
Statistics 251b/551b, spring 2009
Solutions for test 1

• You should prepare solutions to the following questions without help or
hints from anybody else. In particular, if you have been working in a group
you must suspend the group arrangement for the test; you must not discuss
the questions with your group buddy.

• If you have questions of interpretation, or of clarification of the meaning
of a question, ask David Pollard.

• Make sure you explain your calculations and notation.
• Each part of each question is worth 5 points.
• As usual, even if you are unable to solve one part of a question you may

still use the result for the following parts.

[1] For each of the following questions, S denotes the set {0, 1, 2, 3, . . . } = {0} ∪ N.
(i) Give an example of an irreducible Markov chain with state space S for which there

exists a stationary measure but no stationary probability distibution.
Many of you used the the chain discussed in lecture 3, with α = 1/2. That
is, P (0, 0) = P (0, 1) = 1/2 and P (i, i− 1) = 1/2 = P (i, i+1) for i ≥ 1.
As shown in class, the only solution to the equations λj =

∑
i∈S λiP (i, j)

for j ∈ S is λi = λ0 for all i. Taking λ0 = 1 we get a stationary measure
but there is no way to choose λ0 to make

∑
i∈S λi = 1.

(ii) Give an example of a Markov chain with state space S that has at least two distinct
stationary probability distibutions.

The simplest example makes every state absorbing, so that every probabil-
ity measure on S is a stationary probability distibution.

(iii) Give an example of a martingale taking values in S that is not a Markov chain.
The challenge is to define conditional distributions

pn(i | i0, . . . , in−1) = P{Xn = i | X0 = i0, . . . , Xn−1 = in−1}

so that

(i) pn depends on more than in−1 alone

(ii)
∑

i ipn(i | i0, . . . , in−1) = in−1 for all in−1.

Requirement (ii) forces us to take pn(0 | i0, . . . , in−1) = 1 if in−1 = 0.
The idea in the following example is to make all the conditional distri-

butions depend on X0. Start with P{X0 = 1} = 1/2 = P{X0 = 2}. Let
the process make jumps ±X0 each with conditional probability 1/2. Of



course, the case in−1 = 1 needs special treatment to stop the process from
jumping outside S. Take

pn(2 | i0, . . . , in−1) = pn(0 | i0, . . . , in−1) = 1/2 if in−1 = 1.

and, if in−1 ≥ 2 and i0 = k, take

pn(in−1 + k | i0, . . . , in−1) = pn(in−1 − k | i0, . . . , in−1) = 1/2.

(iv) Give an example of an irreducible, aperiodic Markov chain with state space S for
which Pi{Xn = i} = 0 for 1 ≤ n ≤ 100 for every state i.

I don’t like having to worry about 101 versus 100. So take

P (0, j) =

{
C2−j if j ≥ 1000
0 otherwise,

where C is chosen to make
∑

j∈S P (0, j) = 1. Then define P (i, i−1) = 1
for all i ≥ 1. Clearly 0 ! j for every j > 0, so the chain is irreducible. It
takes at least 1001 steps to get from i back to i for every i in S. (Consider
the cases i < 1000 and i ≥ 1000 separately.)

[2] For a fixed positive integer d let

S = {(i1, i2) ∈ N× N : 1 ≤ i1 ≤ d and 1 ≤ i2 ≤ d}

denote the d × d lattice of points with integer coordinates running from 1 to d.
Let Xn = (Xn,1, Xn,2) be a random walk on S: if Xn = x /∈ {(1, 1), (d, d)} then
Xn+1 has the equal probability of being at one of the neighbors of x. Make both
(1, 1) and (d, d) absorbing states. For example, if x = (x1, x2) with 1 < xi < d
for i = 1, 2 then P (x, y) = 1/4 for each y in the set

{(x1, x2 + 1), (x1, x2 − 1), (x1 + 1, x2), (x1 − 1, x2)}

For x on the edges of the lattice, there are fewer neighbors and the transition
probabilities will be slightly different.

Define τ = inf{n ∈ N : Xn = (1, 1) or Xn = (d, d)}.
Define B = {τ <∞, Xτ = (d, d)}.
Define Zn = Xn,1 +Xn,2 for each n.

(i) Write down the transition probabilities P (x, y) when x is on the edge of the lattice.
(That is, at least one of x1 and x2 is equal to 1 or d.)

(ii) Define f(x) = x1 + x2 for x = (x1, x2) ∈ S. Show that f is harmonic. That is,
show that E (f(X1) | X0 = x) = f(x) for each x.

