Solution to Problem 2.4

We start from an irreducible Markov chain $\{X_n : n = 0, 1, 2, ...\}$ on a state space S with transition probabilities P(i, j). The chain has period 2 and a stationary distribution π .

Many of you had trouble relating the X_n and Y_n chains, confusing the state space with the chains themselves and failing to distinguish between transition probabilities for the X_n and Y_n chains. Remember that irreducibility and periodicity are properties of P and S. To emphasize these facts, I will write out a solution in matrix notation, which you could reinterpret via summations if S is infinite.

A state i_0 is chosen arbitrarily from S. Then for each j in S we define

$$N_j = \{n \in \mathbb{N} : P^n(i_0, j) > 0\}$$

When j equals i_0 , the set N_{i_0} corresponds to the set used to define the period of the state i_0 : that is, $2 = \gcd N_{i_0}$. For $j \neq i_0$, the set N_j is not the one used to define the period of state j.

To show that all elements of an N_j have the same parity (that is, all are odd or all are even), argue from existence (by irreducibility) of an *m* such that $P^m(j, i_0) > 0$. If *n* and *n'* are both in N_j , then $P^{n+m}(i_0, i_0) > 0$ and $P^{n'+m}(i_0, i_0) > 0$, which implies that both n + m and n' + m are even numbers. By subtraction, n - n' is also even, forcing *n* and *n'* to have the same parity.

REMARK. Some of you incorrectly asserted that $P^{|n-n'|}(i_0, i_0) > 0$. If there are paths of length 3 and length 5 leading from i_0 to j, how could they be combined to get a path of length 2 from i_0 to i_0 ?

We define S_0 as the set of states *j* for which all elements of N_j are even, and S_1 as the set of states *j* for which all elements of N_j are odd. If two states are both in S_0 or are both in S_1 , say that they have the same parity; otherwise, say they have opposite parity.

It is easy to show that a pair of states (i, j) for which P(i, j) > 0 must have opposite parity: if $n \in N_i$ then $P^n(i_0, i) > 0$, whence $P^{n+1}(i_0, j) > 0$ and $n + 1 \in N_j$.

If we label the states so that all those in S_0 precede those in S_1 , the transition matrix *P* takes the form

$$\begin{array}{c} & & & \\ \$_0 & & \\ \$_1 & \\ 8_1 & \\ \end{array} \begin{array}{c} & & \\ 8_0 & & \\ P_0 & & 0 \end{array} \right)$$

The Markov chain $Y_n := X_{2n}$ has transition matrix

$$Q = P^2 = \begin{pmatrix} Q_0 & 0 \\ 0 & Q_1 \end{pmatrix}$$
 where $Q_0 = P_1 P_0$ and $Q_1 = P_0 P_1$

with *n*-step transition probabilities

$$Q^n = \begin{pmatrix} Q_0^n & 0\\ 0 & Q_1^n \end{pmatrix}$$

Clearly $\mathbb{P}{Y_n = j | Y_0 = i} = 0$ for all *n* if *i* and *j* have opposite parity; Y_n is not irreducible as a chain on the state space S. If Y_n starts in S_0 , it stays there forever; if Y_n starts in S_1 , it stays there forever.

If we start Y_n somewhere in S_0 , we may think of it as a Markov chain with state space S_0 and transition matrix Q_0 . Suppose *i* and *j* are two states in S_0 . From the definition of N_i and N_j (and the fact that i_0 has period 2 for the transition matrix *P*), there exist even integers 2m, 2n, 2m', 2n' such that

$$P^{2n}(i_0, i) > 0$$
 and $P^{2m}(i, i_0) > 0$
 $P^{2n'}(i_0, i) > 0$ and $P^{2m'}(i, i_0) > 0$

It follows that

$$Q_0^{m+n'}(i, j) = P^{2m+2n'}(i, j) > 0$$

Thus, Q_0 defines an irreducible chain on S_0 . The fact that i_0 has period 2 for the X_n chain implies that

$$Q^{n}(i_{0}, i_{0}) = P^{2n}(i_{0}, i_{0}) > 0$$
 for all *n* large enough.

©David Pollard, 2004

That is, the chain on S_0 with transition matrix Q_0 has period 1.

Similar reasoning shows that the chain on S_1 with transition matrix Q_1 is irreducible with period 1.

