Section 2.3 of the Chang notes describes a work rule for Andrew: any new arrival is placed on the top of his stack and he then cannot complete any job he was working on. This rule leads to a Markov chain with transition probabilities shown on page 50. Suppose the rule is changed, so that a new arrival is placed at the bottom of the stack and Andrew has probability a of completing any job he is working on, regardless of whether a new paper arrives or not.

Define A_n to be 1 if a new paper arrives at time n, zero otherwise. Define D_n to be 1 if a job is completed at time n, zero otherwise. (For example, if $X_{n-1} = 3$ and $A_n = 1$ then $X_n = X_{n-1} + 1 = 3$, but if $X_{n-1} = 0$ then D_n must be zero, and $X_n = X_{n-1} + A_n$.)

The new transition probabilities are $P(0, 1) = p = 1 - P(0, 0)$, the same as for Section 2.3 of the Notes, and, for $i \geq 1$,

$$P(i, j) = \begin{cases}
\beta = p(1 - a) & \text{for } j = i + 1 \\
\gamma = (1 - p)(1 - a) + pa & \text{for } j = i \\
q = (1 - p)a & \text{for } j = i - 1
\end{cases}$$

Even under the change of rules, the queue size is still a birth and death Markov chain. We can find a stationary probability distribution, if it exists, by solving the ‘local balance equations’:

$$\pi_i P(i, i + 1) = \pi_{i+1} P(i + 1, i)$$

for all $i \geq 0$. More precisely,

$$\pi_0 p = \pi_1 q \quad \text{and} \quad \pi_i \beta = \pi_{i+1} q \quad \text{for } i \geq 1.$$

The solution to these equations satisfies $\pi_{i+1} = (p/q)\lambda^{i-1}\pi_0$ for all $i \geq 0$, where

$$\lambda = \frac{\beta}{q} = \frac{p(1 - a)}{(1 - p)a}$$

Notice that $\lambda < 1$ if $p < a$. In that case, π_0 is well defined by the condition

$$1 = \pi_0 \left(1 + \frac{p}{q} \sum_{i \geq 1} \lambda^{i-1}\right) = \pi_0 \left(1 + \frac{p}{q(1 - \lambda)}\right) = \pi_0 \left(1 + \frac{p}{a - p}\right)$$

That is, $\pi_0 = 1 - p/a$.

The next three parts of the question asked you to find $P_\pi\{D_1 = 0\}$ and $P_\pi\{X_1 = 0, D_1 = 0\}$, with the aim of deducing that X_1 and D_1 are not independent under the P_π distribution. For the first of the probabilities, argue that $D_1 = 1$ if and only if $X_0 \geq 1$ and an independent event with probability a occurs. That is,

$$P_\pi\{D_1 = 1\} = P_\pi\{X_0 \geq 1, D_1 = 1\} = (1 - \pi_0)a = p.$$
Thus $\mathbb{P}_\pi\{D_1 = 0\} = 1 - p$. Similarly, $X_1 = 0$ and $D_1 = 0$ if and only if $X_0 = 0$ and $A_1 = 0$, which implies

$$\mathbb{P}_\pi\{X_1 = 0, D_1 = 0\} = \mathbb{P}_\pi\{X_0 = 0, A_1 = 0\} = \pi_0 (1 - p)$$

Unfortunately for DP, the last expression equals $\mathbb{P}_\pi\{X_1 = 0\}\mathbb{P}_\pi\{D_1 = 0\}$; the events $\{X_1 = 0\}$ and $\{D_1 = 0\}$ are independent.

In fact the random variable X_1 and D_1 are independent. To establish this fact it is enough to show that $\mathbb{P}_\pi\{X_1 = k, D_1 = 0\}$ factorizes into $\mathbb{P}_\pi\{X_1 = k\}\mathbb{P}_\pi\{D_1 = 0\}$ for each nonnegative integer k.

The case $k = 0$ has already been covered. For the case $k = 1$ argue that the event $\{X_1 = 1, D_1 = 0\}$ is the disjoint union of the two events $\{X_0 = 0, A_1 = 1\}$ and $\{X_0 = 1, A_1 = 0, D_1 = 0\}$. Thus

$$\begin{align*}
\mathbb{P}_\pi\{X_1 = 1, D_1 = 0\} &= \mathbb{P}_\pi\{X_0 = 0, A_1 = 1\} + \mathbb{P}_\pi\{X_0 = 1, A_1 = 0, D_1 = 0\} \\
&= \pi_0 p + \pi_1 (1 - p)(1 - a) \\
&= \pi_1 (q + (1 - p)(1 - a)) \\
&= \pi_1 (1 - p) = \mathbb{P}_\pi\{X_1 = 1\}\mathbb{P}_\pi\{D_1 = 0\}.
\end{align*}$$

For $k \geq 2$ argue that

$$\begin{align*}
\mathbb{P}_\pi\{X_1 = k, D_1 = 0\} &= \mathbb{P}_\pi\{X_0 = k, A_1 = 0, D_1 = 0\} + \mathbb{P}_\pi\{X_0 = k - 1, A_1 = 1, D_1 = 0\} \\
&= \pi_k (1 - p)(1 - a) + \pi_{k-1} p (1 - a) \\
&= \pi_k ((1 - p) + p/\lambda)(1 - a) \\
&= \pi_k (1 - p) = \mathbb{P}_\pi\{X_1 = k\}\mathbb{P}_\pi\{D_1 = 0\}.
\end{align*}$$

I also ground out some other cases involving $D_1, D_2,$ and X_2, but kept getting independence. Very strange. I need to think about the reversibility argument some more.