Write A for {(1, 1), (d, d)}, the set of absorbing states.



As my original description of the chain as a random walk was impre-
cise, I collapsed the first two questions into: Find transition probabilities
P (x, y) when x is on the boundary and x /∈ A to make the function f
harmonic.

The assertion that Pxf(X1) = f(x) when x ∈ A holds for trivial
reasons.

When x = (x1, x2) is not on the boundary,

Px{f(X1) = f(x) + 1}
= Px{Xn+1 = (x1 + 1, x2)}+ Px{Xn+1 = (x1, x2 + 1)}
= 1/4 + 1/4 = 1/2

and, by a similar argument, Px{f(Xn+1) = f(x) − 1} = 1/2. It follows
that

E (f(Xn+1) | Xn = x)) = 1
2
(f(x) + 1) + 1

2
(f(x)− 1) = f(x).
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To make f harmonic everywhere, it suffices to have

Px{f(X1) = f(x) + 1} = 1/2 = Px{f(X1) = f(x)− 1}

for all boundry points x /∈ A. The picture shows one possible choice for
the transition probabilities. (In fact, we could also replace the 1/4’s on the
boundary by any other pair of nonnegative numbers that sum to 1/2. The
numbers could even change from one boundary point to another.)



(iii) Explain why Px{τ <∞} = 1 for every x in S.
For every x in S,

Px{τ ≤ 2d} ≥ δ := 4−d,

because there is a path of at most 2d steps leading from each x to an ab-
sorbing state. The usual chicken argument then gives

Px{τ > 2(k + 1)d} =
∑

y∈S\A
Px{τ > 2kd,X2kd = y}Py{τ > 2d}

≤ (1− δ)Px{τ > 2kd},

leading to the bound Px{τ > kd} ≤ (1 − δ)k for every x and k ∈ N.
Question: Should I have considered the cases where x ∈ A separately?

(iv) Show that Zn is a martingale for each initial state x of the Xn-chain.
In class I showed, for a general Markov chain and a general harmonic
function f , that Ex (f(Xn+1)− f(Xn) | D) = 0 for every event D of the
form {X0 = x0, X1 = x1, . . . , Xn = xn}. That is, f(Xn) is a martingale.

Some of you wanted to replace the conditioning event by an analo-
gous event F = {Z0 = z0, . . . , Zn = zn}. For a formal argument you
could have rewritten F as a disjoint union of events of the form D(x0,n) =
{X0,n = x0,n}, with x0,n = (x0, x1, . . . , xn) ranging over some set XF of
n+ 1-tuples, then argued that

Ex (f(Xn+1)− f(Xn) | F )

=
∑

x0,n∈XF

Ex (f(Xn+1)− f(Xn) | D(x0,n), F ) Px{D(x0,n) | F}.

Note that

Ex (f(Xn+1)− f(Xn) | D(x0,n), F )

= Ex (f(Xn+1)− f(Xn) | D(x0,n)) = 0 for each x0,n ∈ XF .

(v) Show that Zn is also a Markov chain. Write down the state space and transition
probabilities for the Zn-chain.

You could argue formally, using the notation from the previous part, that
the transition probabilities were chosen to make

P{f(Xn+1)− f(Xn) = ±1 | D(x0,n)} = 1/2

for each x0,n = (x0, . . . , xn) with xi /∈ A for each i. An averaging out
with weights Px{D(x0,n) | F} would then show that Zn = f(Xn) is a
Markov chain with state space S′ = {2, 3, . . . , 2d} and transition probabil-
ities P (i, i+ 1) = 1/2 = P (i, i− 1) for 2 < i < 2d, with the states 2 and
2d absorbing.



(vi) Define g(x) = PxB. Show that g is a harmonic function.
You needed to show that Pxg(X1) = g(x) for all x in S. I had intended
that you prove this fact by a direct conditioning argument:

Pxg(X1) =
∑

y∈S
P (x, y)P(B | X0 = x,X1 = y).

It might help to think of B as ∪n∈N{Xn = (d, d)}, in order to recognize
that P(B | X0 = x,X1 = y) = PyB = g(y). Do we need a sepa-
rate argument for the cases where x ∈ A? Is there any problem with the
case x = (1, 1) and y = (d, d)?

Many of you actually solved the next part first, using a gambler’s ruin
argument, then checked manually that the resulting g was harmonic.

