MÖBIUS INVERSION

Let Ψ be a real valued function defined on the subsets of a finte set \mathbb{I} . For each $A \subseteq \mathbb{I}$ define

$$\Phi(A) = \sum_{B \subseteq A} \Psi(B),$$

the sum running over all subsets (including the empty set) of A. Then

$$<1> \qquad \Psi(A) = \sum_{B \subseteq A} (-1)^{\#(A \setminus B)} \Phi(B),$$

where #E for a cardinality of a set E.

Proof. First note that $\sum_{B \subseteq A} (-1)^{\#(A \setminus B)} = 0$ for each nonempty set *A*, because 2^{-n} times the left-hand side equals $\mathbb{P}(-1)^{\sum_{i \in A} Z_i} = \prod_i \mathbb{P}(-1)^{Z_i}$, where the Z_i are independent random variables taking the values 0 and 1 each with probability 1/2. If *A* were empty, the sum would equal 1.

The right-hand side of <1> equals

$$\sum_{B \subseteq A} \sum_{C \subseteq B} (-1)^{\#(A \setminus B)} \Psi(C) = \sum_{C \subseteq A} \Psi(C) \sum_{E \subseteq A \setminus C} (-1)^{\#E}$$

The inner sum equals zero except when A = C. \Box

MARKOV RANDOM FIELDS AND GIBBS DISTRIBUTIONS

Let \mathbb{Q} be a probability measure defined on a product space $\mathcal{X} = \bigotimes_{i \in \mathbb{I}} \mathcal{X}_i$, with $\mathbb{I} = \{1, 2, ..., n\}$ a finite index set. Suppose \mathbb{I} is the set of nodes of a graph. Write X_i for the *i*th coordinate map. Assume $\mathbb{Q}\{\mathbf{x}\} > 0$ for every \mathbf{x} in \mathcal{X} . Call \mathbb{Q} a *Markov random field* if, for every *i*, the conditional probability

$$\mathbb{Q}{X_i = x_i \mid X_j = y_j \text{ for } j \neq i}$$

depends only on those y_i for which j is a neighbor of i in the graph.

Arbitrarily choose points $z_i \in \mathcal{X}_i$ for i = 1, 2, ..., n. For each $S \subseteq \mathbb{I}$ and $\mathbf{x} \in \mathcal{X}$ define

$$f_{\mathcal{S}}(\mathbf{x}) = \log \mathbb{Q}\{\mathbf{y}\} \qquad \text{where } y_i = \begin{cases} x_i & \text{if } i \in S \\ z_i & \text{if } i \in S^c \end{cases}$$

Abbreviate $f_{\mathbb{I}}$ to f. For a fixed **x**, we can think of f_S as an integral of f with respect to a product measure,

$$f_{S}(\mathbf{x}) = \bigotimes_{i} \left(\delta(x_{i}) \{ i \in S \} + \delta(z_{i}) \{ i \in S^{c} \} \right) f$$

with $\delta(y_i)$ denoting a point mass at y_i , with $y_i = x_i$ or $y_i = z_i$. Rewrite the *i*th measure in the product as $\delta(z_i) + (\delta(x_i) - \delta(z_i))$ { $i \in S$ }, then expand the product as

$$\sum_{A \subseteq S} \bigotimes_i \left(\delta(z_i) \{ i \in A^c \} + \left(\delta(x_i) - \delta(z_i) \right) \{ i \in A \} \right) f$$

The sum runs over all subsets of S, including the empty subset. Write $\Psi_A(\mathbf{x})$ for the Ath summand. Thus $f_S(\mathbf{x}) = \sum_{A \subseteq S} \Psi_A(\mathbf{x})$. In particular,

$$<2> \qquad \qquad \mathbb{Q}\{\mathbf{x}\} = \exp\left(\sum_{A \subseteq \mathbb{I}} \Psi_A(\mathbf{x})\right)$$

Notice that $\Psi_A(\mathbf{x})$ depends on \mathbf{x} only through the values $\{x_i : i \in A\}$. As a function of \mathbf{x} , each Ψ_A has the property

$$\langle 3 \rangle$$
 $\Psi_A(\mathbf{x}) = 0$ if $x_i = z_i$ for some *i* in A

<4>**Theorem** For a Markov random field, the term Ψ_A in <2> is identically zero if A is not a clique of the graph.

David Pollard

Proof. From the Möbius inversion formula,

$$<5> \qquad \Psi_A(\mathbf{x}) = \sum_{B \subseteq A} (-1)^{\#(A \setminus B)} f_B(\mathbf{x})$$

I will show that there is a cancellation of terms on the right-hand side if A is not a clique.

For simplicity, suppose 1, $2 \in A$ but nodes 1 and 2 are not connected by an edge of the graph, that is, they are not neighbors. Consider the contributions to $\langle 5 \rangle$ in pairs B, \tilde{B} , where $1 \notin B$ and $\tilde{B} = B \cup \{1\}$. The cardinalities of $A \setminus B$ and $A \setminus \tilde{B}$ differ by 1; the pair B, \tilde{B} contributes $\pm (f_{\tilde{B}}(\mathbf{x}) - f_B(\mathbf{x}))$ to the sum. Define

$$y_i = \begin{cases} x_i & \text{if } i \in B\\ z_i & \text{if } i \in B^c \end{cases}$$

Then

$$f_{\tilde{B}}(\mathbf{x}) - f_{B}(\mathbf{x}) = \log \frac{\mathbb{Q}\{X_{1} = x_{1}, X_{2} = y_{2}, \dots, X_{n} = y_{n}\}}{\mathbb{Q}\{X_{1} = z_{1}, X_{2} = y_{2}, \dots, X_{n} = y_{n}\}}$$
$$= \log \frac{\mathbb{Q}\{X_{1} = x_{1} \mid X_{2} = y_{2}, \dots, X_{n} = y_{n}\}}{\mathbb{Q}\{X_{1} = z_{1} \mid X_{2} = y_{2}, \dots, X_{n} = y_{n}\}}$$

A common factor of $\mathbb{Q}{X_2 = y_2, ..., X_n = y_n}$ cancels from numerator and denominator. The Markov property ensures that the conditional probabilities do not depend on the value y_2 . The right-hand side of $\langle 5 \rangle$ is unchanged if we replace y_2 by z_2 . That is, $\Psi_A(\mathbf{x})$ is unchanged if we put x_2 equal to z_2 . From $\langle 3 \rangle$, deduce that $\Psi_A(\mathbf{x}) = 0$ for all \mathbf{x} , as asserted. \Box

Remarks:

- (a) The converse is easy.
- (b) Replace $\delta(x_i)$ by the empirical measure, and $\delta(z_i)$ by the underlying distribution, to get the Hoeffding decomposition for a U-statistic with kernel f.
- (c) Is it possible to use Möbius inversion to get simpler proof of the VC Lemma? The pairing in the proof of Theorem <4> reminds me of one proof of the Lemma.

References

Griffeath, D. (1976), Introduction to Markov Random Fields, Springer. Chapter 12 of Denumerable Markov Chains by Kemeny, Knapp, and Snell (2nd edition).