Statistics 251b/551b, spring 2009
Solutions for test 1

o You should prepare solutions to the following questions without help or
hints from anybody else. In particular, if you have been working in a group
you must suspend the group arrangement for the test; you must not discuss
the questions with your group buddy.

e [fyou have questions of interpretation, or of clarification of the meaning
of a question, ask David Pollard.

Make sure you explain your calculations and notation.

Each part of each question is worth 5 points.

As usual, even if you are unable to solve one part of a question you may
still use the result for the following parts.

[1] For each of the following questions, § denotes the set {0,1,2,3,...} = {0} UN.

(i) Give an example of an irreducible Markov chain with state space S for which there
exists a stationary measure but no stationary probability distibution.

Many of you used the the chain discussed in lecture 3, with & = 1/2. That
is, P(0,0) = P(0,1) =1/2and P(i,i—1) =1/2 = P(i,i+ 1) fori > 1.
As shown in class, the only solution to the equations \; = > . s \i P(i, j)
for j € Sis \; = \¢ for all . Taking \; = 1 we get a stationary measure
but there is no way to choose Ao to make ), ¢ A\; = 1.

(ii) Give an example of a Markov chain with state space § that has at least two distinct

stationary probability distibutions.

The simplest example makes every state absorbing, so that every probabil-
ity measure on § is a stationary probability distibution.

(iii) Give an example of a martingale taking values in 8 that is not a Markov chain.

The challenge is to define conditional distributions
Pt ] doy . yino1) =P{X, =i | Xo=1t0,..., Xpn-1=1In_1}
so that
(1) p. depends on more than 7,,_; alone
() >, ipn(i | io,. .., 0n—1) = tp_ forall 4,_4.

Requirement (ii) forces us to take p,, (0 | 79, ..., %,—1) = 1ifi,_1 = 0.
The idea in the following example is to make all the conditional distri-

butions depend on Xj. Start with P{X, = 1} = 1/2 = P{X, = 2}. Let

the process make jumps +X, each with conditional probability 1/2. Of



course, the case 7,,_; = 1 needs special treatment to stop the process from
jumping outside 8. Take

pn(2 | Z'(), e ,in_l) :pn<0 | ’io, ce ,in_1> == ]_/2 ifin_l = 1.
and, if 7,,_1 > 2 and iy = k, take
pn(z‘nfl +k ‘ iOa s >Z‘n71) = pn(infl —k ‘ Lo, . - - >Z‘n71) = 1/2

(iv) Give an example of an irreducible, aperiodic Markov chain with state space 8 for
which P{ X,, = i} = 0 for 1 < n < 100 for every state i.
I don’t like having to worry about 101 versus 100. So take

. C277 if j > 1000
P(0, ) = =
(0,5) {O otherwise,

where C' is chosen to make » s P(0,7) = 1. Then define P(i,i—1) =1
forall7 > 1. Clearly 0 «~ j for every j > 0, so the chain is irreducible. It
takes at least 1001 steps to get from ¢ back to ¢ for every 7 in 8. (Consider
the cases ¢+ < 1000 and ¢ > 1000 separately.)

[2] For a fixed positive integer d let
8:{<21,22)€NXN1§Z1§dand1§12§d}

denote the d x d lattice of points with integer coordinates running from 1 to d.
Let X,, = (X1, Xy2) be a random walk on S: if X,, = x ¢ {(1,1),(d,d)} then
Xn11 has the equal probability of being at one of the neighbors of x. Make both
(1,1) and (d, d) absorbing states. For example, if v = (x1,x2) with 1 < z; < d
fori=1,2then P(x,y) = 1/4 for each y in the set

{(x1,29 + 1), (x1,290 — 1), (21 + 1,29), (x7 — 1, 22)}

For x on the edges of the lattice, there are fewer neighbors and the transition
probabilities will be slightly different.
Define T = inf{n e N: X,, = (1,1) or X,, = (d,d)}
Define B = {1 < o0, X; = (d,d)}.
Define Z,, = X, 1 + X,, 2 for each n.
(i) Write down the transition probabilities P(x,y) when x is on the edge of the lattice.
(That is, at least one of x1 and x5 is equal to 1 or d.)
(ii) Define f(x) = x1 + xo for v = (x1,x2) € 8. Show that f is harmonic. That is,
show that E (f(X1) | Xo = x) = f(z) for each x.
Write A for {(1, 1), (d,d)}, the set of absorbing states.



