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1 Classification of states
For a Markov chain {Xn : n = 0, 1, 2, . . . } with a (countable or finite) state
space S define

Ti = inf{n ≥ 1 : Xn = i} and Ni =
∑

n∈N
1{Xn = i}.

Note that EµNi =
∑

n∈N Pµ{Xn = i}.
Define i  j to mean Pi{Tj < ∞} > 0 and i! j to mean that both i  j

and j  i.
Suppose the chain has transition probabilities P (i, j). A stationary measure

is a set of nonnegative numbers {λi : i ∈ S} for which

λk =
∑

j∈S
λjP (j, k) for each k ∈ S.

If, in addition,
∑

i∈S λi = 1 then the λi’s are called a stationary probability dis-
tribution. For such a distribution,

Pλ{Xn = i} = λi for all n ∈ N and all i ∈ S.

If
∑

i∈S λi < ∞ then a stationary measure can be rescaled to define a stationary
probability distribution. Sometimes there are stationary measures that cannot be
standardized (cf. ).

1.1 Transience
A state i is said to be transient if Pi{Ti <∞} < 1.

(i) For a transient state, EiNi <∞ and Pi{Ni <∞} = 1.

(ii) If i! j and i is transient then so is j.

Statistics 251/551, spring 2009 c©David Pollard



2

1.2 Recurrence
A state i is said to be recurrent if Pi{Ti <∞} = 1.

(i) For a recurrent state, Pi{Ni =∞} = 1 and EiNi =∞.

(ii) If i! j and i is recurrent then so is j.

(iii) If {πj : j ∈ S} is a stationary probability distribution with πi > 0 then
the state i is recurrent. [In fact, i is positive recurrent—see Chang Notes
Theorem 1.41.]

(iv) If i is recurrent then λj := Ei{# visits to state j up to time Ti} defines a
stationary measure with λi = 1. [See Section 3.]

1.3 Null Recurrence
A recurrent state i is said to be null recurrent if EiTi =∞.

1.4 Positive Recurrence
A recurrent state i is said to be positive recurrent if EiTi <∞.

(i) If i is a positive recurrent state then there exists a stationary probability dis-
tribution with πi = 1/EiTi. [See Section 3.] If the state space is irreducible
then the stationary distribution is unique.

(ii) If i! j and i is positive recurrent then so is j. [See Section 2.]

1.5 Periodicity
The period of a state i is defined as the greatest common divisor of

{n ∈ N : Pi{Xn = i} > 0}

(i) If i! j then i and j have the same period. [cf. Chang Notes page 16.]

(ii) If state i has period d then Pi{Xmd = i} > 0 for large enough integers m.
[cf. Chang Notes page 30.]



3

1.6 Basic limit theorem
If a chain is irreducible, positive recurrent, and aperiodic then

(i) There exists a unique stationary probability distribution π.

(ii) For every initial distribution µ,

∑
i∈S
|Pµ{Xn = i}−πi| → 0 as n→∞.

2 Proof of assertion 1.4(ii)
Suppose that state i is positive recurrent and the chain starts in state i. We are
given that γ := EiTi <∞. We need to show that EjTj <∞.

Write τ0 = 0 < τ1 < τ2 < . . . for the times at which the chain is in state i.
The first cycle starts at time 1 and ends at time τ1. The second cycle starts at
time τ1 + 1 and ends at time τ2. And so on. We could also write each τk as a
sum T

(1)
i +T

(2)
i + · · ·+T

(k)
i , where T (m)

i denotes the length of the mth cycle. The
random variables T (1)

i , T
(2)
i , . . . are independent and identically distributed, each

with expected value γ. [The variable T (1)
i is the same as the variable Ti used to

define γ.]
Similarly, define 1 ≤ σ1 < σ2 < . . . for the times at which the chain visits

state j. Note that σ1 is what we have also been denoting by Tj .
More subtly, define random variables that pick out the cycles where there are

visits to state j:

ν1 = first m for which chain visits j at least once during mth cycle
ν2 = first m > ν1 for which chain visits j at lest once during mth cycle

For the history shown in the picture, note that ν2 = 4 even though the second visit
to state j occurs during the second cycle.
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state i

state j

0 τ1 τ2 τ3 τ4σ1 σ2 σ3

ν1=2 ν2=4

time

The events {chain visits j during mth cycle} are independent, each with the
same Pi probability θ. We must have θ > 0, otherwise the chain could never
visit j, in violation of the assumption that i j. Consequently, ν1 has a geometric(θ)
distribution,

Pi{ν1 = m} = (1− θ)m−1θ for m ∈ N,

with expected value Eiν1 = 1/θ. Similarly, ν2 is the sum of two independent
random variables, each distributed geometric(θ), with expected value Eiν2 = 2/θ.

The key idea is that during cycles 1, 2, . . . , ν2 there must be at least two visits
to state j. That is, we must have σ2 ≤ τν2 . Moreover, between times σ1 and σ2

the chain makes an excursion that starts and ends in state j. We can hope that a
bound on Eiτν2 will provide a bound on EjTj .

