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Stochastic integrals

Suppose St denotes the price of a stock at time t , for 0 ≤ t ≤ 1. Let 0 = t0 < t1 < . . . < tn < tn+1 = 1
be times at which you buy and sell stock: at time ti you buy H(ti ) stocks at a cost of H(ti )S(ti ) then you
sell the same stocks at time ti+1 for H(ti )S(ti+1). Your total profit will be∑n

i=0
H(ti )�i S where �i S = S(ti+1) − S(ti ).

This formula is also valid for purchases of random numbers of shares. In that case, H(ti ) should depend
only on information available at time ti .

It is tempting o think that if the times between trades get smaller and smaller then we could pass
to some limit of continuous trading, with total profit being given by some sort of limit of the sums for
trading in discrete time. To formalize this idea, we need to define a stochastic integral

∫ 1
0 Hsd Ss .

There is a large class of processes for which stochastic integrals can be defined. A complete treatment
usually takes up a large fraction of the graduate course on Stochastic Calculus. However, with enough
handwaving I can explain the main ideas.

It is easiest to start with a deterministic case.

In what follows, I have been sloppy about stating regularity conditions. You should not take the
assertions to be true precisely as stated. You need to take the Stochastic Calculus course if you want to
know the truth, almost the whole truth, and hardly anything but the truth.

1. Functions of bounded variation

Suppose f and g are continuous functions defined on the interval [0, 1]. Remember that the variation
of f over a grid G : 0 = t0 < t1 < . . . < tn < tn+1 = 1 is defined as

V( f, G) =
∑n

i=0
| f (ti+1) − f (ti )|,

and f is said to be of bounded variation if V( f ) = supG V( f, G) is finite.

We mght hope that
∫ 1

0 g(t)d f (t) could be obtained as a limit of approximations from grids,

I(g, G) =
∑n

i=0
g(ti )�i f where �i f = f (ti+1) − f (ti ).

In fact, such a limit does exist, in the sense that there is number J such that I( f, G) → J as
mesh(G) := maxi |ti+1 − ti | tends to zero. Of course, the limit J is then denoted by

∫ 1
0 gd f .

<1> Theorem. If g is continous and f is both continuous and of bounded vaiation, then there is a nuber J
for which I(g, G) → J as mesh(G) → 0.

Proof. It is enough (Why?) to show that for each ε > 0 there exists a grid Gε for which

|I(g, Gε) − I(g, G)| ≤ ε whenever grid G is a refinement of grid Gε .

Continuity of g on a closed interval ensures that for each ε > 0 there exists a δ > such that

<2> |g(t) − g(s)| ≤ ε whenever |t − s| ≤ δ.

Choose Gε : 0 = t0 < t1 < . . . < tn < tn+1 = 1 as any grid with mesh less than δ.

Consider to contributions to both I(g, Gε) and I(g, G) from the interval [ti , ti+1| when G is a
refinement of Gε . Suppose G puts grid points s0 = ti < s1 < . . . < sk < sk+1 = ti+1 in the interval. The
contribution to I(g, G) from the interval is∑k

j=0
g(sj )�j f where �j f = f (sj+1) − f (sj )

The contribution to I(g, Gε) is

g(ti )
(

f (ti+1) − f (ti )
) = g(ti )

∑k

j=0
�j f.
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The absolute value of the difference between the two contributions is bounded by∑k

j=0
|g(ti ) − g(sj )| |�j f | ≤ ε

∑k

j=0
|�j f | because |ti − sj | ≤ δ.

Summing over all i , we conclude that

|I(g, Gε) − I(g, G)| ≤ εV( f, G) ≤ εV( f )

If it disappoints you that the final bound is not ε, you should repeat the argument with the ε in <2>

replaced b ε/V( f ).�

For the purposes of this handout, there are two important cases where a function f has bounded
variation.

(i) If f is an increasing function on [0, 1] then V( f ) = f (1) − f (0), because∑n

i=0
| f (ti+1) − f (ti )| =

∑n

i=0

(
f (ti+1) − f (ti )

) = f (1) − f (0)

for every grid.

(ii) If f (t) = ∫ 1
0 λ(s) ds, with

∫ 1
0 |λ(s)| ds < ∞ then

∑n

i=0
| f (ti+1) − f (ti )| ≤

∑n

i=0
|
∫ ti +1

ti

λ(s) ds| ≤
∑n

i=0

∫ ti +1

ti

|λ(s)| ds =
∫ 1

0
|λ(s)| ds.

