Summary of Markov Chain facts

23 February 2009

1 Classification of states

For a Markov chain $\{X_n : n = 0, 1, 2, ...\}$ with a (countable or finite) state space S define

$$T_i = \inf\{n \ge 1 : X_n = i\}$$
 and $N_i = \sum_{n \in \mathbb{N}} \mathbf{1}\{X_n = i\}.$

Note that $\mathbb{E}_{\mu}N_i = \sum_{n \in \mathbb{N}} \mathbb{P}_{\mu}\{X_n = i\}.$

Define $i \rightsquigarrow j$ to mean $\mathbb{P}_i\{T_j < \infty\} > 0$ and $i \nleftrightarrow j$ to mean that both $i \rightsquigarrow j$ and $j \rightsquigarrow i$.

Suppose the chain has transition probabilities P(i, j). A *stationary measure* is a set of nonnegative numbers $\{\lambda_i : i \in S\}$ for which

$$\lambda_k = \sum\nolimits_{j \in \mathbb{S}} \lambda_j P(j,k) \qquad \text{for each } k \in \mathbb{S}.$$

If, in addition, $\sum_{i \in S} \lambda_i = 1$ then the λ_i 's are called a *stationary probability distribution*. For such a distribution,

$$\mathbb{P}_{\lambda}\{X_n = i\} = \lambda_i \quad \text{for all } n \in \mathbb{N} \text{ and all } i \in S.$$

If $\sum_{i \in S} \lambda_i < \infty$ then a stationary measure can be rescaled to define a stationary probability distribution. Sometimes there are stationary measures that cannot be standardized (cf.).

1.1 Transience

A state *i* is said to be *transient* if $\mathbb{P}_i \{T_i < \infty\} < 1$.

- (i) For a transient state, $\mathbb{E}_i N_i < \infty$ and $\mathbb{P}_i \{N_i < \infty\} = 1$.
- (ii) If $i \leftrightarrow j$ and i is transient then so is j.

1.2 Recurrence

A state *i* is said to be *recurrent* if $\mathbb{P}_i \{T_i < \infty\} = 1$.

- (i) For a recurrent state, $\mathbb{P}_i \{ N_i = \infty \} = 1$ and $\mathbb{E}_i N_i = \infty$.
- (ii) If $i \leftrightarrow j$ and i is recurrent then so is j.
- (iii) If $\{\pi_j : j \in S\}$ is a stationary probability distribution with $\pi_i > 0$ then the state *i* is recurrent. [In fact, *i* is positive recurrent—see Chang Notes Theorem 1.41.]
- (iv) If *i* is recurrent then $\lambda_j := \mathbb{E}_i \{ \# \text{ visits to state } j \text{ up to time } T_i \}$ defines a stationary measure with $\lambda_i = 1$. [See Section 3.]

1.3 Null Recurrence

A recurrent state *i* is said to be *null recurrent* if $\mathbb{E}_i T_i = \infty$.

1.4 Positive Recurrence

A recurrent state *i* is said to be *positive recurrent* if $\mathbb{E}_i T_i < \infty$.

- (i) If *i* is a positive recurrent state then there exists a stationary probability distribution with $\pi_i = 1/\mathbb{E}_i T_i$. [See Section 3.] If the state space is irreducible then the stationary distribution is unique.
- (ii) If $i \leftrightarrow j$ and i is positive recurrent then so is j. [See Section 2.]

1.5 Periodicity

The period of a state i is defined as the greatest common divisor of

$$\{n \in \mathbb{N} : \mathbb{P}_i\{X_n = i\} > 0\}$$

- (i) If $i \leftrightarrow j$ then i and j have the same period. [cf. Chang Notes page 16.]
- (ii) If state *i* has period *d* then $\mathbb{P}_i \{X_{md} = i\} > 0$ for large enough integers *m*. [cf. Chang Notes page 30.]

1.6 Basic limit theorem

If a chain is irreducible, positive recurrent, and aperiodic then

- (i) There exists a unique stationary probability distribution π .
- (ii) For every initial distribution μ ,

2 **Proof of assertion 1.4(ii)**

Suppose that state *i* is positive recurrent and the chain starts in state *i*. We are given that $\gamma := \mathbb{E}_i T_i < \infty$. We need to show that $\mathbb{E}_j T_j < \infty$.

Write $\tau_0 = 0 < \tau_1 < \tau_2 < \ldots$ for the times at which the chain is in state *i*. The first cycle starts at time 1 and ends at time τ_1 . The second cycle starts at time $\tau_1 + 1$ and ends at time τ_2 . And so on. We could also write each τ_k as a sum $T_i^{(1)} + T_i^{(2)} + \cdots + T_i^{(k)}$, where $T_i^{(m)}$ denotes the length of the *m*th cycle. The random variables $T_i^{(1)}, T_i^{(2)}, \ldots$ are independent and identically distributed, each with expected value γ . [The variable $T_i^{(1)}$ is the same as the variable T_i used to define γ .]

