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The Itô formula

In proving Lévy’s characterization of Brownian motion, I previewed for you a technique that can be
adapted to different purposes.

Recall that we considered a smooth function f (x, y) of two arguments, with partial derivatives

fx = ∂ f

∂x
and fxx = ∂2 f

∂2x
and fy = ∂ f

∂y
.

For a fine grid G : 0 = t0 < t1 < . . . tn+1 = 1 and a martingale M with continuous paths, we started from
a telescoping sum like

f (M1, 1) − f (M0, 0) =
∑n

i=0

(
f (M(ti+1), ti+1) − f (Xti , ti )

)

≈
∑n

i=0

(
(�i M)Fx (ti ) + 1

2 (�i M)2 Fxx (ti ) + δi Fy(ti )
)

telescope <1>

where

�i M = M(ti+1) − M(ti ) and δi = ti+1 − ti
Fx (t) = fx (Mt , t) and Fxx (t) = fxx (Mt , t) and Fy(t) = fy(Mt , t).

After taking expectations of both sides, and using the martingale properties of M , we got a simple sum
that (we hoped) would converge to an integral as mesh(G) went to zero.

With the stochastic integral defined, we can now make sense of the limit without taking expectations of
both sides. The first sum converges (in probability) to Fx • M1, and the last sum converges to

∫ 1
0 Fy(s) ds.

If we assume that M2 has a compensator A, that is, a continuous adapted process with continuous
paths, for which M2

t − At is a martingale, then we can replace the (�i M)2 by a �i A in passing to the
limit Fxx • A1. If you are suspicious of the last calculation, please hold your protests until I explain more
carefully in Lemma <5> below.

If we take a grid on the interval [0, t] instead of on [0, 1], we get one example of the Itô formula:

ito1 <2> f (Mt , t) = f (M0, 0) + Fx • Mt + 1
2 Fxx • At + Fy • Ut .

Here I am anticipating a generalization by thinking of Ut ≡ t as a stochastic process with continuous
paths of bounded variation. Of course Fy • Ut is just fancy notation for

∫ t
0 Fy(s) ds.

As suggested by the fancy notation, we can replace the “time process” Ut by any other process Vt with
continuous paths of bounded variation. The sum

∑
i δi Fy(ti ) in <1> is then replaced by

∑
i (�i V )Fy(ti ),

which converges to another stochastic integral. The Itô formula then becomes

ito2 <3> f (Mt , Vt ) = f (M0, V0) + Fx • Mt + 1
2 Fxx • At + Fy • Vt ,

Of course, you should now understand Fx (t) to mean Fx (Mt , Vt ), and so on.

My final generaliztion comes from replacing the martingale M by a process Xt = Mt + Wt , where Wt

is adapted with continuous paths of bounded variation. Remember that H • X is defined as H • M + H •W .
The contribution Fx • Mt gets replaced by Fx • Mt + Fx • Wt = H • Xt . The most interesting effect appears
in the contribution from

∑
i (�i X)2 Fxx (ti ), because the added term W does not change the quadratic

variation.

ito3 <4> Theorem. Suppose M is a martingale with continuous paths and both V and W are adapted processes
with continuous paths of bounded variation. DeÆne Xt = Mt + Wt . Then if f (x, y) is a suitably smooth
function,

f (Xt , Vt ) = f (X0, V0) = Fx • Xt + 1
2 Fxx • At + Fy • Vt ,

where

Fx (t) = fx (Xt , Vt ) and Fxx (t) = fxx (Xt , Vt ) and Fy(t) = fy(Xt , Vt ).

and A is the compensator for M2.

Of course I will not give you a completely rigorous proof, but it is not impossibly hard to develop
a real proof starting from the analog of <1>. The main challenge comes from handling the contribution
from the (�i X)2. The following lemma shows why the W does not upset the quadratic variation.
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Fxx <5> Lemma. Let H be an adapted process with continuous sample paths and X be as in Theorem <4>.
Then ∑

i
(X (t ∧ ti+1) − X (t ∧ ti ))

2 H(ti ) → H • At in probability

as the mesh of the underlying grid goes to zero.

Remark. In fact the convergence is uniform on bounded intervals: if we write Zn(t) for the process
on the left-hand side, then P{sup0≤t≤1 |Zn(t) − H • At | > ε} → 0 for each ε > 0.

Proof. I will give you a nearly rigous proof under a stronger set of assumptions, then just sketch the idea
for the full proof.

Let me assume that there exists a constant C for which |H(t, ω)| ≤ C for all t and ω, and that for
each ε > 0 there exists a δ > 0 for which

max
(
|M(s, ω) − M(t, ω)|, |A(t, ω) − A(s, ω)|,|V (t, ω) − V (s, ω)|, |W (t, ω) − W (s, ω)|

)
≤ ε

for all s and t with |s − t | ≤ δε .unif.cty <6>

Write �i M for M(ti+1, ω) − M(ti , ω), and so on. Abbreviate E(. . . | Fti ) to Ei (. . .) and H(ti ) to hi .
Define ξi+i = (�i M)2 − �i A. Remember that ξi+1 depends only on Fti+1 -information and Eiξi+1 = 0.

Consider the case where t = 1. It is enough to show that∑
i
(�i X)2hi −

∑
i
(�i A)hi → 0 in probability, as mesh(G) → 0.

Expand (�i X)2 − Ai into

(�i M)2 + 2(�i M)(�i W ) + (�i W )2 − �i A = ξi+1 + 2(�i M)(�i W ) + (�i W )2

Consider first the contribution from the ξi+1 terms, assuming mesh(G) ≤ δε . Use the fact that
Eiξi+1 = 0 to kill cross product terms in the expansion of the square of a sum.

E

( ∑
i
hiξi+1

)2
=

∑
i, j

E
(
hi hjξi+1ξj+1

)

=
∑

i
E

(
h2

i ξ
2
i+1

)
because Eiξi+1 = 0

≤ C2
E

∑
i

(
ε2(�i M)2 + ε�i A

)

= C2(ε2 + ε)E
(

A1 − A0
)

As mesh(G) → we have ε → 0, making
∑

i hiξi+1 converge to zero in probability.

The other two contributions are even easier to handle.∣∣∣
∑

i
(2(�i M)(�i W ) + (�i W )2)hi

∣∣∣ ≤ C
∑

i
(2ε|�i W | + ε|�i W |) ≤ 3εCV(W )

For each ω, the total variation of the sample path W (·, ω) is bounded. The sum actually converges to zero
for each ω as mesh(G) → 0, which implies convergence in probability.�

How to handle the general case.

The continuity of the sample path M(·, ω) tells us that �i M → 0 as mesh(G) → 0, but the rate of
convergence might be different for each ω. The simplest way to remove the difficulty is to replace the
deterministic grid G by a grid 0 = τ0 ≤ τ1 ≤ τ2 ≤ . . ., with each τi a stopping time and τk ↑ ∞ as
k → ∞. Such times can be defined by

τi+1 = inf{t ≥ τi : |M(t) − M(τi )| ≤ ε}
As ε decreases we need to construct new stopping times. Also, we would need to show that the martingale
properties are preserved at stopping times. Actually, we should choose the τi to make all the increments
�i A, �i V , and so on, smaller than ε. And similarly we need another stopping time σm for which
supt |H(t ∧ σm, ω)| ≤ Cm . We could then repeat the argument for the special case, but with 1 replaced by
t ∧ τk ∧ σm . After letting ε tend to zero, we would let k and m tend to infinity.
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