1. Markov random fields and Gibbs distributions

Let $\left\{X_{t}: t \in T\right\}$ be a finite collection of random variables-a stochastic process - with X_{t} taking values in a finite set S_{t}. For simplicity of notation, suppose the index set T is $\{1,2, \ldots, n\}$ and $\mathcal{S}_{t}=\left\{0,1, \ldots, m_{t}\right\}$. The joint distribution of the variables is

$$
\mathbb{Q}\{\mathbf{x}\}=\mathbb{P}\left\{X_{t}=x_{t} \text { for } t \in T\right\} \quad \text { where } \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right),
$$

with $0 \leq x_{t} \leq m_{t}$. More formally, the vector $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ takes values in $X=\prod_{t \in T} \mathcal{S}_{t}$, the set of all n-tuples $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ with $x_{t} \in \mathcal{S}_{t}$ for each t.

Suppose T is the set of nodes of a graph. Let \mathcal{N}_{t} denote the set of nodes (the neighbors of t) for which (t, s) is an edge of the graph.
$<1>$ Definition. The process is said to be a Markov random field if
(i) $\mathbb{Q}\{\mathbf{x}\}>0$ for every \mathbf{x} in X
(ii) for each t and \mathbf{x},

$$
\mathbb{P}\left\{X_{t}=x_{t} \mid X_{s}=x_{s} \text { for } s \neq t\right\}=\mathbb{P}\left\{X_{t}=x_{t} \mid X_{s}=x_{s} \text { for } s \in \mathcal{N}_{s}\right\}
$$

Property (ii) is equivalent to the requirement:
(ii)' the conditional probability $\mathbb{P}\left\{X_{t}=x_{t} \mid X_{s}=x_{s}\right.$ for $\left.s \in \mathcal{N}_{s}\right\}$ depends only on x_{s} for $s \in\{t\} \cup \mathcal{N}_{t}$.
A subset A of T is said to be complete if each pair of vertices in A defines an edge of the graph. Write \mathcal{C} for the collection of all complete subsets.
$<2>\quad$ Definition. The probability distribution \mathbb{Q} is called a Gibbs distribution for the graph if it can be written in the form

$$
\mathbb{Q}\{\mathbf{x}\}=\prod_{A \in \mathcal{C}} V_{A}(\mathbf{x}),
$$

where each V_{A} is a positive function that depends on \mathbf{x} only through the coordinates $\left\{x_{t}: t \in A\right\}$.

The Hammersley-Clifford Theorem asserts that the process $\left\{X_{t}: t \in T\right\}$ is a Markov random field if and only if the corresponding \mathbb{Q} is a Gibbs distribution.

It is mostly a matter of bookkeeping to show that every Gibbs distribution defines a Markov random field.
$<3>$ Example. With only a slight abuse of notation, we may write $V_{A}(\mathbf{x})$ as $V_{A}\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ if $A=\left\{i_{1}, \ldots, i_{k}\right\}$, ignoring the arguments that do not affect V_{A}. Suppose $\mathcal{N}_{1}=\{2,3\}$. Consider the variables x_{j} that actually appear in the conditional probability

$$
\begin{aligned}
\mathbb{P}\left\{X_{1}=x_{1} \mid\right. & \left.X_{2}=x_{2}, X_{3}=x_{3}, \ldots, X_{n}=x_{n}\right\} \\
& =\frac{\mathbb{P}\left\{X_{1}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3}, \ldots, X_{n}=x_{n}\right\}}{\mathbb{P}\left\{X_{2}=x_{2}, X_{3}=x_{3}, \ldots, X_{n}=x_{n}\right\}} \\
& =\frac{\prod_{A \in \mathrm{C}} V_{A}\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\sum_{w} \prod_{A \in \mathrm{C}} V_{A}\left(w, x_{2}, \ldots, x_{n}\right)}
\end{aligned}
$$

For example, which terms actually involve the value x_{4} ? By assumption, V_{A} depends on x_{4} only if $4 \in A$. For such an A, we cannot also have $1 \in A$, because then we would have $(1,4)$ as an edge of the graph, contradicting the assumption that $4 \notin \mathcal{N}_{1}$. For concreteness, suppose $A=\{4,7,19\}$. Then $V_{A}\left(x_{4}, x_{7}, x_{19}\right)$ appears once as a factor in the numerator and once as a factor in each summand in the denominator. It cancels from the ratio.

The only factors that do not cancel are those for which $1 \in A$. By definition of a complete subset, those factors can depend only on x_{j} values for $j \in\{1\} \cup \mathcal{N}_{1}$.