As my original description of the chain as a random walk was impre-
cise, I collapsed the first two questions into: Find transition probabilities
P(z,y) when z is on the boundary and =z ¢ A to make the function f
harmonic.

The assertion that P, f(X;) = f(z) when z € A holds for trivial
reasons.

When = = (z1, x5) is not on the boundary,

Po{f(X1) = f(x) + 1}
=P {Xns1 = (11 + 1, 29) } + Po{Xpy1 = (z1, 22 + 1)}
—1/4+1/4=1/2

and, by a similar argument, P, {f(X,,.1) = f(z) — 1} = 1/2. It follows
that

E(f(Xn1) | Xn=2)) =5 (f(2) + 1) + 3 (f(2) = 1) = f(2).
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To make f harmonic everywhere, it suffices to have

Po{f(X1) = f(2) + 1} = 1/2 = P.{f(Xy) = f(x) — 1}

for all boundry points = ¢ A. The picture shows one possible choice for
the transition probabilities. (In fact, we could also replace the 1/4’s on the
boundary by any other pair of nonnegative numbers that sum to 1/2. The
numbers could even change from one boundary point to another.)



(iii) Explain why P,{T < 0o} = 1 for every x in 8.
For every x in 3,
P {r <2d} >6:=41

because there is a path of at most 2d steps leading from each x to an ab-
sorbing state. The usual chicken argument then gives

P {r > 2(k + 1)d} = ZyES\A P, {7 > 2kd, Xopg = y}P,{7 > 2d}
< (1= 0P {r > 2kd},

leading to the bound P,{r > kd} < (1 — §)" for every x and k € N.
Question: Should I have considered the cases where x € A separately?
(iv) Show that Z,, is a martingale for each initial state x of the X,,-chain.

In class I showed, for a general Markov chain and a general harmonic
function f, that E, (f(X,11) — f(X,) | D) = 0 for every event D of the
form { Xy = zo, X1 = x1,...,X,, = x,,}. Thatis, f(X,,) is a martingale.

Some of you wanted to replace the conditioning event by an analo-

gous event F' = {Zy = 29,...,7Z, = z,}. For a formal argument you
could have rewritten F as a disjoint union of events of the form D(z,) =
{Xon = o}, wWith zg,, = (29,21, ..., 1,) ranging over some set X of

n + 1-tuples, then argued that

Ex (f(XnJrl) - f(Xn) | F)
- Zxo,nexF EI (f<Xn+l) - f(Xn) ‘ D(iﬂo,n), F) ]P)x{D(‘IOW) ‘ F}

Note that

[(Xns1) = f(Xn) | D(zon), F)
=E, (f(Xus1) — f(X) | D(z0n)) =0 for each z(,, € Xp.

Ey

—~

(v) Show that Z,, is also a Markov chain. Write down the state space and transition
probabilities for the Z,-chain.
You could argue formally, using the notation from the previous part, that
the transition probabilities were chosen to make

P{f(Xnt1) = f(Xn) = 1| D(z0n)} = 1/2

for each x¢, = (zo,...,x,) with x; ¢ A for each i. An averaging out
with weights P,.{D(z¢,) | '} would then show that Z, = f(X,) is a
Markov chain with state space 8’ = {2, 3, ..., 2d} and transition probabil-
ities P(i,i+ 1) =1/2 = P(i,i — 1) for 2 < i < 2d, with the states 2 and
2d absorbing.



(vi) Define g(x) = P, B. Show that g is a harmonic function.

You needed to show that P,g(X;) = g(z) for all z in S. I had intended
that you prove this fact by a direct conditioning argument:

Pog(X1) = Zyesp(w,y)P(B | Xo=1,X1 =y).