(vii) Find g(x) for each x in S.
A slick argument could be based on the fact that a harmonic function for
the Z-chain is uniquely determined by its values h(2) and h(2d). Proof?
The harmonic function

h(x) =
f(x)− 2

2(d− 1)

has h(2) = 0 = g(2) and h(2d) = 1 = g(2d). It follows that g(x) = h(x)
for all x in S′.

[3] Question 1 on Homework 3 described a modification of the queueing example from
Section 2.3 of the Chang notes. I got myself greatly confused over the problem
of independence of Xn and D1, D2,. . . , Dn. The following questions revisit the
modified problem, with the aim of proving that

Pπ{X2 = k,D1 = δ1, D2 = δ2} = πkθ(δ1)θ(δ2) for all δi ∈ {0, 1}, all k ≥ 0,<1>

where θ(1) = p and θ(0) = 1−p. That is, the aim is to prove independence ofX2,
D1, and D2. To this end define

G(k, δ1, α1, δ2, α2) = Pπ{X2 = k,D1 = δ1, A1 = α1, D2 = δ2, A2 = α2}.

and let j = k − α2 + δ2 and i = j − α1 + δ1. Note that δ1 and α1 are uniquely
determined by i and j if |i− j| = 1; and δ2 and α2 are uniquely determined by j
and k if |j − k| = 1

You may assume that the chain has stationary distribution π and transition
probabilities as shown on the Solutions to Sheet 3.

The key idea is that the values of Xn and Xn−1 uniquely determine the
values of An and Dn when |Xn −Xn−1| = 1. More precisely,

{Xn−1 = x,Xn = x+ 1}
= {Xn−1 = x,An = 1, Dn = 0}
= {Xn = x+ 1, An = 1, Dn = 0}



and

{Xn−1 = x,Xn = x− 1}
= {Xn−1 = x,An = 0, Dn = 1}
= {Xn = x− 1, An = 0, Dn = 1}.

That is, when Xn 6= Xn−1 the information about An and Dn is redundant;
we have only to retain information about the value of least one of Xn

and Xn−1. Compare with

{Xn−1 = x,Xn = x}
= {Xn−1 = x,An = 1, Dn = 1} ∪ {Xn−1 = x,An = 0, Dn = 1}.

(i) For each i ≥ 0 define fi(δ) = Pi{A1 = D1 = δ} for δ ∈ {0, 1} and i =
0, 1, 2, . . . . Write down the expression for fi(δ). Hint: You will need to distinguish
between the cases i = 0 and i ≥ 1.

Given the event X0 = i, the random variables A1 and D1 are (condition-
ally) independent with Pi{A1 = 1} = p for all i ≥ 0 and Pi{D1 = 1} = a
for all i ≥ 1. However P0{D1 = 1} = 0 because an empty queue contains
nobody to be served. Thus

fi(0) = (1− p)(1− a) and fi(1) = pa if i ≥ 1

f0(0) = 1− p and f0(1) = 0.

(ii) Explain why

G(k,δ1, α1, δ2, α2)

= Pπ{X0 = i,X1 = j,X2 = k,D1 = δ1, A1 = α1, D2 = δ2, A2 = α2}

for all k ≥ 1 and all δi, αi ∈ {0, 1}.
Actually, the argument works for all k ≥ 0.

If we know Xn, An and Dn then the value of Xn−1 is uniquely deter-
mined. In particular,

{X2 = k,A2 = α2, D2 = δ2} = {X2 = k,A2 = α2, D2 = δ2, X1 = j}

where j = k − α2 + δ2, and

{X1 = j, A1 = α1, D1 = δ1} = {X1 = j, A1 = α2, D1 = δ1, X1 = i}

where i = j − α1 + δ1. Consequently,

{X2 = k,D1 = δ1, A1 = α1, D2 = δ2, A2 = α2}
= {X2 = k,D1 = δ1, A1 = α1, D2 = δ2, A2 = α2, X1 = j,X0 = i}.



Take Pπ probability of both sides.
(iii) If α1 6= δ1 and α2 6= δ2 show that

G(k,δ1, α1, δ2, α2)

= Pπ{X0 = k,X1 = j,X2 = i}
= Pπ{X0 = k,D1 = α2, A1 = δ2, D2 = α1, A2 = δ1}.

For this case, i 6= j and j 6= k. The values of the A’s and D’s are uniquely
determined by the values of X0, X1, and X2. Thus

G = Pπ{X2 = k,X1 = j,X0 = i}
= Pπ{X0 = k,X1 = j,X2 = i} by time reversibility
= Pπ{X0 = k,X1 = j,X2 = i, A1 −D1 = j − k,A2 −D2 = i− j}.