Similarly, define $1 \le \sigma_1 < \sigma_2 < \dots$ for the times at which the chain visits state j. Note that σ_1 is what we have also been denoting by T_j .

More subtly, define random variables that pick out the cycles where there are visits to state *j*:

 $\nu_1 =$ first m for which chain visits j at least once during mth cycle

 $\nu_2 = \text{ first } m > \nu_1 \text{ for which chain visits } j \text{ at lest once during } m \text{th cycle}$

For the history shown in the picture, note that $\nu_2 = 4$ even though the second visit to state j occurs during the second cycle.

The events {chain visits j during mth cycle} are independent, each with the same \mathbb{P}_i probability θ . We must have $\theta > 0$, otherwise the chain could never visit j, in violation of the assumption that $i \rightsquigarrow j$. Consequently, ν_1 has a geometric(θ) distribution,

$$\mathbb{P}_i\{\nu_1 = m\} = (1 - \theta)^{m-1}\theta \quad \text{for } m \in \mathbb{N},$$

with expected value $\mathbb{E}_i \nu_1 = 1/\theta$. Similarly, ν_2 is the sum of two independent random variables, each distributed geometric(θ), with expected value $\mathbb{E}_i \nu_2 = 2/\theta$.

The key idea is that during cycles $1, 2, ..., \nu_2$ there must be at least two visits to state j. That is, we must have $\sigma_2 \leq \tau_{\nu_2}$. Moreover, between times σ_1 and σ_2 the chain makes an excursion that starts and ends in state j. We can hope that a bound on $\mathbb{E}_i \tau_{\nu_2}$ will provide a bound on $\mathbb{E}_j T_j$.

To get the bound on $\mathbb{E}_i \tau_{\nu_2}$, first note that

$$\tau_{\nu_2} = \sum\nolimits_{k \in \mathbb{N}} T_i^{(k)} \mathbf{1}\{k \le \nu_2\}$$

You should check that if $\nu_2 = m$ then the sum on the right-hand side reduces to $T_i^{(1)} + T_i^{(2)} + \cdots + T_i^{(m)} = \tau_m$. Take expectations then condition.

$$\mathbb{E}_i \tau_{\nu_2} = \sum_{k \in \mathbb{N}} \mathbb{E}_i (T_i^{(k)} \mid k \le \nu_2) \mathbb{P}_i \{k \le \nu_2\}.$$

The information $k \leq \nu_2$ tells us precisely that among cycles $1, 2, \ldots, k-1$ there has been at most one during which there was one or more visits to state j; The event $\{k \leq \nu_2\}$ gives only information about the first k-1 cycles, whereas $T_i^{(k)}$ is the length of the *k*th cycle. Independence of what happens from one cycle to the next therefore lets us discard the conditioning information, leaving

$$\mathbb{E}_i(T_i^{(k)} \mid k \le \nu_2) = \mathbb{E}_i(T_i^{(k)}) = \gamma.$$

The expression for $\mathbb{E}_i \tau_{\nu_2}$ simplifies to

$$\gamma \sum_{k \in \mathbb{N}} \mathbb{P}_i \{ k \le \nu_2 \} = \gamma \mathbb{E}_i (\sum_{k \in \mathbb{N}} \mathbf{1} \{ k \le \nu_2 \}) = \gamma \mathbb{E}_i \nu_2 = 2\gamma/\theta < \infty,$$

because $\sum_{k \in \mathbb{N}} \mathbf{1}\{k \leq \nu_2\} = \nu_2$. Thus $\mathbb{E}_i \sigma_2 \leq \mathbb{E}_i \tau_{\nu_2} < \infty$.

Now we have only to extract the excursion from j back to j by conditioning on the value of σ_1 , which we can also write as T_j .

$$\mathbb{E}_i \sigma_2 = \sum_{n \in \mathbb{N}} \mathbb{P}_i \{ T_j = n \} \mathbb{E}_i (\sigma_2 \mid T_j = n)$$

Notice that we don't need a contribution from $T_j = \infty$ because

$$\mathbb{P}_i\{T_j = \infty\} = \mathbb{P}_i\{\text{chain never visits } j\} = 0.$$

If you write $\mathbb{E}_i(\sigma_2 \mid T_j = n)$ as

$$\mathbb{E}_i(\sigma_2 \mid X_1 \neq j, X_2 \neq j, \dots, X_{n-1} \neq j, X_n = j)$$

you should see, by the Markov property, that $\mathbb{E}_i(\sigma_2 \mid T_j = n) = n + \mathbb{E}_j T_j$. Note how the first *n* steps contribute to σ_2 . Thus

$$\mathbb{E}_i \sigma_2 = \mathbb{E}_j T_j \sum_{n \in \mathbb{N}} \mathbb{P}_i \{ T_j = n \} + \sum_{n \in \mathbb{N}} \mathbb{P}_i \{ j = n \} n = \mathbb{E}_j T_j + \mathbb{E}_i T_j.$$

Not only can we now conclude that $\mathbb{E}_j T_j < \infty$, so that state j is positive recurrent, but also that $\mathbb{E}_i T_j < \infty$.

