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(3.1) In general,

P{X = x | Y = y} =
∑

z
P{X = x | Y = y, Z = z}P{Z = z | Y = y}.

If P{X = x | Y = y, Z = z} = g(x, y) for all z, it factorizes out from each summand on
the right-hand side leaving g(x, y)

∑
z P{Z = z | Y = y} = g(x, y).

(3.2) The specification of the VA functions is a little misleading. If you take it literally, you
will find two distinct configurations (all 0’s or all 1’s) each with probability 1. Of course,
we should divide by the constant

K =
∑

x

∏
A∈C

VA(x)

to make the Gibbs specification a proper probability distribution. The proof of the
Hammersley-Clifford theorem shows that we can always choose the VA so that K = 1.
If the VA are specified as in the Problem then the constant is needed. Fortunately, in
calculations of conditional probabilities the constant cancels out. For example,

P{X5 = 1 | X2 = 0,X4 = 0, X6 = 0, X8 = 0}
= V2,5(0, 1)V4,5(0, 1)V5,6(1, 0)V5,8(1, 0)

∑1
b=0 V2,5(0, b)V4,5(0, b)V5,6(b, 0)V5,8(b, 0)

= 0.54

14 + 0.54
= 1

17
and

P{X9 = 1 | X6 = 0, X8 = 0} = V6,9(0, 1)V8,9(0, 1)
∑1

b=0 V6,9(0, b)V8,9(0, b)
= 0.52

12 + 0.52
= 1

5

(3.3) Suppose the probabilities were given by a Gibbs distribution. The following table shows
the arguments of the VA for each of the four cliques for each of the eight configurations
with nonzero probability. I have omitted entries that duplicate an earlier entry in the
same column, in order that it be quite clear that all four pairs of 0’s and 1’s appear as
arguments to each VA.

x V1,2 args V2,3 args V3,4 args V4,1 args

0000 00 00 00 00

1000 10 01

1100 11 10

1110 11 10

0001 01 10

0011 01 11

0111 01

1111 11

It follows that we would have VA(i, j) > 0 for all A all i, j . However, that would
force

P{X1 = 1, X2 = 0, X3 = 1, X4 = 0} = V1,2(1, 0)V2,3(0, 1)V3,4(1, 0)V4,1(0, 1) > 0,

which is inconsistent with the assigned probabilities.



To verify the Markov property we need to check a big bunch of equalities of the
form

(∗) P{X1 = i1 | X2 = i2, X3 = i3, X4 = i4} = P{X1 = i1 | X2 = i2, X4 = i4}
Strictly speaking, it is only necessary to consider those triples (i2, i3, i4) for which
P{X2 = i2, X3 = i3, X4 = i4} > 0. Also, it is enough to consider the case i1 = 1,
because the analogous assertions for i1 = 0 then follow by subtraction from 1.

For (i2, i4) = (0, 0) or (i2, i4) = (1, 1) assertion (∗) is trivial because

{X2 = 0, X3 = 0, X4 = 0} = {X2 = 0, X4 = 0}
{X2 = 1, X3 = 1, X4 = 1} = {X2 = 1, X4 = 1}

For (i2, i4) = (1, 0) or (i2, i4) = (0, 1) assertion (∗) is also trivial, because

P{X1 = 1|X2 = 1, X4 = 0} = 1 = P{X1 = 0|X2 = 0, X4 = 1}
I should also check the analogous assertions for P{X2 = 1 | X1 = i1, X3 = i3, X4 = i4},
and so on.

It is possible to reduce the amount of tedious detail by checking an equivalent
form of the Markov property. In general, random variables X and Y are said to be
conditionally independent given another random quantity Z if

(∗∗) P{X = x, Y = y | Z = z} = P{X = x | Z = z}P{Y = y | Z = z}
for all x, y and z for which P{Z = z} > 0. If (∗∗) holds P{Y = y, Z = z} > 0, then

P{X = x | Y = y, Z = z} = P{X = x, Y = y, Z = z}
{P{Y = y, Z = z}

= P{X = x, Y = y | Z = z}P{Z = z}
P{Y = y | Z = z}P{Z = z}

= P{X = x | Z = z}P{Y = y | Z = z}
P{Y = y | Z = z} by (∗∗)

= P{X = x | Z = z}
The MRF property for X1, X2, X3, X4 is equivalent to a pair of conditional independences:
X1 independent of X3 given the random vector (X2, X4); and X2 independent of X4

given the random vector (X1, X3). That is, we need to check

P{X1 = i1, X3 = i3 | X2 = i2, X4 = i4} = P{X1 = i1 | X2 = i2, X4 = i4}P{X3 = i3 | X2 = i2, X4 = i4}
P{X2 = i2, X4 = i4 | X1 = i1, X3 = i3} = P{X2 = i2 | X1 = i1, X3 = i3}P{X4 = i4 | X1 = i1, X3 = i3}

In every case, the factorization is trivial because one of the random variables has a
degenerate conditional distrbution. For example, P{X3 = 0 | X2 = 0, X4 = 0} = 1.