It might help to think of B as U,en{X,, = (d,d)}, in order to recognize
that P(B | Xo = z,X; = y) = P,B = g(y). Do we need a sepa-
rate argument for the cases where © € A? Is there any problem with the
case z = (1,1) and y = (d, d)?

Many of you actually solved the next part first, using a gambler’s ruin
argument, then checked manually that the resulting g was harmonic.

(vii) Find g(x) for each x in S.
A slick argument could be based on the fact that a harmonic function for
the Z-chain is uniquely determined by its values h(2) and h(2d). Proof?
The harmonic function
_fl@) =2

M) =5a-1
has h(2) = 0 = ¢(2) and h(2d) = 1 = g(2d). It follows that g(x) = h(x)
for all z in §'.

[3] Question 1 on Homework 3 described a modification of the queueing example from
Section 2.3 of the Chang notes. 1 got myself greatly confused over the problem
of independence of X,, and D+, D,..., D,. The following questions revisit the
modified problem, with the aim of proving that

<1> PW{XQ = ]{Z, D1 = (51, D2 = (52} = 7Tk9<(51)¢9(62> for all (51 S {0, ].}, all k >0,
where 0(1) = p and 6(0) = 1 —p. That is, the aim is to prove independence of X,
Dy, and D,. To this end define
G(k7517a17 (52,@2) = PW{XQ = k7D1 = 517141 = g, D2 = 527142 = 062}.

andlet j = k — ay + 0y and i = j — oy + 0. Note that 6, and o are uniquely
determined by i and j if |i — j| = 1, and d, and s are uniquely determined by j
and kif |[j — k| =1

You may assume that the chain has stationary distribution ™ and transition
probabilities as shown on the Solutions to Sheet 3.

The key idea is that the values of X,, and X,,_; uniquely determine the
values of A,, and D,, when |X,, — X,,_1| = 1. More precisely,
{Xp1=2,X,=x+1}
={X,.1=2,4,=1,D, =0}
={X,=x+1,4,=1,D, =0}



and

{Xp1=2,X,=x—1}
={X,1=2,4,=0,D, =1}
—{X,=2-1,A4,=0,D, =1}.

That is, when X,, # X,,_; the information about A,, and D,, is redundant;
we have only to retain information about the value of least one of X,
and X,,_;. Compare with

{Xo 1 =2,X, =z}
={X,1=2,A,=1,D,=1}U{X,1=2,4,=0,D, =1}.

(i) For each i > 0 define f;(6) = P;{A; = Dy, = 6} for § € {0,1} and i =
0,1,2,.... Write down the expression for f;(0). Hint: You will need to distinguish
between the cases 1 = 0 and i > 1.

Given the event X, = ¢, the random variables A; and D, are (condition-
ally) independent with P;{A; =1} = pforalli > 0and P;,{D; = 1} =a
for all i > 1. However Po{D; = 1} = 0 because an empty queue contains
nobody to be served. Thus

fi(0)=(1-p)1—-a) and  fi(1)=pa ifi>1
fo(0)=1—p and  fo(1) =0.
(ii) Explain why

G<k7617a1a627&2)
= ]P)Tr{XO - i7X1 :jJX2 - kaDl = 517A1 - 0517-D2 = 627142 = 062}

forall k > 1and all §;,c; € {0, 1}.
Actually, the argument works for all £ > 0.

If we know X,,, A,, and D,, then the value of X,,_; is uniquely deter-
mined. In particular,

{Xo =k, Ay =, Dy = 0o} = {Xo =k, Ay = g, Dy = 09, X1 = j}
where j = k — as + do, and

{Xl =J, A1 = a1, Dy :51} = {Xl = J, A1 = ag, D1 = 61, X :i}
where i = j — ay + ;. Consequently,

{Xo =k, Dy =61,A1 = oy, Dy = 03, Ay = i}
={Xo=k,Dy =01,A1 = a1,Dy = 95, Ay = a9, Xq = j, X = i}.



