Statistics 251b/551b, spring 2009 Homework # 2 Due: Monday 2 February

- [1] Consider an irreducible, positive recurrent Markov chain $\{X_n : n = 0, 1, 2, ...\}$ with state space S and transition probabilities P(i, j). Suppose the chain has period 2. Let α be some arbitrarily chosen state, which will stay fixed throughout the problem. You know that there exists a stationary probability distribution π for which $\pi_{\alpha} = 1/\mathbb{E}_{\alpha}T_{\alpha}$.
 - (i) [5 points] For each j in S define $\mathbb{N}_j = \{n \in \mathbb{N} : \mathbb{P}_{\alpha}\{X_n = j\} > 0\}$. Explain why the elements of \mathbb{N}_j are either all odd or all even. Hint: If $n_1, n_2 \in \mathbb{N}_j$ and $\mathbb{P}_j\{X_\ell = i\} > 0$, what do you know about $n_1 + \ell$ and $n_2 + \ell$?
 - (ii) [5 points] Define S_{even} to be the set of states j for which all elements of \mathbb{N}_j are even and S_{odd} for the remaining states. Show that $\pi(S_{\text{odd}}) = \pi(S_{\text{even}}) = 1/2$. Hint: If $j \in S_{\text{odd}}$ for which i is it possible to have P(i, j) > 0?
 - (iii) [5 points] Define two probability distributions: $\lambda_i = 2\pi_i$ if $i \in S_{\text{even}}$ and $\lambda_i = 0$ otherwise; and $\mu_i = 2\pi_i$ if $i \in S_{\text{odd}}$ and $\mu_i = 0$ otherwise. Show that $\lambda P = \mu$ and $\mu P = \lambda$.
 - (iv) [5 points] Define $\widetilde{X}_n = X_{2n}$ for $n = 0, 1, 2, \ldots$. Explain why \widetilde{X}_n has transition probability matrix P^2 . Explain why, for the P^2 chain, all states in S_{even} communicate but no state in S_{odd} is accessible from a state in S_{even} .
 - (v) [5 points] Explain why the P^2 chain is aperiodic.
 - (vi) [10 points] For each initial distribution ν that concentrates on S_{even} , show that

$$\sum_{i \in \mathcal{S}_{\text{even}}} |\mathbb{P}_{\nu} \{ X_{2n} = i \} - \lambda_i | \to 0 \quad \text{as } n \to \infty.$$

Hint: You may invoke the Basic Limit Theorem as stated in class or in the text. (vii) [5 points] For each initial distribution ν that concentrates on S_{even} , show that

$$\sum_{i \in \mathcal{S}_{\text{odd}}} |\mathbb{P}_{\nu} \{ X_{2n+1} = i \} - \mu_i | \to 0 \quad \text{as } n \to \infty.$$

- (viii) [bonus points] For an arbitrary initial distribution ν on S, describe the behavior of $\mathbb{P}_{\nu}\{X_n = i\}$ as *n* tends to infinity. In particular, discuss whether there is a unique stationary probability distribution for the *P*-chain.
- [2] [20 points] Chang notes, Problem 1.17. Some hints will be given in class.