
Statistics 251/551
2004: Solutions to sheet 4

(4.1) Write Fn for the information given by R1, R2, . . . , Rn . If all initial orderings of the deck were equally
likely, then all possible orderings of the unseen cards are equally likely. In particular, the conditional
probability of the top card being red is Rn/(52 − n), the proportion of red cards remaining in the deck.
Thus

P
(
Rn+1 = Rn − 1 | Fn

) = Rn/(52 − n)

P
(
Rn+1 = Rn | Fn

) = 1 − Rn/(52 − n)

and

E
(
Rn+1 | Fn

) = (Rn − 1)Rn + Rn(52 − n − Rn)

52 − n
= Rn(51 − n)

52 − n
.

Divide through by 51 − n to get the martingale property, E(Mn+1 | Fn) = Mn .
Most of you noticed that Rn is Markov chain, so that conditioning on Fn can be reduced to

conditioning on Rn . Some of you forgot to distinguish between conditional and unconditional calculations.

(4.2) Write Fn for the information given by X0, X1, . . . , Xn . The sequence {Xn : n = 0, 1, . . .} is a Markov
chain, with the conditional distribution of Xn+1 given Xn being Binomial(d, Xn/d). Consequently,

E(Xn+1 | Fn) = d(Xn/d) = Xn.

That is, Xn is a martingale.
There are several ways to use the martingale property to find the probability θW that the population

is eventually all white.
A crude argument: EXn stays constant at its initial value x0. For very large n, this value should be

close to 0(1 − θW ) + dθW . [Waving of hands follows.]
I was hoping for a more formal argument involving stopping times and the STL. For example, you

could define τ = inf{n : Xn = 0 or d}. You could use the chicken argument to show that τ < ∞ with
probability one: P{Xn+1 = d | Xn = i} ≥ d−d for every i with 0 < i < d. By the STL, for each positive
integer N ,

x0 = EX0 = EXτ∧N = 0P{Xτ = 0, τ ≤ N } + dP{Xτ = d, τ ≤ N } + EX N I{τ > N }
The last term is bounded by dP{τ > N } which tends to zero as N tends to ∞. The other two terms also
converge. In the limit we have

x0 = dP{Xτ = d, τ < ∞} = dθW ,

as suggested by the crude argument.

(4.3) Consider the general problem where, after each draw, we replace the selected ball by c + 1 balls of the
same color and d balls of the other color. Let Wn be the number of white balls in the urn after completion
of the nth step and Bn be the number of black balls. Notice that Nn := Wn + Bn = w + b + n(c + d) if
we start with W0 = w white balls and B0 = b black balls.

The history up to completion of the nth step, Fn , tells us the values of Wi and Bi for i ≤ n. In fact
we only need the value of Wn (because Nn is deterministic) to specify the conditional distribution,

Wn+1 | Fn =
{

Wn + c with probability Mn

Wn + d with probability 1 − Mn
where Mn = Wn/Nn .

Thus

E(Mn+1 | Fn) = (Wn + c)Mn + (Wn + d)(1 − Mn)

Nn+1
= Nn Mn + (c − d)Mn + d

Nn+1
= Mn

Nn + c − d

Nn+1
+ d

Nn+1
.

If d = 0 then Nn + c = Nn+1 and the last expression reduces to Mn . The Mn process is then a martingale.
More generally, the last expression equals Mn if and only if

d

Nn+1
= Mn

Nn+1 − (Nn + c − d)

Nn+1
= Mn

2d

Nn+1

If d �= 0, the right-hand side equals Mn only when Mn = 1/2. As P{Mn = 1/2} < 1 for n ≥ 1, the
process is not a martingale.



(4.4) For part (a) we need to solve simple linear equations to get the averaging property for a martingale. The
solutions are a = 5.5 and b = 10 and c = 26. The trading strategy is

H0 ≡ 2 and H1 = 4 × I{S1 = 6} + 1
2 × I{S1 = 2}

(4.5) By direct calculation for the conditional distribution of Xn+1 given Fn ,

E(s Xn+1 | Fn) = s Xn E
(
s Xn+1−Xn | Fn

) = s Xn
(

ps1 + qs−1
) = s Xn H(s).

