[1] Consider an irreducible, positive recurrent Markov chain $\{X_n : n = 0, 1, 2, ...\}$ with state space S and transition probabilities P(i, j). Suppose the chain has period 2. Let α be some arbitrarily chosen state, which will stay fixed throughout the problem. You know that there exists a stationary probability distribution π for which $\pi_{\alpha} = 1/\mathbb{E}_{\alpha}T_{\alpha}$.

To simplify the notation, write $i \xrightarrow{m} j$ to mean $\mathbb{P}_i \{X_m = j\} > 0$. Thus $\mathbb{N}_j = \{n \in \mathbb{N} : \alpha \xrightarrow{n} j\}$. You should convince yourself that (i) P(i, j) > 0 if and only if $i \xrightarrow{1} j$ and (ii) if $i \xrightarrow{m} j$ and $j \xrightarrow{n} k$ then $i \xrightarrow{m+n} k$.

(i) Explain why the elements of \mathbb{N}_i are either all odd or all even.

If $\alpha \xrightarrow{n} j$ and $j \xrightarrow{\ell} \alpha$ then $\alpha \xrightarrow{n+\ell} \alpha$. By definition of periodicity, $n + \ell$ must be even, for every n in \mathbb{N}_j . If ℓ is odd, deduce that all n in \mathbb{N}_j are odd; if ℓ is even, deduce that all n in \mathbb{N}_j are even.

The stationary distribution is defined to satisfy the equation

$$\sum\nolimits_{i \in \mathbb{S}} \pi_i P(i,j) = \pi_j$$

If P(i, j) > 0 and $\alpha \xrightarrow{n} i$ then $\alpha \xrightarrow{n+1} j$. If $j \in S_{\text{odd}}$ then n + 1 must be odd, implying $i \in S_{\text{even}}$. Similarly, if $j \in S_{\text{even}}$ then $i \in S_{\text{odd}}$. The equations for π can be rewritten as

$$\sum_{i \in S_{\text{even}}} \pi_i P(i, j) = \pi_j \quad \text{if } j \in S_{\text{odd}} \quad <1>$$
$$\sum_{i \in S_{\text{odd}}} \pi_i P(i, j) = \pi_j \quad \text{if } j \in S_{\text{even}} \quad <2>$$

(ii) Show that $\pi(S_{\text{odd}}) = \pi(S_{\text{even}}) = 1/2$.

Sum equality <1> over all j in S_{odd} then interchange the order of summation on the left-hand side to get

$$\sum_{i \in \mathcal{S}_{\text{even}}} \pi_i \sum_{j \in \mathcal{S}_{\text{odd}}} P(i, j) = \pi(\mathcal{S}_{\text{odd}}).$$

The first expression reduces to $\pi(S_{\text{even}})$ because $\sum_{j \in S_{\text{odd}}} P(i, j) = 1$ when $i \in S_{\text{even}}$.

- (iii) Define two probability distributions: $\lambda_i = 2\pi_i$ if $i \in S_{even}$ and $\lambda_i = 0$ otherwise; and $\mu_i = 2\pi_i$ if $i \in S_{odd}$ and $\mu_i = 0$ otherwise. Show that $\lambda P = \mu$ and $\mu P = \lambda$. Multiply both sides of <1> and <2> by 2.
- (iv) Define $\widetilde{X}_n = X_{2n}$ for n = 0, 1, 2, ... Explain why \widetilde{X}_n has transition probability matrix P^2 . Explain why, for the P^2 chain, all states in S_{even} communicate but no state in S_{odd} is accessible from a state in S_{even} .

See Chang notes §1.3 for the P^2 interpretation.

For each $i \in S$ there exists some integers m and n for which $i \xrightarrow{m} \alpha$ and $\alpha \xrightarrow{n} i$. Note that m + n must be even because state α has period 2. If $i \in S_{\text{even}}$ then n is even, forcing m also to be even. That is, for each $i \in S_{\text{even}}$ there is a path leading from i to α in an even number of steps and a path leading from a to i in an even number of steps. Under P^2 , the set S_{even} is irreducible. The argument for S_{odd} is similar.

On the other hand, suppose $i \in S_{\text{even}}$ and $j \in S_{\text{odd}}$ and $i \xrightarrow{n} j$. We know $\alpha \xrightarrow{m} i$ for some even m. Deduce that $\alpha \xrightarrow{m+n} j$, so that m+n is odd, forcing n to be odd. Put another way, we cannot have $i \xrightarrow{n} j$ if n is even; the P^2 -chain cannot get from S_{even} to S_{odd} . The argument for $j \xrightarrow{n} i$ is similar.

(v) Explain why the P^2 chain is aperiodic.

