
EM algorithm

<1> Lemma. Let {pi : i = 1, . . . , n} and {qi : i = 1, . . . , n} be two sets of nonnegative numbers
with

∑
i pi = 1 = ∑

i qi . Then∑
i

pi log(pi/qi ) ≥ 1

2

( ∑
i
|pi − qi |

)2

See the bonus question on Sheet 4 for a proof.

<2> Corollary. The function f (q) = ∑
i pi log qi is maximized over probability distribu-

tions q = (q1, . . . , qn) when q = p.

1. Generalized EM

The EM algorithm is an iterative procedure tha tries to maximize a function

G(θ) =
∑

x∈X
g(x, θ)

where g(x, θ) is a known, strictly positive function of x ∈ X and θ ∈ �. Each iteration works
by identifying the ratio p(x, θ) = g(x, θ)/G(θ) as a probability distribution on X for each
fixed θ . Starting from a guess θ0, it generates a new guess θ1 in two steps:

E-step: Define H(θ) := Eθ0 log g(x, θ) = ∑
x p(x, θ0) log(x, θ), an expectation under the

p(·, θ0) distribution.

M-step: Find θ1 to maximize H(θ), or at least such that H(θ1) > H(θ0).

These two steps lead to an increase in G:

H(θ1) = Eθ0 log
(

p(x, θ1)G(θ1)
)

> Eθ0 log
(

p(x, θ0)G(θ0)
) = H(θ0)

which rearranges to

log
(
G(θ1)/G(θ0)

)
> Eθ0 log

(
p(x, θ0)/p(x, θ1)

)
=

∑
x

p(x, θ0) log
(

p(x, θ0)/p(x, θ)
)

≥ 1

2

∑
x

∣∣p(x, θ0) − p(x, θ1)
∣∣2

by Lemma <1>

≥ 0

Thus G(θ1) > G(θ0).
Repeat the two steps, starting from θ1 to generate a θ2. And so on.

2. A Hidden Markov model

Y1 Y2 Y3

X1 X2 X3

Suppose we have a MRF on a graph with six nodes, the random variable at each node
taking values 0 or 1, with joint distribution indexed by θ = (α, β):

Pθ {X1 = 1} = 1
2

Pθ {Xi+1 = Xi | Xi = b} = α for i = 1, 2 and b = 0, 1

P{Yi = Xi | Xi = b} = β for i = 1, 2, 3 and b = 0, 1
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If we observe X = x and Y = y, the method of maximum likelihood chooses θ̂ to
maximize

g(x, y, θ) = Pθ {X = x, Y = y} = Pθ {X = x}Pθ {Y = y | X = x}
= 1

2α1{x2=x1}(1 − α)1{x2 �=x1}α1{x3=x2}(1 − α)1{x3 �=x2} ×
∏3

i=1
β1{yi =xi }(1 − β)1{yi �=xi }

Equivalently, the method maximizes

log g(x, y, θ) − log(1/2)

= M log α + (2 − M) log(1 − α) + N log β + (3 − N ) log(1 − β)

= 2

(
M

2
log α + 2 − M

2
log(1 − α)

)
+ 3

(
N

3
log β + 3 − N

3
log(1 − β)

)
<3>

where

M =
∑2

i=1
1{xi+1 = xi } and N =

∑3

i=1
1{xi = yi }.

For example, for y = (1, 0, 1), the following table gives the values of the two factors for
each possible x.

x 2Pθ {X = x} Pθ {Y = y | X = x} M N

111 α2 β2(1 − β) 2 2

000 α2 β(1 − β)2 2 1

100 α(1 − α) β2(1 − β) 1 2

001 α(1 − α) β2(1 − β) 1 2

110 α(1 − α) β(1 − β)2 1 1

011 α(1 − α) β(1 − β)2 1 1

101 (1 − α)2 β3 0 3

010 (1 − α)2 (1 − β)3 0 0

If both x and y are observed, the maximum likelihood estimators can be determined
by a separate maximization of the last two expressions in <3>. From Corollary <2>, the
maximizing values are

α̂ = M/2 and β̂ = N/3

If we only observe that Y = y = (1, 0, 1), the X values being hidden, the maximum
likelihood estimator are chosen to maximizeIdentifiable?

2G(θ) = 2Pθ {Y = y} = α2β(1 − β) + 2α(1 − α)β(1 − β) + (1 − α)2
(
β3 + (1 − β)3

)
For EM with g(x, θ) = Pθ {X = x, Y = y}, we have

p(x, θ) = g(x, θ)/G(θ) = Pθ {X = x | Y = y}.
I have omitted the dependence of g on y because it stays fixed throughout the EM argument.

With starting guess θ0 = (α0, β0), one EM step seeks to maximize

H(θ) =
∑

x
p(x, θ0) log g(x, θ)

= Eθ0

(
log g(X, θ) | Y = y

)
= log(1/2) + Eθ0

(
M | Y = y

)
log α + Eθ0

(
2 − M | Y = y

)
log(1 − α)

+ Eθ0

(
N | Y = y

)
log β + Eθ0

(
3 − N | Y = y

)
log(1 − β)

Again from Corollary <2>, the maximizing values are

α1 = 1

2
Eθ0

(
M | Y = y

)
and β1 = 1

3
Eθ0

(
N | Y = y

)
And so on.
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In this simple example, we could just grind out the conditional expectations by explicit,
brute force calulation. For an analogous problem with n instead of 3 hidden states, with n
large, we would need to find a more systematic metod for organizing the calculations. See
Chang §3.5.4 for the treatment of a slightly more general problem.

Possible (one person) project

Write a short report covering the following points. I would hope to follow what you had
done without having to work through the fine details of any programs.

(i) Extend the Hidden Markov model to the case of n pairs (Xi , Yi ), deriving the form of
the MLE (if both x and y are observed) or of the EM step (if only y is observed).

(ii) Write a small program to generate x and y for any specified α and β and n.

(iii) Implement the full method described in Chang §3.5.4 for estimating the transition
probabilities via EM from only the observed y. (That is, ignore the parametric
specification of the transition probabilities, and estimate the probabilities usuing the
method described by Joe.)

(iv) Adapt the method from (iii) to estimate α and β from observed y. That is, try to
find a method analogous to the one in §3.5.4 for calculating the necessary conditional
expectations.

(v) Explain your methods and produce some informative output for an n large enough to
demonstrate the need for the algorithm in (iv). You should compare the MLE and the
output from (iii) and (iv) for data generated by your program from (ii).
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