The equality A1 − D1 = j − k = δ2 − α2 is equivalent to A1 = δ2 and
D1 = α2; andA2−D2 = i−j = δ1−α1 is equivalent toA2 = δ1 andD2 =
α1. If we make those substitutions then discard the redundant information
about X1 and X2 we are left with the asserted expression for G.

(iv) If α1 = δ1 and δ2 6= α2 show that

G(k,δ1, α1, δ2, α2)

= Pπ{X2 = k,X1 = j,X0 = j,D1 = δ1 = A1}
= πjfj(δ1)P (j, k)

= Pπ{X0 = k,D1 = α2, A1 = δ2, D2 = α1, A2 = δ1}.

For this case, i = j 6= k. We need to keep the information about A1

andD1 but the information about A2 andD2 can be replaced by equivalent
information about X2 −X1. Condition.

G = Pπ{X2 = k,X1 = j,X0 = j, A1 = δ1, D1 = δ1}
= Pπ{X0 = j} × Pπ{X1 = j, A1 = δ1, D1 = δ1 | X0 = j}
× Pπ{X2 = k | X0 = j,X1 = j, A1 = δ1, D1 = δ1}

For the last product, the first factor equals πj . We can discard the redundant
information X1 = j in the second term to reduce to fj(δ1). The third term
equals P (j, k), by the Markov property. Thus G = πjfj(δ1)P (j, k).

Time reversibility gives πjP (j, k) = πkP (k, j). Also, we can reinter-
pret fj(δ1) as Pπ{A2 = D2 = δ1 | X1 = j}. With these changes we
get

G = πkP (k, j)Pπ{A2 = D2 = δ1 | X1 = j}
= Pπ{X0 = k,X1 = j, A2 = D2 = δ1}



We can replace the X1 = j by the equivalent A1 = δ2, D1 = α2 because
j − k 6= 0.

(v) Similarly, if α1 6= δ1 and α2 = δ2, show that

G(k,δ1, α1, δ2, α2)

= Pπ{X0 = k,D1 = α2, A1 = δ2, D2 = α1, A2 = δ1}.

For this case, i 6= j = k. Argue as in the previous part.

G = Pπ{X2 = X1 = k,X0 = i, A2 = D2 = δ2}
= πiP (i, k)fk(δ2)

= πkPπ{A1 = D1 = δ2 | X0 = k}P (k, i) time reversibility
= Pπ{X0 = k,A1 = D1 = δ2, X2 = i}

We can replace the X2 = i by the equivalent A2 = δ1, D2 = α1 be-
cause k − i 6= 0.

(vi) If α1 = δ1 and α2 = δ2, show that

G(k,δ1, α1, δ2, α2)

= Pπ{X2 = k,X1 = k,X0 = k,D1 = δ1 = A1, D2 = δ2 = A2}
= πkfk(δ1)fk(δ2)

= Pπ{X0 = k,D1 = α2, A1 = δ2, D2 = α1, A2 = δ1}.

For this case, i = j = k. Condition to factorize the first Pπ probability
into Pπ{X0 = k} times Pπ{X1 = k,D1 = δ1 = A1 | X0 = k} times

Pπ{X2 = k,D2 = δ2 = A2 | X1 = k,D1 = δ1 = A1, X0 = k}
Discard the redundant X1 = k in the second factor, and the redundant
X2 = k in the third, then invoke the Markov property to reduce the product
to πkfk(δ1)fk(δ2). A similar argument reduces

Pπ{X0 = k = X1 = X2, D1 = A1 = δ2, D2 = A2 = δ1}
to πkfk(δ2)fk(δ1).

(vii) Complete the proof of <1>.
For all k ≥ 0 and all α1, δ1α2, δ2 we now know that

Pπ{X2 = k,D1 = δ1, A1 = α1, D2 = δ2, A2 = α2}
= Pπ{X0 = k,D1 = α2, A1 = δ2, D2 = α1, A2 = δ1}.

Sum over α1 and α2 to deduce that

Pπ{X2 = k,D1 = δ1, D2 = δ2} = Pπ{X0 = k,A1 = δ2, A2 = δ1}.
By independence of the arrival process, the last term factorizes into πkθ(δ2)θ(δ1),
which is the desired expression for Pπ{X2 = k,D1 = δ1, D2 = δ2}.