It is slightly harder to show that every Markov random field corresponds to some Gibbs distribution. The simplest proof that I know depends on a general representation of a function as a sum of simpler functions.
$<4>\quad$ Lemma. Let g be any real-valued function on \mathcal{X}. For each subset $A \subseteq \mathcal{S}$ define

$$
g_{A}(\mathbf{x})=g(\mathbf{y}) \quad \text { where } y_{i}= \begin{cases}x_{i} & \text { if } i \in A \\ 0 & \text { if } i \in A^{c}\end{cases}
$$

and

$$
\Psi_{A}(\mathbf{x})=\sum_{B \subseteq A}(-1)^{\#(A \backslash B)} g_{B}(\mathbf{x}) .
$$

Then
(i) the function Ψ_{A} depends on \mathbf{x} only through those coordinates x_{j} with $j \in A$ (in particular, Ψ_{\emptyset} is a constant)
(ii) for $A \neq \emptyset$, if $x_{i}=0$ for at least one i in A then $\Psi_{A}(\mathbf{x})=0$
(iii) $g(\mathbf{x})=\sum_{A \subseteq T} \Psi_{A}(\mathbf{x})$

Proof. Assertion (i) is trivial: every g_{B} appearing in the definition of $\Psi_{A}(\mathbf{x})$ does not depend on the variables $\left\{x_{j}: j \notin A\right\}$.

For (ii), divide the subsets of A into two subcollections: those that contain i and those that do not contain i. For each B of the first type there is a unique set, $\tilde{B}=\{i\} \cup B$, of the second type. Note that $g_{B}(\mathbf{x})=g_{\tilde{B}}(\mathbf{x})$ because $x_{i}=0$. The contributions to $\Psi_{A}(\mathbf{x})$ from the sets B, \tilde{B} cancel, because one of the two numbers $\# A \backslash B$ and $\# A \backslash \tilde{B}$ is odd and the other is even.

For (iii), note that the coefficient of g_{B} in the double sum

$$
\sum_{A \subseteq T} \Psi_{A}(\mathbf{x})=\sum_{A \subseteq T} \sum_{B \subseteq A}(-1)^{\#(A \backslash B)} g_{B}(\mathbf{x})
$$

equals

$$
\sum_{A}\{B \subseteq A \subseteq T\}(-1)^{\#(A \backslash B)}=\sum_{E \subseteq B^{c}}(-1)^{\# E}
$$

For B equal to T, the last sum reduces to $(-1)^{0}$ because \emptyset is the only subset of T^{c}. For $B^{c} \neq \emptyset$, half of the subsets E have $\# E$ even and the other half have \#E odd, which reduces the coefficient to 0 . Thus the double sum $<5>$ simplifies to $g_{T}(\mathbf{x})=g(\mathbf{x})$.

Applying the Lemma with $g(\mathbf{y})=\log \mathbb{Q}\{\mathbf{y}\}$ gives

$$
\mathbb{Q}\{\mathbf{x}\}=\exp \left(\sum_{A \subseteq \mathbb{I}} \Psi_{A}(\mathbf{x})\right)
$$

To show that the expression on the right-hand side is a Gibbs distribution, we have only to prove that $\Psi_{A}(\mathbf{x}) \equiv 0$ when A is not a complete subset of the graph.
$<7>$ Theorem. For a Markov random field, the term Ψ_{A} in $<6>$ is identically zero if A is not a complete subset of T.

Proof. For simplicity of notation, suppose $1,2 \in A$ but nodes 1 and 2 are not connected by an edge of the graph, that is, they are not neighbors. Consider the contributions to $\Psi_{A}(\mathbf{x})$ from pairs B, \tilde{B}, where $1 \notin B$ and $\tilde{B}=B \cup\{1\}$. The numbers $\# A \backslash B$ and $\# A \backslash \tilde{B}$ differ by 1 ; the pair contributes $\pm\left(g_{\tilde{B}}(\mathbf{x})-g_{B}(\mathbf{x})\right)$ to the sum. Define

$$
y_{i}= \begin{cases}x_{i} & \text { if } i \in B \\ 0 & \text { if } i \in B^{c}\end{cases}
$$

Then

$$
\begin{aligned}
g_{\tilde{B}}(\mathbf{x})-g_{B}(\mathbf{x}) & =\log \frac{\mathbb{P}\left\{X_{1}=x_{1}, X_{2}=y_{2}, \ldots, X_{n}=y_{n}\right\}}{\mathbb{P}\left\{X_{1}=0, X_{2}=y_{2}, \ldots, X_{n}=y_{n}\right\}} \\
& =\log \frac{\mathbb{P}\left\{X_{1}=x_{1} \mid X_{2}=y_{2}, \ldots, X_{n}=y_{n}\right\}}{\mathbb{P}\left\{X_{1}=0 \mid X_{2}=y_{2}, \ldots, X_{n}=y_{n}\right\}}
\end{aligned}
$$

A common factor of $\mathbb{P}\left\{X_{2}=y_{2}, \ldots, X_{n}=y_{n}\right\}$ has cancelled from numerator and denominator.

The Markov property ensures that the conditional probabilities in the last ratio do not depend on the value y_{2}. The ratio is unchanged if we replace y_{2} by 0 . The same argument works for every B, \tilde{B} pair. Thus $\Psi_{A}(\mathbf{x})$ is unchanged if we put x_{2} equal to 0 . From Lemma $<4>$ (ii), deduce that $\Psi_{A}(\mathbf{x})=0$ for all \mathbf{x}, as asserted.

References

Griffeath, D. (1976), Introduction to Markov Random Fields, Springer. Chapter 12 of Denumerable Markov Chains by Kemeny, Knapp, and Snell (2nd edition).