Divide both sides by H(s)n+1 to deduce that Zn is martingale.
For each i in N0,

{τ ∧ N = i} =
{ ∅ if N < i

{τ ≥ i} if N = i
{τ = i} if N > i

In each case, the event on the right-hand side depends only on Fi information.
Define K := |A| + B. For each n,

P{τ ≤ n + K | τ > n} ≥ p|A|+B,

because K successive outcomes with Xi+1 = Xi + 1 would surely cause the X process to hit B if it hadn’t
already hit A. Deduce that P{τ > nK } converges to zero geometrically fast.

A plot of H(s) versus s, for the special case p = 0.7, looks like:
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The picture for general p looks similar, with the minimum value of
√

4pq occurring when s = √
q/p.

Notice that 4pq ≤ 1, with equality only when p = 1/2. For t > 0 we have et > 1, so that the equation
et = H(s) has two distinct, positive roots,(

et ±
√

e2t − 4pq
)

/(2p)

Write s0(t) for the smaller root and s1(t) for the larger. The roots decrease to the two roots of the equation
H(s) = 1, namely s = 1 and s = q/p, as t decreases to 0. Notice that the new roots are distinct if
p �= 1/2, but they both equal 1 if p = 1/2.

For a fixed natural number N , the stopping time τ ∧ N is bounded above by the constant N . The
STL gives,

1 = EZ0 = EZτ∧N = E

(
sτ

H(s)τ
I{τ ≤ N }

)
+ E

(
Z N I{τ > N })

Remember that we are only interested in values of s for which H(s) = et > 1. On the set {τ > N } the
random variable X N lies between A and B, and 0 ≤ Z N ≤ max(s B, s A)/H(s)N . The last term in the



previous display is smaller than P{τ > N } max(s B, s A)/H(s)N , which to zero as N tends to ∞. The first
term splits into

E

(
s B

H(s)τ
I{τ ≤ N , Xτ = B}

)
+ E

(
s A

H(s)τ
I{τ ≤ N , Xτ = A}

)

which converges to
s B

E
(
H(s)−τ

I{Xτ = B}) + s A
E

(
H(s)−τ

I{Xτ = A}) .

In particular, for s equal to either of the two roots to the equation H(s) = et , the limiting form of the
equality from the STL is

1 = s B G B(t) + s AG A(t) where G A(t) = E
(
e−tτ 1{Xτ = A}) and G B(t) = E

(
e−tτ 1{Xτ = B}).

That is,

1 = s0(t)
B G B(t) + s0(t)

AG A(t)

1 = s1(t)
B G B(t) + s1(t)

AG A(t)

The fact that s0(t) �= s1(t) allows us to solve the equations, giving

G A(t) = s1(t)B − s0(t)B

s0(t)As1(t)B − s0(t)Bs1(t)A
= s0(t)−B − s1(t)−B

s0(t)A−B − s1(t)A−B

and

G B(t) = s1(t)A − s0(t)A

s0(t)Bs1(t)A − s0(t)As1(t)B
= s0(t)−A − s1(t)−A

s0(t)B−A − s1(t)B−A

Note that it was important to have two distinct roots to ensure that

s A
0 s B

1 − s B
0 s A

1 = s A+B
0

(
(s1/s0)

B − (s1/s0)
A
) �= 0.

If we put t equal to 0 with p = 1/2 we would not get a unique solution to the equations, both of which
would reduce to 1 = G A(0) + G B(0).

For p > 1/2, we know that s0(t) → q/p and s1(t) → 1, implying

P{ walk hits A before B } = lim
t→0

G A(t) = 1 − (q/p)B

(q/p)A − (q/p)B
,

the solution obtained in Lecture 14 (Wednesday 25 Feb). The same limit appears when p < 1/2. If
p = 1/2, we have a slight difficulty, in that the ratio for G A(t) tends to 0/0. However, writing gk(s) for
s−k we have

lim
s0→1,s1→1

gB(s0) − gB(s1)

gB−A(s0) − gB−A(s1)
= g′

B(1)

g′
B−A(1)

= B

B − A
,

again agreeing with the solution from the Lecture. Finally,

Ee−tτ = G A(t) + G B(t) = s1(t)B − s0(t)B − s1(t)A + s0(t)A

s0(t)As1(t)B − s0(t)Bs1(t)A
for t > 0.

There is not much that can conveniently be extracted from this mess; but, in theory, it uniquely determines
the distribution of τ .