Stationary distributions

By definition of π as a stationary distribution for the X_n chain,

$$\pi_j = \sum_{i \in \mathbb{S}} \pi_i P(i, j) \quad \text{for all } i, j \in \mathbb{S}$$

If $j \in S_0$ we have P(i, j) = 0 for all $i \in S_0$. And if $i \in S_1$ we have $\sum_{i \in S_0} P(i, j) = 1$. Thus

$$\sum_{j \in \mathbb{S}_0} \pi_j = \sum_{j \in \mathbb{S}_0} \sum_{i \in \mathbb{S}_1} \pi_i P(i, j) = \sum_{i \in \mathbb{S}_1} \pi_i \sum_{j \in \mathbb{S}_0} P(i, j) = \sum_{i \in \mathbb{S}_1} \pi_i$$

That is, π gives the same probability to S_0 and to S_1 . The fact that $1 = \pi(S) = \pi(S_0) + \pi(S_1)$ then gives $\pi(S_0) = \pi(S_1) = 1/2$.

We define probability distributions $\pi^{(0)}$ as 2 times the restriction of π to S_0 and $\pi^{(1)}$ as 2 times the restriction of π to S_1 . The stationarity property $\pi = \pi P$ becomes

$$\begin{pmatrix} \frac{1}{2}\pi^{(0)}, & \frac{1}{2}\pi^{(1)} \end{pmatrix} \begin{pmatrix} 0 & P_1 \\ P_0 & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2}\pi^{(0)}, & \frac{1}{2}\pi^{(1)} \end{pmatrix}.$$

that is, $\pi^{(1)}P_0 = \pi^{(0)}$ and $\pi^{(0)}P_1 = \pi^{(1)}$, from which it follows that

$$\pi^{(0)}Q_0 = \pi^{(0)}P_1P_0 = \pi^{(1)}P_0 = \pi^{(0)}$$

$$\pi^{(1)}Q_1 = \pi^{(1)}\pi^{(0)}P_0P_1 = \pi^{(0)}P_1 = \pi^{(1)}$$

The Y_n chains on S_0 and S_1 have stationary distributions $\pi^{(0)}$ and $\pi^{(1)}$.

By the BLT, these stationary distributions for Q_0 and Q_1 are unique, which implies that π must be the unique stationary distribution for P. We can say even more. As $n \to \infty$,

$$\begin{aligned} Q_0^n(i, j) &\to \pi_j^{(0)} & \text{ for all } i, j \in \mathbb{S}_0 \\ Q_1^n(i, j) &\to \pi_j^{(1)} & \text{ for all } i, j \in \mathbb{S}_1 \end{aligned}$$

That is,

$$P^{2n}(i, j) \to \begin{cases} \pi_j^{(0)} & \text{if } i, j \in \mathbb{S}_0 \\ 0 & \text{if } i \in \mathbb{S}_0 \text{ and } j \in \mathbb{S}_1 \\ \pi_j^{(1)} & \text{if } i, j \in \mathbb{S}_1 \\ 0 & \text{if } i \in \mathbb{S}_1 \text{ and } j \in \mathbb{S}_0 \end{cases}$$

Similarly, the relationship

$$P^{2n+1} = \begin{pmatrix} Q_0^n & 0\\ 0 & Q_1^n \end{pmatrix} \begin{pmatrix} 0 & P_1\\ P_0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & Q_0^n P_1\\ Q_1^n P_0 & 0 \end{pmatrix}$$

implies

$$P^{2n+1}(i,j) \rightarrow \begin{cases} 0 & \text{if } i, j \in \mathbb{S}_0 \\ \pi_j^{(1)} & \text{if } i \in \mathbb{S}_0 \text{ and } j \in \mathbb{S}_1 \\ 0 & \text{if } i, j \in \mathbb{S}_1 \\ \pi_j^{(0)} & \text{if } i \in \mathbb{S}_1 \text{ and } j \in \mathbb{S}_0 \end{cases}$$

For a general initial distribution μ for the X_n chain, define $\theta_0 = \mu(S_0)$ and $\theta_1 = \mu(S_1)$. By summing over contributions from S_0 and S_1 we then get a description of the limiting behavior of the chain:

$$\mathbb{P}_{\mu}\{X_{2n} = j\} \to \begin{cases} \theta_0 \pi_j^{(0)} & \text{if } j \in S_0 \\ \theta_1 \pi_j^{(1)} & \text{if } j \in S_1 \end{cases}$$

and

$$\mathbb{P}_{\mu}\{X_{2n+1} = j\} \to \begin{cases} \theta_1 \pi_j^{(0)} & \text{if } j \in \mathbb{S}_0 \\ \theta_0 \pi_j^{(1)} & \text{if } j \in \mathbb{S}_1 \end{cases}$$

Notice that a choice with $\theta_0 = 1/2$ leads us to a limiting value π_i for $\mathbb{P}_{\mu}\{X_n = j\}$, for all j.

©David Pollard, 2004