Invoke Chang notes Lemma 1.38 to show that the set $\{n/2 : n \in \mathbb{N}_{\alpha}\}$ contains all integers that are large enough. That is, $\alpha \xrightarrow{2n} \alpha$ for all large enough integers n. Under P^2 , the state α has period 1. For each j in S_{odd} we know there are odd integers k, ℓ for which $\alpha \xrightarrow{k} j$ and $j \xrightarrow{\ell} \alpha$. Thus $j \xrightarrow{k+\ell+2n} j$ for all large enough integers n. It follows that the state j has period 1 under P^2 .

(vi) For each initial distribution ν that concentrates on S_{even} , show that

$$\sum_{i \in S_{\text{even}}} |\mathbb{P}_{\nu} \{ X_{2n} = i \} - \lambda_i | \to 0 \quad \text{as } n \to \infty.$$

Note that $\lambda P^2 = \mu P = \lambda$. That is, λ is the (unique) stationary probability distribution for the (irreducible, aperiodic) P^2 chain on S_{even}. The asserted convergence is just the BLT for that chain. [You could argue directly that the chain is positive recurrent, but that is not really needed: the proof of the BLT used positive recurrence just to establish existence of some tationary probability distribution.]

(vii) For each initial distribution ν that concentrates on S_{even} , show that

$$\sum_{i \in \mathcal{S}_{\text{odd}}} |\mathbb{P}_{\nu}\{X_{2n+1} = i\} - \mu_i| \to 0 \qquad \text{as } n \to \infty$$

You could argue in essentially the same way as for part (vi), invoking the fact that μ is the (unique) stationary probability distribution for the (irreducible, aperiodic) P^2 chain on S_{odd} . Alternatively, you could argue that

$$\sum_{i \in \mathcal{S}_{odd}} |\mathbb{P}_{\nu} \{ X_{2n+1} = i \} - \mu_i |$$

$$= \sum_{i \in \mathcal{S}_{odd}} |\sum_{j \in \mathcal{S}_{even}} \mathbb{P}_{\nu} \{ X_{2n} = j \} P(j,i) - \sum_{j \in \mathcal{S}_{even}} \lambda_j P(j,i)$$

$$\leq \sum_{i \in \mathcal{S}_{odd}} \sum_{j \in \mathcal{S}_{even}} P(j,i) |\mathbb{P}_{\nu} \{ X_{2n} = j \} - \lambda_j |$$

$$= \sum_{j \in \mathcal{S}_{even}} |\mathbb{P}_{\nu} \{ X_{2n} = j \} - \lambda_j | \to 0,$$

the last equality following from the fact that $\sum_{i \in S_{\text{odd}}} P(j, i) = 1$ for all $j \in S_{\text{even}}$.

(viii) For an arbitrary initial distribution ν on S, describe the behavior of $\mathbb{P}_{\nu}\{X_n = i\}$ as n tends to infinity. In particular, discuss whether there is a unique stationary probability distribution for the P-chain.

Write ν as $\gamma \nu_{\text{even}} + (1 - \gamma)\nu_{\text{odd}}$, where $\gamma = \nu(S_{\text{even}})$ and ν_{even} is a probability concentrating on S_{even} and ν_{odd} is a probability concentrating on S_{odd} . Written using the total variation distance (see Chang Definition 1.35), the results from the previous parts of the problem can be summarized as

$$\|\nu_{\text{even}}P^{2n} - \lambda\| \to 0$$
 and $\|\nu_{\text{odd}}P^{2n} - \mu\| \to 0.$

The first assertion, together with an argument like the one for the alternative for part (vii), shows that

$$\left\| \nu_{\text{even}} P^{2n} P - \lambda P \right\| \le \left\| \nu_{\text{even}} P^{2n} - \lambda \right\| \to 0$$

That is, $\|\nu_{\text{even}}P^{2n+1} - \mu\| \to 0$. Similarly $\|\nu_{\text{odd}}P^{2n+1} - \lambda\| \to 0$. Combining these pieces we get

$$\begin{split} \left\| \nu P^{2n} - \gamma \lambda - (1 - \gamma) \mu \right\| &\to 0 \\ \left\| \nu P^{2n+1} - (1 - \gamma \lambda) - \gamma \mu \right\| &\to 0 \end{split}$$

If $\gamma = 1/2$ it follows that $\|\nu P^n - \pi\| \to 0$ as $n \to \infty$.

If $\tilde{\pi}$ is another stationary distribution for the *P*-chain then $\tilde{\pi} = \tilde{\pi}P^{2n} = \tilde{\pi}P^{2n+1}$ for all *n*, which forces

$$\widetilde{\pi} = \gamma \lambda + (1 - \gamma) \mu = (1 - \gamma \lambda) + \gamma \mu$$
 for $\gamma = \widetilde{\pi}(\mathbb{S}_{even})$.

Thus $\gamma = 1/2$ and $\tilde{\pi} = \frac{1}{2}\lambda + \frac{1}{2}\mu = \pi$. The probability measure π is the unique stationary distribution for the *P*-chain.