Statistics 251b/551b, spring 2009 Solutions for test 1

- You should prepare solutions to the following questions without help or hints from anybody else. In particular, if you have been working in a group you must suspend the group arrangement for the test; you must not discuss the questions with your group buddy.
- If you have questions of interpretation, or of clarification of the meaning of a question, ask David Pollard.
- Make sure you explain your calculations and notation.
- Each part of each question is worth 5 points.
- As usual, even if you are unable to solve one part of a question you may still use the result for the following parts.
- [1] For each of the following questions, S denotes the set {0, 1, 2, 3, ...} = {0} ∪ N.
 (i) Give an example of an irreducible Markov chain with state space S for which there exists a stationary measure but no stationary probability distibution.

Many of you used the the chain discussed in lecture 3, with $\alpha = 1/2$. That is, P(0,0) = P(0,1) = 1/2 and P(i,i-1) = 1/2 = P(i,i+1) for $i \ge 1$. As shown in class, the only solution to the equations $\lambda_j = \sum_{i \in \mathbb{S}} \lambda_i P(i,j)$ for $j \in \mathbb{S}$ is $\lambda_i = \lambda_0$ for all *i*. Taking $\lambda_0 = 1$ we get a stationary measure but there is no way to choose λ_0 to make $\sum_{i \in \mathbb{S}} \lambda_i = 1$.

(ii) Give an example of a Markov chain with state space S that has at least two distinct stationary probability distibutions.

The simplest example makes every state absorbing, so that every probability measure on S is a stationary probability distibution.

(iii) Give an example of a martingale taking values in S *that is not a Markov chain.* The challenge is to define conditional distributions

 $p_n(i \mid i_0, \dots, i_{n-1}) = \mathbb{P}\{X_n = i \mid X_0 = i_0, \dots, X_{n-1} = i_{n-1}\}$

so that

- (i) p_n depends on more than i_{n-1} alone
- (ii) $\sum_{i} i p_n(i \mid i_0, \dots, i_{n-1}) = i_{n-1}$ for all i_{n-1} .

Requirement (ii) forces us to take $p_n(0 \mid i_0, \ldots, i_{n-1}) = 1$ if $i_{n-1} = 0$.

The idea in the following example is to make all the conditional distributions depend on X_0 . Start with $\mathbb{P}\{X_0 = 1\} = 1/2 = \mathbb{P}\{X_0 = 2\}$. Let the process make jumps $\pm X_0$ each with conditional probability 1/2. Of

course, the case $i_{n-1} = 1$ needs special treatment to stop the process from jumping outside S. Take

$$p_n(2 \mid i_0, \dots, i_{n-1}) = p_n(0 \mid i_0, \dots, i_{n-1}) = 1/2$$
 if $i_{n-1} = 1$.

and, if $i_{n-1} \ge 2$ and $i_0 = k$, take

$$p_n(i_{n-1}+k \mid i_0, \dots, i_{n-1}) = p_n(i_{n-1}-k \mid i_0, \dots, i_{n-1}) = 1/2$$

(iv) Give an example of an irreducible, aperiodic Markov chain with state space S for which $\mathbb{P}_i \{X_n = i\} = 0$ for $1 \le n \le 100$ for every state *i*.

I don't like having to worry about 101 versus 100. So take

$$P(0,j) = \begin{cases} C2^{-j} & \text{if } j \ge 1000\\ 0 & \text{otherwise,} \end{cases}$$

where C is chosen to make $\sum_{j \in S} P(0, j) = 1$. Then define P(i, i - 1) = 1 for all $i \ge 1$. Clearly $0 \iff j$ for every j > 0, so the chain is irreducible. It takes at least 1001 steps to get from i back to i for every i in S. (Consider the cases i < 1000 and $i \ge 1000$ separately.)

