
Statistics 251b/551b, spring 2009
Homework # 2 solutions

[1] Consider an irreducible, positive recurrent Markov chain {Xn : n = 0, 1, 2, . . . }
with state space S and transition probabilities P (i, j). Suppose the chain has
period 2. Let α be some arbitrarily chosen state, which will stay fixed throughout
the problem. You know that there exists a stationary probability distribution π for
which πα = 1/EαTα.

To simplify the notation, write i m−→ j to mean Pi{Xm = j} > 0. Thus
Nj = {n ∈ N : α n−→ j}. You should convince yourself that (i) P (i, j) > 0 if and
only if i 1−→ j and (ii) if i m−→ j and j n−→ k then i m+n−−−−→ k.

(i) Explain why the elements of Nj are either all odd or all even.

If α n−→ j and j `−→ α then α n+`−−−→ α. By definition of periodicity, n + `
must be even, for every n in Nj . If ` is odd, deduce that all n in Nj are
odd; if ` is even, deduce that all n in Nj are even.

The stationary distribution is defined to satisfy the equation∑
i∈S

πiP (i, j) = πj

If P (i, j) > 0 and α n−→ i then α n+1−−−→ j. If j ∈ Sodd then n + 1 must be odd,
implying i ∈ Seven. Similarly, if j ∈ Seven then i ∈ Sodd. The equations for π can
be rewritten as∑

i∈Seven

πiP (i, j) = πj if j ∈ Sodd <1>∑
i∈Sodd

πiP (i, j) = πj if j ∈ Seven <2>

(ii) Show that π(Sodd) = π(Seven) = 1/2.
Sum equality <1> over all j in Sodd then interchange the order of summa-
tion on the left-hand side to get∑

i∈Seven

πi
∑

j∈Sodd

P (i, j) = π(Sodd).

The first expression reduces to π(Seven) because
∑

j∈Sodd
P (i, j) = 1 when

i ∈ Seven.
(iii) Define two probability distributions: λi = 2πi if i ∈ Seven and λi = 0 otherwise;

and µi = 2πi if i ∈ Sodd and µi = 0 otherwise. Show that λP = µ and µP = λ.
Multiply both sides of <1> and <2> by 2.

(iv) Define X̃n = X2n for n = 0, 1, 2, . . . . Explain why X̃n has transition probability
matrix P 2. Explain why, for the P 2 chain, all states in Seven communicate but no
state in Sodd is accessible from a state in Seven.



See Chang notes §1.3 for the P 2 interpretation.
For each i ∈ S there exists some integers m and n for which i m−→ α

and α n−→ i. Note that m + n must be even because state α has period 2.
If i ∈ Seven then n is even, forcing m also to be even. That is, for each i ∈
Seven there is a path leading from i to α in an even number of steps and a
path leading from a to i in an even number of steps. Under P 2, the set Seven

is irreducible. The argument for Sodd is similar.
On the other hand, suppose i ∈ Seven and j ∈ Sodd and i n−→ j. We

know α m−→ i for some even m. Deduce that α m+n−−−−→ j, so that m + n is
odd, forcing n to be odd. Put another way, we cannot have i n−→ j if n is
even; the P 2-chain cannot get from Seven to Sodd. The argument for j n−→ i
is similar.

(v) Explain why the P 2 chain is aperiodic.
Invoke Chang notes Lemma 1.38 to show that the set {n/2 : n ∈ Nα}
contains all integers that are large enough. That is, α 2n−−→ α for all large
enough integers n. Under P 2, the state α has period 1. For each j in Sodd

we know there are odd integers k, ` for which α k−→ j and j `−→ α. Thus
j

k+`+2n−−−−−−→ j for all large enough integers n. It follows that the state j has
period 1 under P 2.

(vi) For each initial distribution ν that concentrates on Seven, show that∑
i∈Seven

|Pν{X2n = i} − λi| → 0 as n→∞.

Note that λP 2 = µP = λ. That is, λ is the (unique) station-
ary probability distribution for the (irreducible, aperiodic) P 2 chain
on Seven. The asserted convergence is just the BLT for that chain.
[You could argue directly that the chain is positive recurrent, but
that is not really needed: the proof of the BLT used positive re-
currence just to establish existence of some tationary probability
distribution.]

(vii) For each initial distribution ν that concentrates on Seven, show that∑
i∈Sodd

|Pν{X2n+1 = i} − µi| → 0 as n→∞.

You could argue in essentially the same way as for part (vi), invok-
ing the fact that µ is the (unique) stationary probability distribution
for the (irreducible, aperiodic) P 2 chain on Sodd.



Alternatively, you could argue that∑
i∈Sodd

|Pν{X2n+1 = i} − µi|

=
∑
i∈Sodd

|
∑

j∈Seven

Pν{X2n = j}P (j, i)−
∑

j∈Seven

λjP (j, i)|

≤
∑
i∈Sodd

∑
j∈Seven

P (j, i)|Pν{X2n = j} − λj|

=
∑

j∈Seven

|Pν{X2n = j} − λj| → 0,

the last equality following from the fact that
∑

i∈Sodd
P (j, i) = 1

for all j ∈ Seven.
(viii) For an arbitrary initial distribution ν on S, describe the behavior of

Pν{Xn = i} as n tends to infinity. In particular, discuss whether there is a
unique stationary probability distribution for the P -chain.

Write ν as γνeven + (1 − γ)νodd, where γ = ν(Seven) and νeven is
a probability concentrating on Seven and νodd is a probability con-
centrating on Sodd. Written using the total variation distance (see
Chang Definition 1.35), the results from the previous parts of the
problem can be summarized as∥∥νevenP

2n − λ
∥∥→ 0 and

∥∥νoddP
2n − µ

∥∥→ 0.

The first assertion, together with an argument like the one for the
alternative for part (vii), shows that∥∥νevenP

2nP − λP
∥∥ ≤ ∥∥νevenP

2n − λ
∥∥→ 0

That is, ‖νevenP
2n+1 − µ‖ → 0. Similarly ‖νoddP

2n+1 − λ‖ → 0.
Combining these pieces we get∥∥νP 2n − γλ− (1− γ)µ

∥∥→ 0∥∥νP 2n+1 − (1− γλ)− γµ
∥∥→ 0

If γ = 1/2 it follows that ‖νP n − π‖ → 0 as n→∞.
If π̃ is another stationary distribution for the P -chain then π̃ =

π̃P 2n = π̃P 2n+1 for all n, which forces

π̃ = γλ+ (1− γ)µ = (1− γλ) + γµ for γ = π̃(Seven).

Thus γ = 1/2 and π̃ = 1
2
λ + 1

2
µ = π. The probability measure π

is the unique stationary distribution for the P -chain.