To get the bound on Eiτν2 , first note that

τν2 =
∑

k∈N
T

(k)
i 1{k ≤ ν2}

You should check that if ν2 = m then the sum on the right-hand side reduces to
T

(1)
i + T

(2)
i + · · ·+ T

(m)
i = τm. Take expectations then condition.

Eiτν2 =
∑

k∈N
Ei(T

(k)
i | k ≤ ν2)Pi{k ≤ ν2}.

The information k ≤ ν2 tells us precisely that among cycles 1, 2, . . . , k − 1 there
has been at most one during which there was one or more visits to state j; The
event {k ≤ ν2} gives only information about the first k − 1 cycles, whereas T (k)

i

is the length of the kth cycle. Independence of what happens from one cycle to
the next therefore lets us discard the conditoning information, leaving

Ei(T
(k)
i | k ≤ ν2) = Ei(T

(k)
i ) = γ.
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The expression for Eiτν2 simplifies to

γ
∑

k∈N
Pi{k ≤ ν2} = γEi(

∑
k∈N

1{k ≤ ν2}) = γEiν2 = 2γ/θ <∞,

because
∑

k∈N 1{k ≤ ν2} = ν2. Thus Eiσ2 ≤ Eiτν2 <∞.
Now we have only to extract the excursion from j back to j by conditioning

on the value of σ1, which we can also write as Tj .

Eiσ2 =
∑

n∈N
Pi{Tj = n}Ei(σ2 | Tj = n).

Notice that we don’t need a contribution from Tj =∞ because

Pi{Tj =∞} = Pi{chain never visits j } = 0.

If you write Ei(σ2 | Tj = n) as

Ei(σ2 | X1 6= j, X2 6= j, . . . , Xn−1 6= j, Xn = j)

you should see, by the Markov property, that Ei(σ2 | Tj = n) = n + EjTj . Note
how the first n steps contribute to σ2. Thus

Eiσ2 = EjTj
∑

n∈N
Pi{Tj = n}+

∑
n∈N

Pi{j= n}n = EjTj + EiTj.

Not only can we now conclude that EjTj <∞, so that state j is positive recurrent,
but also that EiTj <∞.

3 Stationary distributions for Markov chains
Suppose i is a recurrent state for a Markov chain. For each j in the state space S

define

λj = Ei{# visits to state j up to time Ti}

= Ei

∑
n∈N

1{Xn = j, n ≤ Ti}

=
∑

n∈N
Pi{Xn = j, n ≤ Ti}

Note that λi = 1 because Xn 6= i for 1 ≤ n < Ti and Xn = i when n = Ti.

<1> THEOREM.
∑

j∈S λjP (j, k) = λk for each state k.
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PROOF By definition,

(∗) =
∑

j∈S
λjP (j, k) =

∑
j∈S

∑
n∈N

Pi{Xn = j, n ≤ Ti}P (j, k)

The summand is equal to

Pi{Xn = j, Xn+1 = k, n ≤ Ti}

because Pi{Xn+1 = k | Xn = j, n ≤ Ti} = P (j, k). Thus

(∗) =
∑

n∈N

∑
j∈S

Pi{Xn = j, Xn+1 = k, n ≤ Ti}

=
∑

n∈N
Pi{Xn+1 = k, n ≤ Ti}.

Split the last summand into two pieces, corresponding to the decomposition of the
event {Ti ≥ n} into the union of disjoint events {Ti = n} and {Ti ≥ n+ 1}.

Now note that∑
n∈N

Pi{Xn+1 = k, Ti = n}

=
∑

n∈N
Pi{Ti = n}Pi{Xn+1 = k | Ti = n}

=
(∑

n∈N
Pi{Ti = n}

)
P (i, k)

= P (i, k) because Pi{Ti ≥ 1} = 1.

For the contribution from {Ti ≥ n+1} replace the variable of summation bym =
n+ 1:∑

n∈N
Pi{Xn+1 = k, Ti ≥ n+ 1} =

∑
m≥2

Pi{Xm = k, Ti ≥ m}

= λj − Pi{X1 = k, Ti ≥ 1}.

Once again note that Pi{X1 = k, Ti ≥ 1} = Pi{X1 = k} = P (i, k) to conclude
that

(∗) =
∑

n∈N
Pi{Xn+1 = k, n ≤ Ti}

= Pi{X1 = k, Ti ≥ 1}+
∑

n≥2
Pi{Xn = k, Ti ≥ n}

= λk.

The Theorem is proved.
�
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The stationary measure can be standardized to give a stationary probability
distribution if the λj’s have a finite sum. By definition,∑

j∈S
λj = Ei

∑
n∈N

∑
j∈S

1{Xn = j, n ≤ Ti}

= Ei

∑
n∈N

1{n ≤ Ti}

= EiTi because Ti =
∑

n∈N
1{n ≤ Ti}.

If EiTi < ∞, it follows that there is a stationary probability distribution de-
fined by

πj = λj/EiTi for all j ∈ S.

In particular, πi = 1/EiTi.
It might seem that we should have many different stationary distributions for a

positive recurrent chain, one for each possible choice of the state i in the preceding
construction. However, if the chain is also irreducible and aperiodic, the Basic
Limit Theorem ensures that there can be at most one stationary π. It follows in
that case that

πj = 1/EjTj for every j in S.

Thanks to SC and XY for proofreading.


