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Written very late at night. Not yet checked. Very tired. Brain imploding. Do not
invest money based on the calculations in this handout.

Geometric Brownian motion and the Black-Scholes model

From the handout on the Itô formula, you know that

GBM <1> St = exp
(
σ Bt + αt

)
with B a Brownian motion

then
St = 1 + σ S • Bt + (a + 1

2σ 2)S • Ut where Ut ≡ t .

In particular if we put α = µ − 1
2σ 2, for a constant µ, then

St = 1 + σ S • Bt + µS • Ut ,

or, in more traditional notation,

d St = σ St d Bt + µSt dt or
d St

St
= σd Bt + µdt.

Over a small time interval, [t, t +δ] the proportional change �S/St in S is approximately
N (µδ, σ 2δ) distributed.

In the special case where µ is zero, St = 1 + σ S • Bt , which is a martingale.

The process S from <1> with α = µ− 1
2σ 2 is called a geometric Brownian motion.

It is often used to model a stock price over time.

Notice that I have implicitly standardized the price so that S0 = 1. In effect, St

measures the price relative to the initial price. I will also make another standardization
by assuming that the interest rate is zero, so that I don’t have to discount future returns
or introduce a bond into the calculations.

[§GHX] 1. Stochastic integrals with respect to stochastic integrals

To apply the Itô formula in the arbitrage argument in the next section I will need a little
piece of the calculus for stochastic integrals, namely

GHX <2> G • (H • X) = (G H) • X.

Let me prove the equality only for elementary processes

G(t, ω) =
∑n

i=0
gi (ω)I{ti < t ≤ ti+1}

H(t, ω) =
∑n

i=0
hi (ω)I{ti < t ≤ ti+1}.

I postpone to a more rigorous course the formal passage to the limit from the elementary
case to a case general enough to handle the process in the next section.

There is no loss of generality in assuming that both G and H are step functions
for the same grid (we could always work with a common refinement of the grid for G
and the grid for H ) and that we wish to establish equality <2> at a grid point (we
could always add extra points to the grid). Writing Z for the process H • X , we have
Ztk = ∑

i<k hi�i X , so that

�k Z = Ztk+1 − Ztk = hk�k X,

and
G • Ztk =

∑
i<k

gi�i Z =
∑

i<k
gi hi�i X = (G H) • Xtk ,

as asserted.
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[§BSpde] 2. The Black-Scholes partial differential equation

Suppose we are trying to price an option that returns an amount ψ(S1) at time t = 1,
where ψ is a known function, such as ψ(x) = (x − K )+ with K constant. We might
hope that the price at time t would be a function f (St , t) of the stock price and time.
That is, we could try to find a function f such that the payment of Pt = f (St , t) at
time t for a return ψ(S1) at time t = 1 presents no arbitrage opportunities.

We must have P1 = ψ(S1), for therwise there is an obvious arbitrage involving
buying and selling at time t = 1.

Assuming suitable smoothess for f , we get via the Itô formula a stochastic integral
representation for the price,

price.pde <3> Pt = f (1, 0) + Fx • St + 1
2 Fxx • At + Fy • Ut ,

where

Fx (t) = fx (St , t) and Fxx (t) = fxx (St , t) and Fy(t) = fy(St , t)

and At is the compensator for σ S • Bt , the martingale part of St . We know B has
compensator U. And from Lemma 16 on the stochastic integral handout, we know that
σ S • B has compensator At = (σ 2S2) • U. Thus

Fxx • At = Fxx • (
(σ 2S2) • U

) = σ 2(Fxx S2) • Ut by <2>.

If we denote the as-yet-unknown constant f (1, 0) by c0 then <3> becomes

Pt − c0 = Fx • St + (
1
2σ 2 Fxx + Fy

) • Ut

The final term vanishes if f satisfies the partial differential equation
1
2σ 2x2 fxx (x, y) + fy(x, y) = 0

If f also satisfies the boundary condition f (x, 1) = ψ(x) then

Pt − c0 = Fx • St and P1 = ψ(S1).

Interpret Fx • St as the profit from the trading strategy Fx up to time t . The last equation
then says that we can arrange to make ψ(S1) − c0 by a trading scheme. If we could
obtain ψ(S1) by paying any price but c0 at time t = 0 then we could make a riskless
profit.

pricet <4> Exercise. Show that Pt is the price to pay at time t if there is to be no arbitrage
opportunity.�

You can learn how to solve the PDE with boundary condition f (x, 1) = ψ(x) by
consulting a book such as Wilmott, Howison & Dewynne (1995, Chapter 5).