In this case, it is not hard to show that
∫ 1

0 g(s) d f (s) = ∫ 1
0 g(s)λ(s) ds.

A similar method of approximation could be used to define
∫ t

0 g d f for each t in [0, 1]. A better way
is to build the dependence on t into the approximation, by defining

I(g, G)t =
∑n

i=0
g(ti )

(
f (ti+1 ∧ t) − f (ti ∧ t)

)
.

If t equals ti , we have tj ∧ t = ti for all j ≥ i , which ensures that the all summands for j ≥ i vanish. If
ti < t < ti+1, the i th summand becomes g(ti )

(
f (t) − f (ti )

)
, which is continuous in t . Indeed, the insertion

of the ∧t makes I(g, G)t a continuous function of t . The argument from the proof of Theorem <1> still
works, leading to the conclusion that

∫ t
0 g d f is a uniform limit of continuous functions, and hence is itself

continuous as a function of t .

By various approximation arguments, the integral can also be extended to integrands g that are ot
continuous. I won’t discuss this extension, because we will only need continuous integrands.

2. Stochastic integral for BV processes

Suppose {Xt (ω) : 0 ≤ t ≤ 1} is a stochastic process for which each sample path X (·, ω) is continuous
and of bounded variation. If {Ht (ω) : 0 ≤ t ≤ 1} is another stochastic process, then we can define the
stochastic integral pathwise. That is,

∫ t
0 H(s, ω) d X (s, ω) is defined using the method described above for

each ω.

It often helps to think of the stochastic integral as defining a new stochastic process H • X with
continuous sample paths:

(H • X)(t, ω) =
∫ t

0
Hs(ω) d Xs(ω)

3. Stochastic integral with respect to Brownian motion

We know that almost all sample paths of a standard Brownian motion {Bt : 0 ≤ t ≤ 1} have
infinite total variation. We cannot expect the method from Sections 2 to work to define a stochastic
integral

∫ t
0 Hs(ω) d Bs(ω).
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For a smaller class of functions, the definition of the stochastic integral is easy. Suppose H is an
elementary process, that is, for some grid G : 0 = t0 < t1 < . . . < tn < tn+1 = 1,

H(t, ω) =
∑n

i=0
H(ti , ω)I{ti < t ≤ ti+1},

where H(ti , ω) is a random variable that depends only on information up to time ti . Then we define

H • Bt =
∫ t

0
Hs(ω) d Bs(ω) =

∑n

i=0
H(ti , ω)

(
B(ti+1 ∧ t, ω) − B(ti ∧ t, ω)

)
Again the process H • B has continuous sample paths. It also inherits from B the martingale property. To
establish this property, we need to show, for s < t and W depending only on information in Fs , that

<3> E
(
W Hti

(
B(ti+1 ∧ t) − B(ti ∧ t)

)) = E
(
W Hti

(
B(ti+1 ∧ s) − B(ti ∧ s)

))
.

If s ≥ ti+1 or t ≤ ti the equality is trivial, because B(ti+1 ∧ t) − B(ti ∧ t) = B(ti+1 ∧ s) − B(ti ∧ s) in both
cases. If s ≤ ti < t , equality <3> reduces to

E
(
W Hti

(
B(ti+1 ∧ t) − B(ti )

)) = E
(
W Hti

(
B(s) − B(s)

))
.

The left-hand side is zero because W Hti depends only on Fti information and the increment B(ti+1∧t)−B(ti )
involves the future beyond ti . If ti ≤ s < ti+1, the difference between the two sides of equality <3>

reduces to
E

(
W Hti

(
B(ti+1 ∧ t) − B(s)

))
,

which is zero because W Hti depends only on Fs information and the increment B(ti+1 ∧ t) − B(s) pokes
out into the future beyond s.

The martingale properties also lead to a simple expression for the second moment of
∫ 1

0 H d B.
Writing �i B for B(ti+1) − B(ti ) we have

E

( ∫ 1

0
Hs d Bs

)2

=
∑n

i=0

∑n

j=0
E

(
H(ti )H(tj )�i B�j B

)2
.

