Statistics 251b/551b, spring 2009 Take-home test 1 Due: Wednesday 4 March

- You should prepare solutions to the following questions without help or hints from anybody else. In particular, if you have been working in a group you must suspend the group arrangement for the test; you must not discuss the questions with your group buddy.
- If you have questions of interpretation, or of clarification of the meaning of a question, ask David Pollard.
- Make sure you explain your calculations and notation.
- Each part of each question is worth 5 points.
- As usual, even if you are unable to solve one part of a question you may still use the result for the following parts.
- [1] For each of the following questions, S denotes the set $\{0, 1, 2, 3, ...\} = \{0\} \cup \mathbb{N}$.
 - (i) Give an example of an irreducible Markov chain with state space S for which there exists a stationary measure but no stationary probability distibution.
 - (ii) Give an example of a Markov chain with state space S that has at least two distinct stationary probability distibutions.
 - (iii) Give an example of a martingale taking values in S that is not a Markov chain.
 - (iv) Give an example of an irreducible, aperiodic Markov chain with state space S for which $\mathbb{P}_i \{X_n = i\} = 0$ for $1 \le n \le 100$ for every state *i*.
- [2] For a fixed positive integer d let

$$\mathbb{S} = \{(i_1, i_2) \in \mathbb{N} \times \mathbb{N} : 1 \le i_1 \le d \text{ and } 1 \le i_2 \le d\}$$

denote the $d \times d$ lattice of points with integer coordinates running from 1 to d. Let $X_n = (X_{n,1}, X_{n,2})$ be a random walk on S: if $X_n = x \notin \{(1, 1), (d, d)\}$ then X_{n+1} has the equal probability of being at one of the neighbors of x. Make both (1, 1) and (d, d) absorbing states. For example, if $x = (x_1, x_2)$ with $0 < x_i < d$ for i = 1, 2 then P(x, y) = 1/4 for each y in the set

$$\{(x_1, x_2 + 1), (x_1, x_2 - 1), (x_1 + 1, x_2), (x_1 - 1, x_2)\}$$

For x on the edges of the lattice, there are fewer neighbors and the transition probabilities will be slightly different.

Define $\tau = \inf\{n \in \mathbb{N} : X_n = (1, 1) \text{ or } X_n = (d, d)\}.$ Define $B = \{\tau < \infty, X_\tau = (d, d)\}.$ Define $Z_n = X_{n,1} + X_{n,2}$ for each n.

- (i) Write down the transition probabilities P(x, y) when x is on the edge of the lattice. (That is, at least one of x_1 and x_2 is equal to 1 or d.)
- (ii) Define $f(x) = x_1 + x_2$ for $x = (x_1, x_2) \in S$. Show that f is harmonic. That is, show that $\mathbb{E}(f(X_1) \mid X_0 = x) = f(x)$ for each x.
- (iii) Explain why $\mathbb{P}_x\{\tau < \infty\} = 1$ for every x in S.
- (iv) Show that Z_n is a martingale for each initial state x of the X_n -chain.
- (v) Show that Z_n is also a Markov chain. Write down the state space and transition probabilities for the Z_n -chain.
- (vi) Define $g(x) = \mathbb{P}_x B$. Show that g is a harmonic function.
- (vii) Find g(x) for each x in S.
- [3] Question 1 on Homework 3 described a modification of the queueing example from Section 2.3 of the Chang notes. I got myself greatly confused over the problem of independence of X_n and D_1, D_2, \ldots, D_n . The following questions revisit the modified problem, with the aim of proving that

$$<1> \qquad \mathbb{P}_{\pi}\{X_2 = k, D_1 = \delta_1, D_2 = \delta_2\} = \pi_k \theta(\delta_1) \theta(\delta_2) \qquad \text{for all } \delta_i \in \{0, 1\}, \text{ all } k \ge 0,$$

where $\theta(1) = p$ and $\theta(0) = 1 - p$. That is, the aim is to prove independence of X_2 , D_1 , and D_2 . To this end define

$$G(k, \delta_1, \alpha_1, \delta_2, \alpha_2) = \mathbb{P}_{\pi} \{ X_2 = k, D_1 = \delta_1, A_1 = \alpha_1, D_2 = \delta_2, A_2 = \alpha_2 \}.$$

and let $j = k - \alpha_2 + \delta_2$ and $i = j - \alpha_1 + \delta_1$. Note that δ_1 and α_1 are uniquely determined by i and j if |i - j| = 1; and δ_2 and α_2 are uniquely determined by j and k if |j - k| = 1

You may assume that the chain has stationary distribution π and transition probabilities as shown on the Solutions to Sheet 3.

- (i) For each $i \ge 0$ define $f_i(\delta) = \mathbb{P}_i\{A_1 = D_1 = \delta\}$ for $\delta \in \{0, 1\}$ and $i = 0, 1, 2, \ldots$ Write down the expression for $f_i(\delta)$. Hint: You will need to distinguish between the cases i = 0 and $i \ge 1$.
- (ii) Explain why

$$G(k,\delta_1,\alpha_1,\delta_2,\alpha_2) = \mathbb{P}_{\pi}\{X_0 = i, X_1 = j, X_2 = k, D_1 = \delta_1, A_1 = \alpha_1, D_2 = \delta_2, A_2 = \alpha_2\}$$

for all $k \ge 1$ and all $\delta_i, \alpha_i \in \{0, 1\}$. (iii) If $\alpha_1 \ne \delta_1$ and $\alpha_2 \ne \delta_2$ show that

$$G(k, \delta_1, \alpha_1, \delta_2, \alpha_2)$$

= $\mathbb{P}_{\pi} \{ X_0 = k, X_1 = j, X_2 = i \}$
= $\mathbb{P}_{\pi} \{ X_0 = k, D_1 = \alpha_2, A_1 = \delta_2, D_2 = \alpha_1, A_2 = \delta_1 \}$

(iv) If $\alpha_1 = \delta_1$ and $\alpha_2 \neq \delta_2$ show that

$$G(k, \delta_1, \alpha_1, \delta_2, \alpha_2)$$

= $\mathbb{P}_{\pi} \{ X_2 = k, X_1 = j, X_0 = j, D_1 = \delta_1 = A_1 \}$
= $\pi_j f_j(\delta_1) P(j, k)$
= $\mathbb{P}_{\pi} \{ X_0 = k, D_1 = \alpha_2, A_1 = \delta_2, D_2 = \alpha_1, A_2 = \delta_1 \}.$

(v) Similarly, if $\alpha_1 \neq \delta_1$ and $\alpha_2 = \delta_2$, show that

$$G(k,\delta_1,\alpha_1,\delta_2,\alpha_2) = \mathbb{P}_{\pi}\{X_0 = k, D_1 = \alpha_2, A_1 = \delta_2, D_2 = \alpha_1, A_2 = \delta_1\}.$$

(vi) If $\alpha_1 = \delta_1$ and $\alpha_2 = \delta_2$, show that

$$G(k,\delta_1,\alpha_1,\delta_2,\alpha_2) = \mathbb{P}_{\pi}\{X_2 = k, X_1 = k, X_0 = k, D_1 = \delta_1 = A_1, D_2 = \delta_2 = A_2\}$$
$$= \pi_k f_k(\delta_1) f_k(\delta_2)$$
$$= \mathbb{P}_{\pi}\{X_0 = k, D_1 = \alpha_2, A_1 = \delta_2, D_2 = \alpha_1, A_2 = \delta_1\}.$$

(vii) Complete the proof of <1>.

Bonus points if you find and correct any errors in this question.