(3.4) It is important to realize what is not being suggested in this problem. If a particular
graph structure on GX ∪GY is to make (X, Y ) a MRF, then a particular set of conditional
independences is required. However, we could have a MRF without requiring particular
dependences. For example, if all components of (X, Y ) are independent then it is a MRF
for any choice of edges for the graph, including the extreme case where there are no
edges or the other extreme where every pair of nodes is connected by an edge.

Consider once more the general situation of a MRF W1 = (Z1, Z2, . . . , Zn) on
a graph with nodes G1 = {g1, g2, . . . , gn} and edges E1. The random variables W2 =
(Z2, . . . , Zn) can be identified with the nodes G2 = {g2, . . . , gn}. If we remove from E1

all edges with g1 as a vertex we are left with a set of edges E′
1 joining nodes in G1.

As explained in class, it need not be true that W2 is a MRF for (G2, E
′
1). However, W2

is a MRF for a new graph (G2, E2), where E2 is obtained by adding to E′
1 new edges

{gi , gj } for all nodes with gi ∼1 g1 ∼1 gj , where the symbol ∼1 refers to an edge in the
original E1. That is, we define {gi , gj }, with i, j ≥ 2, to be an E2-edge if either (maybe
both) of the following conditions is satisfied: (i) gi ∼1 gj or (ii) gi ∼1 g1 ∼1 gj .



Now consider W3 = (Z3, . . . , Zn) with nodes G3 = {g3, . . . , gn}. We can be sure
that W3 is a MRF for (G3, E3) if we define E3 to contain all those {gi , gj }, with i, j ≥ 3,
for which: (i) {gi , gj } ∈ E2, or (ii) {gi , g2} ∈ E2 and {g2, gj } ∈ E2.

Suppose {gi , gj } is a newly created E3-edge. Then we know both nodes were
connected to g2 in E2, that is gi ∼2 g2 ∼2 gj . By definition of E2-edges, either gi ∼1 g2

or gi ∼1 g1 ∼1 g2, with a similar pair of possibilities for gj . If you track through all
four pairs of possibilities you will see that one of the following must be true:

gi ∼1 g2 ∼1 gj or gi ∼1 g2 ∼1 g1 ∼1 gj or gi ∼1 g1 ∼1 g2 ∼1 gj or gi ∼1 g1 ∼1 gj

And so on.
A formal inductive argument would hypothesize that gi ∼k gj if and only if either

gi ∼1 gj or there is a chain gi ∼1 a1 ∼1 . . . ∼1 am ∼1 gj , where {a1, . . . , am} ⊆
{g1, . . . , gk}. If (gi , gj ) were newly created as an Ek+1-edge we would have gi ∼k gk

and gk ∼k gj . By the inductive hypothesis, there exist nodes from {g1, . . . , gk−1} for
which

gi ∼1 a1 ∼1 . . . ∼1 am ∼1 gk ∼1 b1 ∼1 . . . ∼1 b� ∼1 gj

Thus gi and gj are joined by a chain through {g1, . . . , gk}. And so on.
The first part of the question differs only notationally from the problem I have just

solved.
The story for P{X = x | Y = y} is much easier. We may write the original Gibbs

distribution as
P{X = x, Y = y} =

∏
A∈C

VA(x, y)

where C is the set of cliques for the graph on GX ∪ GY . The conditional distribution is

P{X = x | Y = y} =
∏

A∈C
VA(x, y)/P{Y = y}

Remember that we treat y as a constant. As a function of x , the factor VA(x, y) depends
on x only through the values for nodes in GX ∩ A. Moreover, each pair of nodes in GX ∩ A
is connected by an edge. Thus, the conditional distribution is already expressed as a
Gibbs distribution, a product over complete subsets of GX . We do not need to create any
extra edges between nodes in GX to make the conditional probability a MRF for each
fixed y.