[2] For a fixed positive integer d let

$$\mathbb{S} = \{(i_1, i_2) \in \mathbb{N} \times \mathbb{N} : 1 \le i_1 \le d \text{ and } 1 \le i_2 \le d\}$$

denote the $d \times d$ lattice of points with integer coordinates running from 1 to d. Let $X_n = (X_{n,1}, X_{n,2})$ be a random walk on S: if $X_n = x \notin \{(1,1), (d,d)\}$ then X_{n+1} has the equal probability of being at one of the neighbors of x. Make both (1,1) and (d,d) absorbing states. For example, if $x = (x_1, x_2)$ with $1 < x_i < d$ for i = 1, 2 then P(x, y) = 1/4 for each y in the set

$$\{(x_1, x_2 + 1), (x_1, x_2 - 1), (x_1 + 1, x_2), (x_1 - 1, x_2)\}$$

For x on the edges of the lattice, there are fewer neighbors and the transition probabilities will be slightly different.

Define $\tau = \inf\{n \in \mathbb{N} : X_n = (1, 1) \text{ or } X_n = (d, d)\}.$ Define $B = \{\tau < \infty, X_\tau = (d, d)\}.$ Define $Z_n = X_{n,1} + X_{n,2}$ for each n.

- (i) Write down the transition probabilities P(x, y) when x is on the edge of the lattice. (That is, at least one of x_1 and x_2 is equal to 1 or d.)
- (ii) Define $f(x) = x_1 + x_2$ for $x = (x_1, x_2) \in S$. Show that f is harmonic. That is, show that $\mathbb{E}(f(X_1) \mid X_0 = x) = f(x)$ for each x.

Write A for $\{(1, 1), (d, d)\}$, the set of absorbing states.

As my original description of the chain as a random walk was imprecise, I collapsed the first two questions into: Find transition probabilities P(x, y) when x is on the boundary and $x \notin A$ to make the function f harmonic.

The assertion that $\mathbb{P}_x f(X_1) = f(x)$ when $x \in A$ holds for trivial reasons.

When $x = (x_1, x_2)$ is not on the boundary,

$$\mathbb{P}_x\{f(X_1) = f(x) + 1\} \\ = \mathbb{P}_x\{X_{n+1} = (x_1 + 1, x_2)\} + \mathbb{P}_x\{X_{n+1} = (x_1, x_2 + 1)\} \\ = 1/4 + 1/4 = 1/2$$

and, by a similar argument, $\mathbb{P}_x\{f(X_{n+1}) = f(x) - 1\} = 1/2$. It follows that

 $\mathbb{E}\left(f(X_{n+1}) \mid X_n = x\right) = \frac{1}{2}\left(f(x) + 1\right) + \frac{1}{2}\left(f(x) - 1\right) = f(x).$

To make f harmonic everywhere, it suffices to have

$$\mathbb{P}_x\{f(X_1) = f(x) + 1\} = 1/2 = \mathbb{P}_x\{f(X_1) = f(x) - 1\}$$

for all boundry points $x \notin A$. The picture shows one possible choice for the transition probabilities. (In fact, we could also replace the 1/4's on the boundary by any other pair of nonnegative numbers that sum to 1/2. The numbers could even change from one boundary point to another.) (iii) Explain why $\mathbb{P}_x\{\tau < \infty\} = 1$ for every x in S.

For every x in S,

$$\mathbb{P}_x\{\tau \le 2d\} \ge \delta := 4^{-d},$$

because there is a path of at most 2d steps leading from each x to an absorbing state. The usual chicken argument then gives

$$\mathbb{P}_x\{\tau > 2(k+1)d\} = \sum_{y \in \mathcal{S} \setminus A} \mathbb{P}_x\{\tau > 2kd, X_{2kd} = y\}\mathbb{P}_y\{\tau > 2d\}$$
$$\leq (1-\delta)\mathbb{P}_x\{\tau > 2kd\},$$

leading to the bound $\mathbb{P}_x\{\tau > kd\} \leq (1-\delta)^k$ for every x and $k \in \mathbb{N}$. Question: Should I have considered the cases where $x \in A$ separately?

(iv) Show that Z_n is a martingale for each initial state x of the X_n -chain.

