
Example 4: Coin tossing game: HHH vs. TTHH

Here is a coin tossing game that illustrates how conditioning can break a complex ran-
dom mechanism into a sequence of simpler stages. Imagine that I have a fair coin, which I
toss repeatedly. Two players, M and R, observe the sequence of tosses, each waiting for a
particular pattern on consecutive tosses.

M waits for hhh
R waits for tthh.

The one whose pattern appears first is the winner. What is the probability that M wins?

For example, the sequence ththhttthh . . . would result in a win for R, but ththhthhh . . .

would result in a win for M.

At first thought one might imagine that M has the advantage. After all, surely it must
be easier to get a pattern of length 3 than a pattern of length 4. You’ll discover that the so-
lution is not that straightforward.

The possible states of the game can be summarized by recording how much of his pat-
tern each player has observed (ignoring false starts, such as hht for M, which would leave
him back where he started, although R would have matched the first t of his pattern.).

States M partial pattern R partial pattern

S – –

H h –

T – t

TT – tt

HH hh –

TTH h tth

M wins hhh ?

R wins ? tthh

By claiming that these states summarize the game I am tacitly assuming that the coin
has no “memory”, in the sense that the conditional probability of a head given any particular
past sequence of heads and tails is 1/2 (for a fair coin). The past history leading to a partic-
ular state does not matter; the future evolution of the game depends only on what remains
for each player to achieve his desired pattern.

The game is nicely summarized by a diagram with states represented by little boxes
joined by arrows that indicate the probabilities of transition from one state to another. Only
transitions with a nonzero probability are drawn. In this problem each nonzero probability
equals 1/2. The solid arrows correspond to transitions resulting from a head, the dotted ar-
rows to a tail.

H M winsHH

TTH R wins

S

M winsHH

T

TT

For example, the arrows leading from S to H to HH to M wins correspond to
heads; the game would progress in exactly that way if the first three tosses gave hhh. Simi-
larly the arrows from S to T to TT correspond to tails.
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The arrow looping from TT back into itself corresponds to the situation where, after
. . . tt, both players progress no further until the next head. Once the game progresses down
the arrow T to TT the step into TTH becomes inevitable. Indeed, for the purpose of
calculating the probability that M wins, we could replace the side branch by:

T TTH

The new arrow from T to TTH would correspond to a sequence of tails followed by
a head. With the state TT removed, the diagram would become almost symmetric with
respect to M and R. The arrow from HH back to T would show that R actually has an
advantage: the first h in the tthh pattern presents no obstacle to him.

Once we have the diagram we can forget about the underlying game. The problem be-
comes one of following the path of a particle that moves between the states according to the
transition probabilities on the arrows. The original game has S as its starting state, but it
is just as easy to solve the problem for a particle starting from any of the states. The method
that I will present actually solves the problems for all possible starting states by setting up
equations that relate the solutions to each other. Define probabilities for the particle:

PS = P{reach M wins | start at S }
PT = P{reach M wins | start at T }

and so on. I’ll still refer to the solid arrows as “heads”, just to distinguish between the two
arrows leading out of a state, even though the coin tossing interpretation has now become
irrelevant.

Calculate the probability of reaching M wins , under each of the different starting
circumstances, by breaking according to the result of the first move, and then conditioning.

PS = P{reach M wins , heads | start at S } + P{reach M wins , tails | start at S }
= P{heads | start at S }P{reach M wins | start at S , heads}

+ P{tails | start at S }P{reach M wins | start at S , tails}.
The lack of memory in the fair coin reduces the last expression to 1

2 PH + 1
2 PT . Notice how

“start at S , heads” has been turned into “start at H ” and so on. We have our first equa-
tion:

PS = 1
2 PH + 1

2 PT .

Similar splitting and conditioning arguments for each of the other starting states give

PH = 1
2 PT + 1

2 PH H

PH H = 1
2 + 1

2 PT

PT = 1
2 PH + 1

2 PT T

PT T = 1
2 PT T + 1

2 PT T H

PT T H = 1
2 PT + 0.

We could use the fourth equation to substitute for PT T , leaving

PT = 1
2 PH + 1

2 PT T H .

This simple elimination of the PT T contribution corresponds to the excision of the TT state
from the diagram. If we hadn’t noticed the possibility for excision the algebra would have
effectively done it for us. The six splitting/conditioning arguments give six linear equations
in six unknowns. If you solve them you should get PS = 5/12, PH = 1/2, PT = 1/3,
PH H = 2/3, and PT T H = 1/6. For the original problem, M has probability 5/12 of winning.
�
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There is a more systematic way to carry out the analysis in the last problem without
drawing the diagram. The transition probabilities can be installed into an 8 by 8 matrix
whose rows and columns are labeled by the states:

P =




S H T HH TT TTH M wins R wins

S 0 1/2 1/2 0 0 0 0 0
H 0 0 1/2 1/2 0 0 0 0
T 0 1/2 0 0 1/2 0 0 0
HH 0 0 1/2 0 0 0 1/2 0
TT 0 0 0 0 1/2 1/2 0 0
TTH 0 0 1/2 0 0 0 0 1/2
M wins 0 0 0 0 0 0 1 0
R wins 0 0 0 0 0 0 0 1




If we similarly define a column vector,

π = (PS, PH , PT , PH H , PT T , PT T H , PM wins, PR wins)
′,

then the equations that we needed to solve could be written as

Pπ = π,

with the boundary conditions PM wins = 1 and PR wins = 0. I didn’t bother adding the
equations PM wins = 1 and PR wins = 0 to the list of equations; they correspond to the
isolated terms 1/2 and 0 on the right-hand sides of the equations for PH H and PT T H .

The matrix P is called the transition matrix. The element in row i and column j gives
the probability of a transition from state i to state j. For example, the third row, which is
labeled T , gives transition probabilities from state T . If we multiply P by itself we get
the matrix P2, which gives the “two-step” transition probabilities. For example, the element
of P2 in row T and column TTH is given by∑

j

PT, j Pj,T T H =
∑

j

P{step to j | start at T }P{step to TTH | start at j}.

Here j runs over all states, but only j = H and j = TT contribute nonzero terms.
Substituting

P{reach TTH in two steps | start at T , step to j}
for the second factor in the sum, we get the splitting/conditioning decomposition for

P{reach TTH in two steps | start at T },
a two-step transition possibility.

Questions: What do the elements of the matrix Pn represent? What happens to this
matrix as n tends to infinity? See the output from the MatLab m-file Markov.m.

The name Markov chain is given to any process representable as the movement of a
particle between states (boxes) according to transition probabilities attached to arrows con-
necting the various states. The sum of the probabilities for arrows leaving a state should add
to one. All the past history except for identification of the current state is regarded as irrel-
evant to the next transition; given the current state, the past is conditionally independent of
the future.
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