
Hammersley-Clifford theorem for Markov random fields

1. Markov random fields and Gibbs distributions

Let {Xt : t ∈ T } be a finite collection of random variables—a stochastic
process—with Xt taking values in a finite set St . For simplicity of notation,
suppose the index set T is {1, 2, . . . , n} and St = {0, 1, . . . , mt }. The joint
distribution of the variables is

Q{x} = P{Xt = xt for t ∈ T } where x = (x1, . . . , xn),

with 0 ≤ xt ≤ mt . More formally, the vector X = (X1, . . . , Xn) takes values in
X = ∏

t∈T St , the set of all n-tuples x = (x1, . . . , xn) with xt ∈ St for each t .
Suppose T is the set of nodes of a graph. Let Nt denote the set of nodes

(the neighbors of t) for which (t, s) is an edge of the graph.

<1> Definition. The process is said to be a Markov random field if
(i) Q{x} > 0 for every x in X

(ii) for each t and x,

P{Xt = xt | Xs = xs for s �= t} = P{Xt = xt | Xs = xs for s ∈ Ns}.
Property (ii) is equivalent to the requirement:

(ii)′ the conditional probability P{Xt = xt | Xs = xs for s ∈ Ns} depends
only on xs for s ∈ {t} ∪ Nt .

A subset A of T is said to be complete if each pair of vertices in A defines
an edge of the graph. Write C for the collection of all complete subsets.

<2> Definition. The probability distribution Q is called a Gibbs distribution for
the graph if it can be written in the form

Q{x} =
∏

A∈C
VA(x),

where each VA is a positive function that depends on x only through the
coordinates {xt : t ∈ A}.

The Hammersley-Clifford Theorem asserts that the process {Xt : t ∈ T }
is a Markov random field if and only if the corresponding Q is a Gibbs
distribution.

It is mostly a matter of bookkeeping to show that every Gibbs distribution
defines a Markov random field.

<3> Example. With only a slight abuse of notation, we may write VA(x) as
VA(xi1 , . . . , xik ) if A = {i1, . . . , ik}, ignoring the arguments that do not affect VA.
Suppose N1 = {2, 3}. Consider the variables xj that actually appear in the
conditional probability

P{X1 = x1 |X2 = x2, X3 = x3, . . . , Xn = xn}
= P{X1 = x1, X2 = x2, X3 = x3, . . . , Xn = xn}

P{X2 = x2, X3 = x3, . . . , Xn = xn}
=

∏
A∈C VA(x1, x2, . . . , xn)∑

w

∏
A∈C VA(w, x2, . . . , xn)

For example, which terms actually involve the value x4? By assumption, VA

depends on x4 only if 4 ∈ A. For such an A, we cannot also have 1 ∈ A,
because then we would have (1, 4) as an edge of the graph, contradicting
the assumption that 4 /∈ N1. For concreteness, suppose A = {4, 7, 19}. Then
VA(x4, x7, x19) appears once as a factor in the numerator and once as a factor
in each summand in the denominator. It cancels from the ratio.
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The only factors that do not cancel are those for which 1 ∈ A. By
definition of a complete subset, those factors can depend only on xj values for
j ∈ {1} ∪ N1.�

It is slightly harder to show that every Markov random field corresponds to
some Gibbs distribution. The simplest proof that I know depends on a general
representation of a function as a sum of simpler functions.

<4> Lemma. Let g be any real-valued function on X. For each subset A ⊆ S

define
gA(x) = g(y) where yi =

{
xi if i ∈ A
0 if i ∈ Ac

and
�A(x) =

∑
B⊆A

(−1)#(A\B)gB(x).

Then
(i) the function �A depends on x only through those coordinates xj

with j ∈ A (in particular, �∅ is a constant)
(ii) for A �= ∅, if xi = 0 for at least one i in A then �A(x) = 0

(iii) g(x) = ∑
A⊆T �A(x)

Proof. Assertion (i) is trivial: every gB appearing in the definition of �A(x)

does not depend on the variables {xj : j /∈ A}.
For (ii), divide the subsets of A into two subcollections: those that contain i

and those that do not contain i . For each B of the first type there is a unique
set, B̃ = {i} ∪ B, of the second type. Note that gB(x) = gB̃(x) because xi = 0.
The contributions to �A(x) from the sets B, B̃ cancel, because one of the two
numbers #A\B and #A\B̃ is odd and the other is even.

For (iii), note that the coefficient of gB in the double sum

<5>
∑

A⊆T
�A(x) =

∑
A⊆T

∑
B⊆A

(−1)#(A\B)gB(x)

equals ∑
A
{B ⊆ A ⊆ T }(−1)#(A\B) =

∑
E⊆Bc

(−1)#E .

For B equal to T , the last sum reduces to (−1)0 because ∅ is the only subset
of T c. For Bc �= ∅, half of the subsets E have #E even and the other half
have #E odd, which reduces the coefficient to 0. Thus the double sum <5>

simplifies to gT (x) = g(x).�
Applying the Lemma with g(y) = log Q{y} gives

<6> Q{x} = exp
(∑

A⊆I
�A(x)

)

To show that the expression on the right-hand side is a Gibbs distribution, we
have only to prove that �A(x) ≡ 0 when A is not a complete subset of the
graph.

<7> Theorem. For a Markov random field, the term �A in <6> is identically
zero if A is not a complete subset of T .

Proof. For simplicity of notation, suppose 1, 2 ∈ A but nodes 1 and 2 are not
connected by an edge of the graph, that is, they are not neighbors. Consider the
contributions to �A(x) from pairs B, B̃, where 1 /∈ B and B̃ = B ∪ {1}. The
numbers #A\B and #A\B̃ differ by 1; the pair contributes ± (

gB̃(x) − gB(x)
)

to the sum. Define
yi =

{
xi if i ∈ B
0 if i ∈ Bc
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Then

gB̃(x) − gB(x) = log
P{X1 = x1, X2 = y2, . . . , Xn = yn}
P{X1 = 0, X2 = y2, . . . , Xn = yn}

= log
P{X1 = x1 | X2 = y2, . . . , Xn = yn}
P{X1 = 0 | X2 = y2, . . . , Xn = yn}

A common factor of P{X2 = y2, . . . , Xn = yn} has cancelled from numerator
and denominator.

The Markov property ensures that the conditional probabilities in the last
ratio do not depend on the value y2. The ratio is unchanged if we replace y2

by 0. The same argument works for every B, B̃ pair. Thus �A(x) is unchanged
if we put x2 equal to 0. From Lemma <4> (ii), deduce that �A(x) = 0 for
all x, as asserted.�
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