
Solution to Problem 2.4

We start from an irreducible Markov chain {Xn : n = 0, 1, 2, . . .} on a state space S with
transition probabilities P(i, j). The chain has period 2 and a stationary distribution π .

Many of you had trouble relating the Xn and Yn chains, confusing the state space with the
chains themselves and failing to distinguish between transition probabilities for the Xn and Yn

chains. Remember that irreducibility and periodicity are properties of P and S. To emphasize these
facts, I will write out a solution in matrix notation, which you could reinterpret via summations
if S is infinite.

A state i0 is chosen arbitrarily from S. Then for each j in S we define

Nj = {n ∈ N : Pn(i0, j) > 0}
When j equals i0, the set Ni0 corresponds to the set used to define the period of the state i0: that
is, 2 = gcd Ni0 . For j �= i0, the set Nj is not the one used to define the period of state j .

To show that all elements of an Nj have the same parity (that is, all are odd or all are even),
argue from existence (by irreducibility) of an m such that Pm( j, i0) > 0. If n and n′ are both in Nj ,
then Pn+m(i0, i0) > 0 and Pn′+m(i0, i0) > 0, which implies that both n + m and n′ + m are even
numbers. By subtraction, n − n′ is also even, forcing n and n′ to have the same parity.

Remark. Some of you incorrectly asserted that P |n−n′ |(i0, i0) > 0. If there are paths of
length 3 and length 5 leading from i0 to j , how could they be combined to get a path of length 2
from i0 to i0?

We define S0 as the set of states j for which all elements of Nj are even, and S1 as the set of
states j for which all elements of Nj are odd. If two states are both in S0 or are both in S1, say
that they have the same parity; otherwise, say they have opposite parity.

It is easy to show that a pair of states (i, j) for which P(i, j) > 0 must have opposite parity:
if n ∈ Ni then Pn(i0, i) > 0, whence Pn+1(i0, j) > 0 and n + 1 ∈ Nj .

If we label the states so that all those in S0 precede those in S1, the transition matrix P takes
the form

( S0 S1

S0 0 P1

S1 P0 0

)
The Markov chain Yn := X2n has transition matrix

Q = P2 =
(

Q0 0
0 Q1

)
where Q0 = P1 P0 and Q1 = P0 P1

with n-step transition probabilities

Qn =
(

Qn
0 0

0 Qn
1

)
Clearly P{Yn = j | Y0 = i} = 0 for all n if i and j have opposite parity; Yn is not irreducible as a
chain on the state space S. If Yn starts in S0, it stays there forever; if Yn starts in S1, it stays there
forever.

If we start Yn somewhere in S0, we may think of it as a Markov chain with state space S0 and
transition matrix Q0. Suppose i and j are two states in S0. From the definition of Ni and Nj (and
the fact that i0 has period 2 for the transition matrix P), there exist even integers 2m, 2n, 2m ′, 2n′

such that

P2n(i0, i) > 0 and P2m(i, i0) > 0

P2n′
(i0, j) > 0 and P2m ′

( j, i0) > 0

It follows that
Qm+n′

0 (i, j) = P2m+2n′
(i, j) > 0

Thus, Q0 defines an irreducible chain on S0. The fact that i0 has period 2 for the Xn chain implies
that

Qn(i0, i0) = P2n(i0, i0) > 0 for all n large enough.
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That is, the chain on S0 with transition matrix Q0 has period 1.
Similar reasoning shows that the chain on S1 with transition matrix Q1 is irreducible with

period 1.

Stationary distributions

By definition of π as a stationary distribution for the Xn chain,

πj =
∑

i∈S
πi P(i, j) for all i, j ∈ S.

If j ∈ S0 we have P(i, j) = 0 for all i ∈ S0. And if i ∈ S1 we have
∑

j∈S0
P(i, j) = 1. Thus∑

j∈S0
πj =

∑
j∈S0

∑
i∈S1

πi P(i, j) =
∑

i∈S1
πi

∑
j∈S0

P(i, j) =
∑

i∈S1
πi

That is, π gives the same probability to S0 and to S1. The fact that 1 = π(S) = π(S0) + π(S1)

then gives π(S0) = π(S1) = 1/2.
We define probability distributions π(0) as 2 times the restriction of π to S0 and π(1) as 2

times the restriction of π to S1. The stationarity property π = π P becomes(
1
2π(0), 1

2π(1)
) (

0 P1

P0 0

)
= (

1
2π(0), 1

2π(1)
)
.

that is, π(1) P0 = π(0) and π(0) P1 = π(1), from which it follows that

π(0) Q0 = π(0) P1 P0 = π(1) P0 = π(0)

π(1) Q1 = π(1)π(0) P0 P1 = π(0) P1 = π(1)

The Yn chains on S0 and S1 have stationary distributions π(0) and π(1).
By the BLT, these stationary distributions for Q0 and Q1 are unique, which implies that π

must be the unique stationary distribution for P . We can say even more. As n → ∞,

Qn
0(i, j) → π

(0)
j for all i, j ∈ S0

Qn
1(i, j) → π

(1)
j for all i, j ∈ S1

That is,

P2n(i, j) →

⎧⎪⎪⎨
⎪⎪⎩

π
(0)
j if i, j ∈ S0

0 if i ∈ S0 and j ∈ S1

π
(1)
j if i, j ∈ S1

0 if i ∈ S1 and j ∈ S0

.

Similarly, the relationship

P2n+1 =
(

Qn
0 0

0 Qn
1

) (
0 P1

P0 0

)
=

(
0 Qn

0 P1

Qn
1 P0 0

)
implies

P2n+1(i, j) →

⎧⎪⎪⎨
⎪⎪⎩

0 if i, j ∈ S0

π
(1)
j if i ∈ S0 and j ∈ S1

0 if i, j ∈ S1

π
(0)
j if i ∈ S1 and j ∈ S0

.

For a general initial distribution µ for the Xn chain, define θ0 = µ(S0) and θ1 = µ(S1). By
summing over contributions from S0 and S1 we then get a description of the limiting behavior of
the chain:

Pµ{X2n = j} →
{

θ0π
(0)
j if j ∈ S0

θ1π
(1)
j if j ∈ S1

.

and

Pµ{X2n+1 = j} →
{

θ1π
(0)
j if j ∈ S0

θ0π
(1)
j if j ∈ S1

.

Notice that a choice with θ0 = 1/2 leads us to a limiting value πj for Pµ{Xn = j}, for all j .

c©David Pollard, 2004 Statistics 251/551


