be a little more precise about the sense of the convergence.
In fact, I need (and the stochastic calculus gives) convergence in Q probability:

Q{|K,eS—KeS|>¢}—0 as n — oo, for each € > 0.

The nice thing about the relationship between Q and P is: sequences that converge in
Q-probability also converge (to the same thing) in P-probability. The idealized trading
scheme K is a limit of the elementary schemes K, under both Q and P.

Before we leave the Q-world, note that S and K e S are both martingales under Q.
In particular,
0=EgK e Sy =EgK e 5
and hence
EoZ =C,
a calculation that we could, in principle, carry out.

Back in the world controlled by P, we therefore have a trading scheme, K, that
delivers the amount Z — C at time t = 1. We should pay C at time ¢ = 0 to receive Z
at time t = 1.

In short: to find the price to pay at time ¢t = O for receiving Z at time t = 1,
(i) Find the probability measure Q that makes S a Q-martingale.

(i) Hope (or invoke some probability theorem to show) that convergence in Q-
probability is the same as convergence in P-probability.

(iii) Calculate the price as C = EgZ.

Example. Suppose Z = (S; — K)™*, which I believe is the return from the option
known as a call with strike price K. Calculate.

C =Egexp(oS; — K)t = Eg (exp(of?l ~le?) - K>+ .
Under Q, the random variable W = I§’1 has a standard normal distribution. Also
exp(cW — %02) > K ifand only if W > L := %logK + %a
Write ®(f) = 1 — ®(¢) for the standard normal tail probability. Calculate.
C =Eg (exp(UW - %02) - K) {w > L}

exp(ox — %02 - %xz) dx — KEgI{W > L}

1 o0
B V2 /L
— [ epte—oydx - KB
= — exp(—s(x —o x —
V2w JiL P
=®(L—0)— KP(L)
I sure hope the last expression agrees with the textbooks for the case where Sy = 1

and there is a zero interest rate. Stay tuned for the corrected version with the correct
result.
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