[§girsanov] 3. Change of measure

If you don’t like solving PDEs you might prefer a sneakier way to get at the solution,
but it depends on some heavier machinery from stochastic calculus.

BMsi <5> Fact. Suppose Z is a random variable that might depend on the whole Brownian
motion sample path B(·, ω) (in a suitably measurable way). If EZ2 < ∞ (or even under
some slightly weaker assumptions), there exists a constant C and an (adapted, . . . )
process H such that Z = C + H • B1.

Remark. If you are prepared to tackle some rigorous probability, you will find
a fairly self-contained proof in Pollard (2001, Section 9.7). The proof could even be
simplified a bit by an appeal to the the Itô formula.

Let me creep up on the main argument with tiny steps.
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First you need to know what a change of measure is. If q(ω) is a nonnegtive
random variable, living on a set � already equipped with a probability, define

QA = EP

(
q(ω)I{ω ∈ A}) for A ⊆ �.

The subscript P on the expectation will be needed to avoid confusion when we have
more than one probability defined on �. Provided EPq = 1, the new Q is a genuine
probability. It satisfies all the usual properties, such as

Q
( ∪n∈N An

) =
∑

n∈N
Q(An) for disjoint events {An}

and Q∅ = 0 and Q� = 1. More useful is the formula

EQ X = EP(Xq) for a random variable X .

The random variable q is often called the density of Q with respect to P.

normalCoM <6> Example. Suppose X1, . . . , Xk are independent random variables with Xi ∼ N (0, σ 2
i ),

under the probability distribution P. For arbitrary constants {αi } define a new probabil-
ity, Q, by means of the density

q = exp
( ∑

i
(αi Xi − 1

2α2
i σ

2
i )

)
.

Recall the formula exp(θµ + 1
2σ 2θ2) for the moment generating function E exp(θ Z) for

a random variable Z with a N (µ, σ 2) distribution. Together with the independence of
the Xi ’s under P, this formula ensures that

EPq = exp
(

−
∑

i
α2

i σ
2
i

) ∏
i
EP exp(αi Xi )

= exp
(

−
∑

i
α2

i σ
2
i

) ∏
i
exp( 1

2α2
i σ

2) = 1.

The Q is a genuine probability distribution.

We can calculate the joint moment generating function of X1, . . . , Xk under Q by
a similar argument. For constants θ1, . . . , θk ,

EQ exp
( ∑

i
θi Xi

)
= EP exp

( ∑
i
θi Xi +

∑
i
(αi Xi − 1

2α2
i σ

2
i )

)

=
∏

i
EP exp

(
(θi + αi )Xi − 1

2α2
i σ

2
i

)
=

∏
i
exp

(
1
2 (θi + αi )

2σ 2
i − 1

2α2
i σ

2
i

)
=

∏
i
exp

(
1
2θ2

i σ 2
i + θiαiσ

2
i

)
The last expression is a product of moment generating functions for N (αiσ

2
i , σ 2

i )

distributions. Under Q the random variables X1, . . . , Xk are still independent normals,
with the same variances as under P, but now the means have changed: EQ Xi = αiσ

2
i .�

The change-of-measure trick also works for infinite collections of normally
distributed random variables.

BMCoM <7> Example. Suppose {Bt : 0 ≤ t ≤ 1} is a standard Brownian motion under P. For a
fixed constant α, define

q(ω) = exp
(
αB1(ω) − 1

2α2
)

Note that EPq = 1 because B1 ∼ N (0, 1) under P.

If we change the measure to the Q defined by the density q with respect to P, we do
not change the continuity of the sample paths of B. Suppose 0 = t0 < t1 < . . . < tn+1 = 1
is a grid with corresponding increments �i B for B. Under P the increments are
independent with �i B ∼ N (0, δi ), where δi = ti+1 − ti . The density q can also be
written as

q = exp
( ∑n

i=0
(α�i B − 1

2α2δi )
)

.

c©David Pollard, 2004 –3– Statistics 251/551



Version-1 21 April 2004

From Example <6> with σ 2
i = δi , deduce that the increments are again independent

under Q with �i B ∼ N (αδi , δi ), or �i B − αδi ∼ N (0, δi ). The process B̃t = Bt − αt
has all the properties needed to characterize it as a Brownian motion under Q.�

Now reconsider the stock prices modelled as a geometric Brownian motion,

St = exp
(
σ Bt + (µ − 1

2σ 2)t
)

with B a Brownian motion under P.

If Q has density
q = exp

( − µB1 − 1
2µ2

)

with respect to P then B̃t = Bt + µt is Brownian motion under Q and

St = exp
(
σ B̃t − 1

2σ 2t
)

with B̃ a Brownian motion under Q.