3 Stationary distributions for Markov chains

Suppose i is a recurrent state for a Markov chain. For each j in the state space S define

$$\lambda_j = \mathbb{E}_i \{ \text{\# visits to state } j \text{ up to time } T_i \}$$
$$= \mathbb{E}_i \sum_{n \in \mathbb{N}} \mathbf{1} \{ X_n = j, n \leq T_i \}$$
$$= \sum_{n \in \mathbb{N}} \mathbb{P}_i \{ X_n = j, n \leq T_i \}$$

Note that $\lambda_i = 1$ because $X_n \neq i$ for $1 \leq n < T_i$ and $X_n = i$ when $n = T_i$.

$$< l >$$
 THEOREM. $\sum_{j \in S} \lambda_j P(j,k) = \lambda_k$ for each state k.

PROOF By definition,

$$(*) = \sum_{j \in \mathbb{S}} \lambda_j P(j,k) = \sum_{j \in \mathbb{S}} \sum_{n \in \mathbb{N}} \mathbb{P}_i \{ X_n = j, n \le T_i \} P(j,k)$$

The summand is equal to

$$\mathbb{P}_i\{X_n = j, X_{n+1} = k, n \le T_i\}$$

because $\mathbb{P}_i \{ X_{n+1} = k \mid X_n = j, n \leq T_i \} = P(j,k)$. Thus

$$(*) = \sum_{n \in \mathbb{N}} \sum_{j \in \mathbb{S}} \mathbb{P}_i \{ X_n = j, X_{n+1} = k, n \leq T_i \}$$
$$= \sum_{n \in \mathbb{N}} \mathbb{P}_i \{ X_{n+1} = k, n \leq T_i \}.$$

Split the last summand into two pieces, corresponding to the decomposition of the event $\{T_i \ge n\}$ into the union of disjoint events $\{T_i = n\}$ and $\{T_i \ge n+1\}$. Now note that

$$\sum_{n \in \mathbb{N}} \mathbb{P}_i \{ X_{n+1} = k, T_i = n \}$$
$$= \sum_{n \in \mathbb{N}} \mathbb{P}_i \{ T_i = n \} \mathbb{P}_i \{ X_{n+1} = k \mid T_i = n \}$$
$$= \left(\sum_{n \in \mathbb{N}} \mathbb{P}_i \{ T_i = n \} \right) P(i, k)$$
$$= P(i, k) \quad \text{because } \mathbb{P}_i \{ T_i \ge 1 \} = 1.$$

For the contribution from $\{T_i \ge n+1\}$ replace the variable of summation by m = n+1:

$$\sum_{n \in \mathbb{N}} \mathbb{P}_i \{ X_{n+1} = k, \, T_i \ge n+1 \} = \sum_{m \ge 2} \mathbb{P}_i \{ X_m = k, \, T_i \ge m \}$$
$$= \lambda_j - \mathbb{P}_i \{ X_1 = k, \, T_i \ge 1 \}.$$

Once again note that $\mathbb{P}_i \{ X_1 = k, T_i \ge 1 \} = \mathbb{P}_i \{ X_1 = k \} = P(i, k)$ to conclude that

$$(*) = \sum_{n \in \mathbb{N}} \mathbb{P}_i \{ X_{n+1} = k, n \leq T_i \}$$

= $\mathbb{P}_i \{ X_1 = k, T_i \geq 1 \} + \sum_{n \geq 2} \mathbb{P}_i \{ X_n = k, T_i \geq n \}$
= λ_k .

The Theorem is proved.

The stationary measure can be standardized to give a stationary probability distribution if the λ_j 's have a finite sum. By definition,

$$\begin{split} \sum_{j \in \mathbb{S}} \lambda_j &= \mathbb{E}_i \sum_{n \in \mathbb{N}} \sum_{j \in \mathbb{S}} \mathbf{1} \{ X_n = j, n \leq T_i \} \\ &= \mathbb{E}_i \sum_{n \in \mathbb{N}} \mathbf{1} \{ n \leq T_i \} \\ &= \mathbb{E}_i T_i \quad \text{because } T_i = \sum_{n \in \mathbb{N}} \mathbf{1} \{ n \leq T_i \}. \end{split}$$

If $\mathbb{E}_i T_i < \infty$, it follows that there is a stationary probability distribution defined by

$$\pi_j = \lambda_j / \mathbb{E}_i T_i$$
 for all $j \in S$.

In particular, $\pi_i = 1/\mathbb{E}_i T_i$.

It might seem that we should have many different stationary distributions for a positive recurrent chain, one for each possible choice of the state i in the preceding construction. However, if the chain is also irreducible and aperiodic, the Basic Limit Theorem ensures that there can be at most one stationary π . It follows in that case that

$$\pi_j = 1/\mathbb{E}_j T_j$$
 for every j in S.

Thanks to SC and XY for proofreading.