In class I showed, for a general Markov chain and a general harmonic function f, that $\mathbb{E}_x (f(X_{n+1}) - f(X_n) \mid D) = 0$ for every event D of the form $\{X_0 = x_0, X_1 = x_1, \dots, X_n = x_n\}$. That is, $f(X_n)$ is a martingale.

Some of you wanted to replace the conditioning event by an analogous event $F = \{Z_0 = z_0, \ldots, Z_n = z_n\}$. For a formal argument you could have rewritten F as a disjoint union of events of the form $D(x_{0,n}) = \{X_{0,n} = x_{0,n}\}$, with $x_{0,n} = (x_0, x_1, \ldots, x_n)$ ranging over some set \mathcal{X}_F of n + 1-tuples, then argued that

$$\mathbb{E}_{x} \left(f(X_{n+1}) - f(X_{n}) \mid F \right) \\ = \sum_{x_{0,n} \in \mathfrak{X}_{F}} \mathbb{E}_{x} \left(f(X_{n+1}) - f(X_{n}) \mid D(x_{0,n}), F \right) \mathbb{P}_{x} \{ D(x_{0,n}) \mid F \}.$$

Note that

$$\mathbb{E}_x \left(f(X_{n+1}) - f(X_n) \mid D(x_{0,n}), F \right) \\ = \mathbb{E}_x \left(f(X_{n+1}) - f(X_n) \mid D(x_{0,n}) \right) = 0$$
 for each $x_{0,n} \in \mathfrak{X}_F$

(v) Show that Z_n is also a Markov chain. Write down the state space and transition probabilities for the Z_n -chain.

You could argue formally, using the notation from the previous part, that the transition probabilities were chosen to make

$$\mathbb{P}\{f(X_{n+1}) - f(X_n) = \pm 1 \mid D(x_{0,n})\} = 1/2$$

for each $x_{0,n} = (x_0, \ldots, x_n)$ with $x_i \notin A$ for each *i*. An averaging out with weights $\mathbb{P}_x\{D(x_{0,n}) \mid F\}$ would then show that $Z_n = f(X_n)$ is a Markov chain with state space $S' = \{2, 3, \ldots, 2d\}$ and transition probabilities P(i, i + 1) = 1/2 = P(i, i - 1) for 2 < i < 2d, with the states 2 and 2*d* absorbing.

(vi) Define $g(x) = \mathbb{P}_x B$. Show that g is a harmonic function.

You needed to show that $\mathbb{P}_x g(X_1) = g(x)$ for all x in S. I had intended that you prove this fact by a direct conditioning argument:

$$\mathbb{P}_{x}g(X_{1}) = \sum_{y \in \mathcal{S}} P(x, y)\mathbb{P}(B \mid X_{0} = x, X_{1} = y).$$

It might help to think of B as $\bigcup_{n \in \mathbb{N}} \{X_n = (d, d)\}$, in order to recognize that $\mathbb{P}(B \mid X_0 = x, X_1 = y) = \mathbb{P}_y B = g(y)$. Do we need a separate argument for the cases where $x \in A$? Is there any problem with the case x = (1, 1) and y = (d, d)?

Many of you actually solved the next part first, using a gambler's ruin argument, then checked manually that the resulting g was harmonic.

(vii) Find g(x) for each x in S.

A slick argument could be based on the fact that a harmonic function for the Z-chain is uniquely determined by its values h(2) and h(2d). Proof? The harmonic function

$$h(x) = \frac{f(x) - 2}{2(d-1)}$$

has h(2) = 0 = g(2) and h(2d) = 1 = g(2d). It follows that g(x) = h(x) for all x in S'.

