
Stationary distribution via expected visits during an excursion

Consider an irreducible, recurrent Markov chain {Xn : n = 0, 1, . . .} on a countable state space S with
transition probabilities P(i, j). For an arbitrarily chosen (but fixed) state i , define Ti := inf{n ∈ N : Xn = i}
and

λj := Ei { number of visits to state j up to time Ti }
= Ei

( ∑
n∈N

1{Xn = j, n ≤ Ti }
)

=
∑

n∈N
Pi {Xn = j, n ≤ Ti } taking expectation term-by-term<1>

= P(i, j) +
∑

m≥2
Pi {Xm = j, m ≤ Ti }

Notice that λi = 1, because the first visit to i ends the excursion.
Over many (independent) excursions, we expect the chain to average λj visits to state j . On the

average, a fraction P( j, k) of those visits should be followed immediately by a visit to state k. (Does this
heuristic work when j equals i? Maybe we need to consider the state for X1 to make it work.) Summing
over all possible j that might be visited right before a visit to state k, we could then hope that

<2> λk =
∑

j∈S
λj P( j, k) for every k.

To make the argument rigorous, we would need to show that everything works according to averages.
Alternatively, first invoke the Markov property,

Pi {X1 = j1, X2 = j2, . . . , Xn = j, Xn+1 = k} = Pi {X1 = j1, X2 = j2, . . . , Xn = j}P( j.k),

then sum over all j1, . . . , jn−1 not equal to i to get

<3> Pi {Ti ≥ n, Xn = j, Xn+1 = k} = Pi {Ti ≥ n, Xn = j}P( j, k).

Sum both sides of the last equality over n and j , using the form <1> for λj .∑
n∈N

∑
j∈S

Pi {Ti ≥ n, Xn = j, Xn+1 = k} =
∑

j∈S
λj P( j, k).

On the left-hand side, split the event {Ti ≥ n} into a union of two disjoint events, {Ti = n} ∪ {Ti ≥ n + 1},
thereby breaking the sum into

<4>
∑

n∈N

∑
j∈S

Pi {Ti = n, Xn = j, Xn+1 = k} +
∑

n∈N

∑
j∈S

Pi {Ti ≥ n + 1, Xn = j, Xn+1 = k}
The sum over j collapses the second double sum to∑

n∈N
Pi {Ti ≥ n + 1, Xn+1 = k} =

∑
m≥2

Pi {Ti ≥ m, Xm = k}
If the final sum were to start at m = 1 we woud have the expression for λk . We lack only the summand
Pi {Ti ≥ 1, X1 = k} = P(i, k).

The collapse of the first double sum in <4> is even more dramatic, because only the summands with
j equal to i survive: if Ti = n then we must have Xn = i . The double sum reduces to∑

n∈N
Pi {Ti = n, Xn = i, Xn+1 = k} =

∑
n∈N

Pi {Ti = n, Xn = i}P(i, k)

the final factorization coming from <3>. (Why can we replace Ti ≥ n by Ti = n when j equals i?) With
the factorization achieved, we can discard the redundant Xn = i from the event {Ti = n, Xn = i}. The
sum over n corresponds to a union over disjoint events {Ti = n}; the probabilities Pi {Ti = n, Xn = i} sum
to 1, leaving us the P(i, k) needed to reduce <4> to λk .

If
∑

j λj < ∞, the standardized values πk = λk/
∑

j λj < ∞ sum to 1. Equality <2> then gives us
the equations that identify {πk : k ∈ S} as a stationary probability distribution for the chain. From <1>,∑

j∈S
λj =

∑
n∈N

∑
j∈S

Pi {Xn = j, n ≤ Ti } =
∑

n∈N
Pi {n ≤ Ti } = Ei

∑
n∈N

1{n ≤ Ti } = Ei Ti .

That is, if the chain is positive recurrent (meaning that Ei Ti < ∞) it has a stationary probability
distribution.
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