If i < j , the product H(ti )H(tj )�i B depends only on Ftj information and the increment �j B involves
the future beyond tj , which ensures that the expectation is zero. For a similar reason, the terms for j < i
also vanish. Only the terms with i = j survive, leaving∑n

i=0
E

(
H(ti )

2(�i B)2
)

=
∑n

i=0
E

(
H(ti )

2(ti+1 − ti )
)

because Eti (�i B)2 = ti+1 − ti

= E

∫ 1

0
H(s)2 ds.

More generally, if G is also an elementary process, by taking a common refinement of the G and H grids
we see that G − H is an elementary process, and hence

<4> E

( ∫ 1

0
H(s) d B(s) −

∫ 1

0
G(s) d B(s)

)2

= E

∫ 1

0

(
G(s, ω) − H(s, ω)

)2
ds.

I have included the ω argument on the right-hand side to emphasize the two averagings involved: one
over s and the other over ω.

Equality <4> justifies the following definition. Suppose that H has continuous sample paths and
that Ht depends only on Ft information, for each t . Suppose also that E

∫ 1
0 H(s, ω)2ds < ∞. For a

sequence of grids

Gn : t0,n = 0 < t1,n < tkn+1,n = 1 with mesh(Gn) := maxi |ti,n − ti+1,n| → 0,

define approximating elementary processes

Hn(s, ω) =
∑kn

i=0
H(ti,n, ω)

(
B(ti+1,n, ω) − B(ti,n, ω)

)
.

Then it can be shown that there exists a random variable J for which

E

( ∫ 1

0
Hn(s, ω)d B(s, ω) − J (ω)

)2

→ 0 as n → ∞.
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The limit does not depend on the choice of the grids. It defines the stochastic integral,
∫ 1

0 H(s) d B(s).

Again, the definition can be extended beyond integrands with continuous sample paths, but we won’t
be needing such stochastic integrals.

The integral H • Bt = ∫ t
0 H d B also exists as a limit in the E(. . .)2 sense. In fact, by using an

inequality due to Doob, we could show that

E sup
0≤t≤1

(
Hn • Bt − H • Bt

)2 → 0 as n → ∞,

which implies that H • B is also a martingale with continuous sample paths.

4. Stochastic integral with respect to a martingale

The method from 3 also works for integrals with respect to a more general martingale {Mt : 0 ≤ t ≤ 1}.
Suppose that there exists a process {At : 0 ≤ t ≤ 1} with continuous, increasing sample paths and with At

depending only on the Ft information, for which

M2
t − At is a martingale with continuous sample paths.

This assumption implies, for all s < t , that

<5> Es
(
(Mt − Ms)

2 − (At − As)
) = 0.

For an elementary process

H(t, ω) =
∑n

i=0
H(ti , ω)I{ti < t ≤ ti+1},

we define

(H • M)t =
∫ t

0
Hs(ω) d Ms(ω) =

∑n

i=0
H(ti , ω)

(
M(ti+1 ∧ t, ω) − M(ti ∧ t, ω)

)
.

Almost the same argument as in Section 3 can be used to show that H • M is a martingale with
continuous sample paths. Moreover,

E
(
H • M1

)2 =
∑n

i=0
E

(
H(ti )

2(�i M)2
)

where �i M = M(ti+1) − M(ti )

=
∑n

i=0
E

(
H(ti )

2(A(ti+1) − A(ti )
)

by <5>

= E

∫ 1

0
H 2

t d At

And so on.

In short, it is possible to define H• for processes H with continuous sample paths, with each Ht

depending only on Ft -information, and with

E

∫ 1

0
H(t, ω)2 d A(t, ω) < ∞

The integral with respect to t is define as in Section 2, because each sample path of A has bounded
variation.

The process {H • Mt : 0 ≤ t ≤ 1} is a martingale with continuous sample paths.

<6> Example. Suppose {Xt : 0 ≤ t ≤ 1} is an adapted stochastic process with continuous sample paths.
Suppose also that there exist adapted processes µ and σ with continuous sample paths, such that

Es(Xt+h − Xt ) = hµ(t, ω) + smaller order terms

Es(Xt+h − Xt )
2 = hσ 2(t, ω) + smaller order terms

Interpret the first approximation to mean that

Zt = Xt −
∫ t

0
µ(s, ω) ds is a martingale.
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The second approximation then gives

Es
(
Zt+h − Zt

)2 = Es(Xt+h − Xt )
2 − (

µ(t, ω)h + . . .
)2 = hσ 2(t, ω) + smaller order terms,

which we can interpret to mean that

Z2
t −

∫ t

0
σ 2(s, ω) ds is a martingale.

�

5. Semimartingales

6. Quadratic variation

Define “adapted process”
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