[3] Question 1 on Homework 3 described a modification of the queueing example from Section 2.3 of the Chang notes. I got myself greatly confused over the problem of independence of X_n and D_1, D_2, \ldots, D_n . The following questions revisit the modified problem, with the aim of proving that

<1>
$$\mathbb{P}_{\pi}\{X_2 = k, D_1 = \delta_1, D_2 = \delta_2\} = \pi_k \theta(\delta_1) \theta(\delta_2)$$
 for all $\delta_i \in \{0, 1\}$, all $k \ge 0$
where $\theta(1) = p$ and $\theta(0) = 1 - p$. That is, the aim is to prove independence of X_2 , D_1 , and D_2 . To this end define

$$G(k, \delta_1, \alpha_1, \delta_2, \alpha_2) = \mathbb{P}_{\pi} \{ X_2 = k, D_1 = \delta_1, A_1 = \alpha_1, D_2 = \delta_2, A_2 = \alpha_2 \}.$$

and let $j = k - \alpha_2 + \delta_2$ and $i = j - \alpha_1 + \delta_1$. Note that δ_1 and α_1 are uniquely determined by i and j if |i - j| = 1; and δ_2 and α_2 are uniquely determined by j and k if |j - k| = 1

You may assume that the chain has stationary distribution π and transition probabilities as shown on the Solutions to Sheet 3.

The key idea is that the values of X_n and X_{n-1} uniquely determine the values of A_n and D_n when $|X_n - X_{n-1}| = 1$. More precisely,

$$\{X_{n-1} = x, X_n = x + 1\}$$

= $\{X_{n-1} = x, A_n = 1, D_n = 0\}$
= $\{X_n = x + 1, A_n = 1, D_n = 0\}$

and

$$\{X_{n-1} = x, X_n = x - 1\}$$

= $\{X_{n-1} = x, A_n = 0, D_n = 1\}$
= $\{X_n = x - 1, A_n = 0, D_n = 1\}$

That is, when $X_n \neq X_{n-1}$ the information about A_n and D_n is redundant; we have only to retain information about the value of least one of X_n and X_{n-1} . Compare with

$$\{X_{n-1} = x, X_n = x\}$$

= $\{X_{n-1} = x, A_n = 1, D_n = 1\} \cup \{X_{n-1} = x, A_n = 0, D_n = 1\}$

(i) For each $i \ge 0$ define $f_i(\delta) = \mathbb{P}_i \{A_1 = D_1 = \delta\}$ for $\delta \in \{0, 1\}$ and $i = 0, 1, 2, \ldots$. Write down the expression for $f_i(\delta)$. Hint: You will need to distinguish between the cases i = 0 and $i \ge 1$.

Given the event $X_0 = i$, the random variables A_1 and D_1 are (conditionally) independent with $\mathbb{P}_i\{A_1 = 1\} = p$ for all $i \ge 0$ and $\mathbb{P}_i\{D_1 = 1\} = a$ for all $i \ge 1$. However $\mathbb{P}_0\{D_1 = 1\} = 0$ because an empty queue contains nobody to be served. Thus

$$f_i(0) = (1-p)(1-a)$$
 and $f_i(1) = pa$ if $i \ge 1$
 $f_0(0) = 1-p$ and $f_0(1) = 0$.

(ii) Explain why

$$G(k,\delta_1,\alpha_1,\delta_2,\alpha_2) = \mathbb{P}_{\pi}\{X_0 = i, X_1 = j, X_2 = k, D_1 = \delta_1, A_1 = \alpha_1, D_2 = \delta_2, A_2 = \alpha_2\}$$

for all $k \geq 1$ and all $\delta_i, \alpha_i \in \{0, 1\}$.

Actually, the argument works for all $k \ge 0$.

If we know X_n , A_n and D_n then the value of X_{n-1} is uniquely determined. In particular,

$$\{X_2 = k, A_2 = \alpha_2, D_2 = \delta_2\} = \{X_2 = k, A_2 = \alpha_2, D_2 = \delta_2, X_1 = j\}$$

where $j = k - \alpha_2 + \delta_2$, and

$$\{X_1 = j, A_1 = \alpha_1, D_1 = \delta_1\} = \{X_1 = j, A_1 = \alpha_2, D_1 = \delta_1, X_1 = i\}$$

where $i = j - \alpha_1 + \delta_1$. Consequently,

$$\{X_2 = k, D_1 = \delta_1, A_1 = \alpha_1, D_2 = \delta_2, A_2 = \alpha_2\} = \{X_2 = k, D_1 = \delta_1, A_1 = \alpha_1, D_2 = \delta_2, A_2 = \alpha_2, X_1 = j, X_0 = i\}.$$

Take \mathbb{P}_{π} probability of both sides.