With the change of measure we have effectively eliminated the drift coefficient µ.
Under Q, the stock price is a martingale driven by the Brownian motion B̃.

Once again consider an option that promises to deliver a random amount Z at
time t = 1. The variable could depend of the stock price history in a complicated way.
For example, we could contemplate a most exotic option that delivers

Z = max
0≤t≤1

St −
233∑

j=107

S2
100/j sin(Sj/1000) +

∫ 1

0
cos(S3

t ) dt

at time t = 1. What matters most is that Z can also be thought of as a (weird) function of
the B̃ sample path: just insert exp(σ B̃t − 1

2σ 2t) wherever you see an St in the definition
of Z , for various t . The function also depends on σ , but there is no µ in sight.

The dramatic moment arrives.

Appeal to Fact <5> for the Brownian motion B̃ to express Z as

Z = C + H • B̃1

for some constant C and some adapted process H . (Maybe you should check that
EQ Z2 < ∞ for the Z you have in mind.) If we could trade directly in B̃, we could
interpret H • B̃ as a trading scheme. We need to convert to a scheme trading in the stock
price by means of the representation

St = 1 + σ S • B̃t under Q.

The equality <2> again comes to the rescue, if we integrate the process 1/St with
respect to the processes on both sides of the previous display.

(1/S) • St = (1/S) • 1t + (1/S) • (σ S • B̃)t

= 0 + σ(S/S) • B̃t cf. increments of a constant process

= σ B̃t .

Similarly,

H • B̃t = 1

σ
H • (

(1/S) • S
)

t = 1

σ
(H/S) • St .

Write Kt for (1/σ)(H/S)t . Then we have a trading scheme to recover the amount Z −C
at time t = 1:

Z = C + K • S1

You might be a bit disappointed that you know only how to trade under Q if in fact
you live in the world where P is in control and S is not a martingale because of that
pesky, unknown µ. (You did say that you knew the value of σ , didn’t you?)

Not to worry. Think of K as a shorthand for a sequence of elementary processes,

Kn(t) =
∑

j
kn, j (ω)I{tn, j < t ≤ tn, j+1}
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for which Kn • S converges to K • S. The trading scheme Kn can be spelled out as

for each j : buy kn, j shares at time tn, j then sell them at time tn, j+1

At this point I need to be a little more precise about the sense of the convergence.
In fact, I need (and the stochastic calculus gives) convergence in Q probability:

Q{|Kn • S − K • S| > ε} → 0 as n → ∞, for each ε > 0.

The nice thing about the relationship between Q and P is: sequences that converge in
Q-probability also converge (to the same thing) in P-probability. The idealized trading

Some calculations needed here.
scheme K is a limit of the elementary schemes Kn under both Q and P.

Before we leave the Q-world, note that S and K • S are both martingales under Q.
In particular,

0 = EQK • S0 = EQK • S1

and hence
EQ Z = C,

a calculation that we could, in principle, carry out.

Back in the world controlled by P, we therefore have a trading scheme, K , that
delivers the amount Z − C at time t = 1. We should pay C at time t = 0 to receive Z
at time t = 1.

In short: to find the price to pay at time t = 0 for receiving Z at time t = 1,

(i) Find the probability measure Q that makes S a Q-martingale.

(ii) Hope (or invoke some probability theorem to show) that convergence in Q-
probability is the same as convergence in P-probability.

(iii) Calculate the price as C = EQ Z .

BScall <8> Example. Suppose Z = (S1 − K )+, which I believe is the return from the option
known as a call with strike price K . Calculate.

C = EQ exp(σ S1 − K )+ = EQ

(
exp(σ B̃1 − 1

2σ 2) − K
)+

.

Under Q, the random variable W = B̃1 has a standard normal distribution. Also

exp(σ W − 1
2σ 2) ≥ K if and only if W ≥ L := 1

σ
log K + 1

2σ

Write 
(t) = 1 − 
(t) for the standard normal tail probability. Calculate.

C = EQ

(
exp(σ W − 1

2σ 2) − K
)
I{W ≥ L}

= 1√
2π

∫ ∞

L
exp(σ x − 1

2σ 2 − 1
2 x2) dx − KEQI{W ≥ L}

= 1√
2π

∫ ∞

L
exp(− 1

2 (x − σ)2) dx − K
(L)

= 
(L − σ) − K
(L)

I sure hope the last expression agrees with the textbooks for the case where S0 = 1
and there is a zero interest rate. Stay tuned for the corrected version with the correct
result.�
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