
Statistics 251/551
2004: Solutions to sheet 1

(1.2) I’ll write hh for the initial configuration of the stack, th for the configuration with the top coin facing
tail up and the bottom coin facing head up, and so on. There are only four possible outcomes for the
first two shuffles:

outcome stack changes probability H1, H2 P{H3 = 2 | ωi }
ω1 hh → th → hh θ2

1 1,2 0

ω2 hh → th → th θ1θ2 1,1 θ1

ω3 hh → t t → ht θ2θ1 0,1 0

ω4 hh → t t → hh θ2
2 0,2 0

For part (i):
P{H3 = 2 | H1 = 1, H2 = 1} = P{H3 = 2 | ω2} = θ1.

For part (ii):

P{H3 = 2 | H2 = 1} = P{H3 = 2 | ω2 or ω3}
= P{H3 = 2 | ω2}P{ω2 | ω2 or ω3} + P{H3 = 2 | ω3}P{ω3 | ω2 or ω3}
= θ1

θ1θ2

θ1θ2 + θ1θ2
+ 0 = 1

2θ1

(1.3) You should draw the state space picture, which shows that returns to state 1, when starting in state 1,
can occur only in n = 5k + 2� steps, for k = 1, 2, 3, . . . and � = 0, 1, 2, . . ., corresponding to
k completed loops around 1 → 2 → 3 → 4 → 5 → 1 with � loops aound 4 → 5 → 4. The
choice k = 1 gives all the odd values 5, 7, 9, 11, 13, . . .. The choice k = 2 gives all the even values
10, 12, 14, . . .. larger values of k generate no new values for n. Thus

{n ∈ N : P1{Xn = 1} > 0} = {5, 7} ∪ {n ∈ N : n ≥ 9}
(1.4) Consider a slightly more general form of the problem, with state space Z, the set of all integers, and

transition probabilities:

i = state . . . -3 -2 -1 0 1 2 3 . . .

P(i, i + 1) . . . θ θ θ 1/2 1 − θ 1 − θ 1 − θ . . .

P(i, i − 1) . . . 1 − θ 1 − θ 1 − θ 1/2 θ θ θ . . .

for some 1/2 < θ < 1. The homework problem had θ = 0.6.
The equations for the stationary distribution reduce to πj = P( j + 1, j)πj+1 + P( j − 1, j)πj−1 for

all j , that is,

π0 = θ
(
π−1 + π1

)

π1 = 1
2π0 + θπ2 and π−1 = 1

2π0 + θπ−2

π2 = (1 − θ)π1 + θπ3 and π−2 = (1 − θ)π−1 + θπ−3

π3 = (1 − θ)π2 + θπ4 and π−3 = (1 − θ)π−2 + θπ−4

. . .

The question asks for the stationary distribution. In fact, for an irreducible chain there can be at most
one stationary distribution. The symmetry of the situation suggests we should look for a solution with
πi = π−i for all i ≥ 1. If we find such a solution, we are done. If we did’t find a solution, then we could
either start searching for a solution without symmetry or give an argument why the solution, if it exists,
has to be symmetric.



A symmetric solution would satisfy

π0 = 2θπ1

π1 = 1
2π0 + θπ2 that is. π2 = απ1 where α = (1 − θ)/θ = 1/θ − 1

π2 = (1 − θ)π1 + θπ3 that is, π3 = −απ1 + (1/θ)π2 = α2π1

π3 = (1 − θ)π2 + θπ4 that is, π4 = −απ2 + (1/θ)π3 = α3π1

. . .

The pattern seems clear. A formal inductive proof would ensure that we are not being fooled by a few
cases.

[[Alternatively, we could rearrange the equation for π2 into (1 − θ)(π2 − π1) = θ(π3 − π2), that is,

π3 − π2 = α(π2 − π1),

then work our way down the following equations:

π4 − π3 = α(π3 − π2) = α2(π2 − π1)

π5 − π4 = α(π4 − π3) = α2(π3 − π2) = α3(π2 − π1)

. . .

The sum telescopes when we add, leaving

πk+1 − π1 =
∑k

i=1
(πi+1 − πi ) = (1 + α + α2 + . . . + αk−1)(π2 − π1)

We must have πk+1 → 0 as k → ∞, for otherwise
∑

i∈Z
πi would not converge. The limiting form of the

previous equation is
−π1 = (1 − α)−1(π2 − π1),

which again gives π2 = απ1 and

πk+1 = π1 + (1 + α + α2 + . . . + αk−1)(α − 1)π1 = αkπ1

Notice that this argument does not depend on the assumption of symmetry. It could equally well be
applied on the other side of the origin, giving π−(k+1) = αkπ−1. The equations for π±1 woud then give

π1(1 − θα) = 1
2π0 = π−1(1 − θα),

which leads us back to the symmetry property.]]
Finally, the requirement that the πi ’s sum to 1 lets us solve for π1:

1 =
∑

i∈Z
π1 = π0 + 2

∑
i≥1

πi = (
2θ + 2(1 − α)−1

)
π1,

that is, π1 = (2θ − 1)/(2θ)2. For θ = 0.6 we have

π0 = 1
6 and π±k = 5

36

(
2
3

)k−1
for k = 1, 2, . . .

For the general solution, we needed 1/2 < θ to ensure that α < 1 and
∑

k αk < ∞. For θ = 1/2 the
method breaks down, as we know it must: there is no stationary probability distribution for the symmetric
random walk on the integers.

(1.5) We have
Pµ{Xn+1 = j} =

∑
i∈S

Pµ{Xn = i}P(i, j) ≥
∑

i∈S0
Pµ{Xn = i}P(i, j)

for every finite subset S0 of S. It is legitimate to pass to the limit inside a finite sum. Thus

πj ≥
∑

i∈S0
πi P(i, j) for finite S0 ⊆ S.

Take the limit as S0 ↑ S to deduce that πj ≥ ∑
i∈S πi P(i, j), for each j . That is, for some δj ≥ 0,

πj = δj +
∑

i∈S0
πi P(i, j)

Sum over j , using the fact that the order of summation can be changed when summing nonnegative
quantities, to deduce that

1 =
∑

j∈S
πj =

∑
j∈S

δj +
∑

i∈S
πi

∑
j∈S

P(i, j).

Then use the fact that
∑

j∈S P(i, j) = 1 to conclude that δj = 0 for every j .