(iii) If $\alpha_1 \neq \delta_1$ and $\alpha_2 \neq \delta_2$ show that

$$G(k, \delta_1, \alpha_1, \delta_2, \alpha_2)$$

= $\mathbb{P}_{\pi} \{ X_0 = k, X_1 = j, X_2 = i \}$
= $\mathbb{P}_{\pi} \{ X_0 = k, D_1 = \alpha_2, A_1 = \delta_2, D_2 = \alpha_1, A_2 = \delta_1 \}.$

For this case, $i \neq j$ and $j \neq k$. The values of the A's and D's are uniquely determined by the values of X_0 , X_1 , and X_2 . Thus

$$G = \mathbb{P}_{\pi} \{ X_2 = k, X_1 = j, X_0 = i \}$$

= $\mathbb{P}_{\pi} \{ X_0 = k, X_1 = j, X_2 = i \}$ by time reversibility
= $\mathbb{P}_{\pi} \{ X_0 = k, X_1 = j, X_2 = i, A_1 - D_1 = j - k, A_2 - D_2 = i - j \}$

The equality $A_1 - D_1 = j - k = \delta_2 - \alpha_2$ is equivalent to $A_1 = \delta_2$ and $D_1 = \alpha_2$; and $A_2 - D_2 = i - j = \delta_1 - \alpha_1$ is equivalent to $A_2 = \delta_1$ and $D_2 = \alpha_1$. If we make those substitutions then discard the redundant information about X_1 and X_2 we are left with the asserted expression for G.

(iv) If $\alpha_1 = \delta_1$ and $\delta_2 \neq \alpha_2$ show that

$$G(k, \delta_1, \alpha_1, \delta_2, \alpha_2)$$

= $\mathbb{P}_{\pi} \{ X_2 = k, X_1 = j, X_0 = j, D_1 = \delta_1 = A_1 \}$
= $\pi_j f_j(\delta_1) P(j, k)$
= $\mathbb{P}_{\pi} \{ X_0 = k, D_1 = \alpha_2, A_1 = \delta_2, D_2 = \alpha_1, A_2 = \delta_1 \}$

For this case, $i = j \neq k$. We need to keep the information about A_1 and D_1 but the information about A_2 and D_2 can be replaced by equivalent information about $X_2 - X_1$. Condition.

$$G = \mathbb{P}_{\pi} \{ X_2 = k, X_1 = j, X_0 = j, A_1 = \delta_1, D_1 = \delta_1 \}$$

= $\mathbb{P}_{\pi} \{ X_0 = j \} \times \mathbb{P}_{\pi} \{ X_1 = j, A_1 = \delta_1, D_1 = \delta_1 \mid X_0 = j \}$
 $\times \mathbb{P}_{\pi} \{ X_2 = k \mid X_0 = j, X_1 = j, A_1 = \delta_1, D_1 = \delta_1 \}$

For the last product, the first factor equals π_j . We can discard the redundant information $X_1 = j$ in the second term to reduce to $f_j(\delta_1)$. The third term equals P(j, k), by the Markov property. Thus $G = \pi_j f_j(\delta_1) P(j, k)$.

Time reversibility gives $\pi_j P(j,k) = \pi_k P(k,j)$. Also, we can reinterpret $f_j(\delta_1)$ as $\mathbb{P}_{\pi}\{A_2 = D_2 = \delta_1 \mid X_1 = j\}$. With these changes we get

$$G = \pi_k P(k, j) \mathbb{P}_{\pi} \{ A_2 = D_2 = \delta_1 \mid X_1 = j \}$$

= $\mathbb{P}_{\pi} \{ X_0 = k, X_1 = j, A_2 = D_2 = \delta_1 \}$

We can replace the $X_1 = j$ by the equivalent $A_1 = \delta_2, D_1 = \alpha_2$ because $j - k \neq 0$.