Take P, probability of both sides.
(iii) If vy # 61 and oy # 9o show that

G<k7617a1a62)&2)
= ]P)TI'{XO = k,Xl — j,XQ — Z}
= PW{XO =k, D) = a9, A =0y, Dy = ap, Ay = 51}-

For this case, ¢ # j and j # k. The values of the A’s and D’s are uniquely
determined by the values of X, X7, and X5. Thus

G — ]PW{XQ - ]C,Xl :j,XO - Z}
=P A{Xo=k X, =7, Xo =1} by time reversibility
The equality Ay, — Dy = j — k = dy — a» is equivalent to A; = J, and
Dy = ag;and Ay— Dy = i—j = §; —ay isequivalent to Ay = §; and Dy =
«1. If we make those substitutions then discard the redundant information
about X and X, we are left with the asserted expression for G.

(iv) If oy = 61 and 65 # o show that

G<k7617a1a627o{2)
- PW{XQ — k,Xl :j,XO :j,Dl - (51 - Al}
=7, [(61)P(j, k)
= IP)7r{Xo =k, Dy = ag, Ay = 02, Dy = a1, Ay = 51}~

For this case, © = j # k. We need to keep the information about A,
and D, but the information about A, and D can be replaced by equivalent
information about X5 — X;. Condition.

G = ]P)ﬂ-{XQ == /{I,Xl :j7X0 :j,Al == 51,D1 == 51}
=P {Xo=7} xP{X1=3,41 =61,D1 =01 | Xo = j}
X ]P)W{XQ =k | XO :j,Xl :j7A1 = 51,D1 = 51}
For the last product, the first factor equals ;. We can discard the redundant
information X; = j in the second term to reduce to f;(d;). The third term
equals P(j, k), by the Markov property. Thus G = ; f;(61)P(j, k).

Time reversibility gives 7; P(j, k) = m,P(k, j). Also, we can reinter-
pret f;(61) as Pr{Ay = Dy = 6, | X; = j}. With these changes we
get

G = WkP(k,j)]P)ﬂ-{Ag = D2 = (51 ’ Xl = j}
= ]P)K{X() = k’,Xl = j, A2 = DQ = 51}



We can replace the X; = j by the equivalent A; = d,, D; = «y because
j—k#0.
(v) Similarly, if oy # 01 and as = by, show that
G(k,01, aq, 09, cra)
=P {Xo=k,D; = g, Ay = 02, Dy = vy, Ay = 61 }.
For this case, i # j = k. Argue as in the previous part.
G=P A {Xo =X, =k Xg=1i,Ay = Dy =05}
= Wip(iak)fk(52)
= mP.{A1 = Dy =0y | Xo = k}P(k,1) time reversibility
=P {Xo=k Ay =Dy =0y, Xy =i}
We can replace the X, = ¢ by the equivalent A, = 61, Dy = «a be-
cause k — i # 0.
(vi) If aq = 61 and aiy = 9o, show that
G (k,01, an, 09, cg)
=P {Xo=kX1=kXo=k, D1 =0, =A41,Dy =05 = Ay}
= Tk fr(01) fi(62)
=P {Xo =k, Dy =y, Ay = 02, Dy = vy, Ay = 81 }.
For this case, : = j = k. Condition to factorize the first P, probability
into P, {X, = k} times P, {X; = k,D; = §; = A; | Xo = k} times
PA{Xo =k, Dy=08=Ay | Xy =k,D; =0, = A1, Xog =k}
Discard the redundant X; = k in the second factor, and the redundant

X5 = k in the third, then invoke the Markov property to reduce the product
to 7k f1(01) fr(92). A similar argument reduces

PA{Xo=k=X,=X5,D; = A; =0y, Dy = Ay = 01}
to 7k 1 (02) f1 (7).
(vii) Complete the proof of <I>.

For all £ > 0 and all ay, 012, 6o we now know that

P A{Xy =k, Dy =01,A1 = ay, Dy = 3, As = an}

=P {Xo =k, Dy = ay, Ay = 02, Dy = vy, Ay = 61 }.

Sum over «; and «» to deduce that

PAXo =k, Dy =6,Dy=08}=P{Xg=k A =0, Ay =01}

By independence of the arrival process, the last term factorizes into 70(d2)6(d1),
which is the desired expression for P,.{ Xy = k, D1 = 61, Dy = d2}.