(v) Similarly, if $\alpha_1 \neq \delta_1$ and $\alpha_2 = \delta_2$, show that

$$G(k, \delta_1, \alpha_1, \delta_2, \alpha_2) = \mathbb{P}_{\pi} \{ X_0 = k, D_1 = \alpha_2, A_1 = \delta_2, D_2 = \alpha_1, A_2 = \delta_1 \}.$$

For this case, $i \neq j = k$. Argue as in the previous part.

$$G = \mathbb{P}_{\pi} \{ X_2 = X_1 = k, X_0 = i, A_2 = D_2 = \delta_2 \}$$

= $\pi_i P(i, k) f_k(\delta_2)$
= $\pi_k \mathbb{P}_{\pi} \{ A_1 = D_1 = \delta_2 \mid X_0 = k \} P(k, i)$ time reversibility
= $\mathbb{P}_{\pi} \{ X_0 = k, A_1 = D_1 = \delta_2, X_2 = i \}$

We can replace the $X_2 = i$ by the equivalent $A_2 = \delta_1, D_2 = \alpha_1$ because $k - i \neq 0$.

(vi) If $\alpha_1 = \delta_1$ and $\alpha_2 = \delta_2$, show that

$$G(k,\delta_1,\alpha_1,\delta_2,\alpha_2) = \mathbb{P}_{\pi}\{X_2 = k, X_1 = k, X_0 = k, D_1 = \delta_1 = A_1, D_2 = \delta_2 = A_2\} = \pi_k f_k(\delta_1) f_k(\delta_2) = \mathbb{P}_{\pi}\{X_0 = k, D_1 = \alpha_2, A_1 = \delta_2, D_2 = \alpha_1, A_2 = \delta_1\}.$$

For this case, i = j = k. Condition to factorize the first \mathbb{P}_{π} probability into $\mathbb{P}_{\pi}\{X_0 = k\}$ times $\mathbb{P}_{\pi}\{X_1 = k, D_1 = \delta_1 = A_1 \mid X_0 = k\}$ times

$$\mathbb{P}_{\pi}\{X_2 = k, D_2 = \delta_2 = A_2 \mid X_1 = k, D_1 = \delta_1 = A_1, X_0 = k\}$$

Discard the redundant $X_1 = k$ in the second factor, and the redundant $X_2 = k$ in the third, then invoke the Markov property to reduce the product to $\pi_k f_k(\delta_1) f_k(\delta_2)$. A similar argument reduces

$$\mathbb{P}_{\pi}\{X_0 = k = X_1 = X_2, D_1 = A_1 = \delta_2, D_2 = A_2 = \delta_1\}$$

to $\pi_k f_k(\delta_2) f_k(\delta_1)$.

(vii) Complete the proof of <1>.

For all $k \ge 0$ and all $\alpha_1, \delta_1 \alpha_2, \delta_2$ we now know that

$$\mathbb{P}_{\pi}\{X_2 = k, D_1 = \delta_1, A_1 = \alpha_1, D_2 = \delta_2, A_2 = \alpha_2\} \\ = \mathbb{P}_{\pi}\{X_0 = k, D_1 = \alpha_2, A_1 = \delta_2, D_2 = \alpha_1, A_2 = \delta_1\}.$$

Sum over α_1 and α_2 to deduce that

$$\mathbb{P}_{\pi}\{X_2 = k, D_1 = \delta_1, D_2 = \delta_2\} = \mathbb{P}_{\pi}\{X_0 = k, A_1 = \delta_2, A_2 = \delta_1\}.$$

By independence of the arrival process, the last term factorizes into $\pi_k \theta(\delta_2) \theta(\delta_1)$, which is the desired expression for $\mathbb{P}_{\pi} \{ X_2 = k, D_1 = \delta_1, D_2 = \delta_2 \}$.