For each real number x, the positive part x^+ is defined as $\max(0, x)$ and the negative part is defined as $\max(0, -x)$. Note that $x = x^+ - x^-$ and $|x| = x^+ + x^-$.

- [1] Suppose λ and μ are probability measures on a countable set S. The total variation distance $\|\lambda \mu\|_{TV}$ is defined as $\sup_{A \subseteq S} |\lambda A \mu A|$.
 - (i) Show that the supremum in the definition must be achieved either by the set $A_0 = \{i \in S : \lambda_i \ge \mu_i\}$ or by the set $A_1 = \{i \in S : \lambda_i \le \mu_i\}$.
 - (ii) Deduce that $\|\lambda \mu\|_{\text{TV}} = \max(\alpha_0, \alpha_1)$ where $\alpha_0 = \sum_{i \in S} (\lambda_i \mu_i)^+$ and $\alpha_1 = \sum_{i \in S} (\lambda_i \mu_i)^-$.
 - (iii) Show that $\alpha_0 = \alpha_1 = \frac{1}{2} \sum_{i \in S} |\lambda_i \mu_i|$.

For each $A \subseteq S$,

$$\lambda A - \mu A = \sum_{i \in A} (\lambda_i - \mu_i)$$

The right-hand side is maximized when A contains precisely those *i* for which $\lambda_i - \mu_i \ge 0$, that is, when $A = A_0$. It is minimized (that is, it is the most negative) when $A = A_1$. Note that

$$(\lambda_i - \mu_i)^+ = \begin{cases} \lambda_i - \mu_i & \text{if } i \in A_0\\ 0 & \text{if } i \in A_0^c \end{cases}$$

and

$$(\lambda_i - \mu_i)^- = \begin{cases} -(\lambda_i - \mu_i) & \text{if } i \in A_1\\ 0 & \text{if } i \in A_1^c \end{cases}$$

The equalities in part (iii) follow from

$$\sum_{i \in \mathcal{S}} \left((\lambda_i - \mu_i)^+ + (\lambda_i - \mu_i)^+ \right) = \sum_{i \in \mathcal{S}} |\lambda_i - \mu_i|$$

and

$$\sum_{i \in S} \left((\lambda_i - \mu_i)^+ - (\lambda_i - \mu_i)^+ \right) = \sum_{i \in S} \lambda_i - \sum_{i \in S} \mu_i = 1 - 1 = 0$$

[2] Let \mathcal{G} be a finite, connected graph with vertex set \mathcal{S} and edge set \mathcal{E} . For each edge e suppose w_e is a strictly positive weight. Define $W_i = \sum_{\{i,j\} \in \mathcal{E}} w_{ij}$. The random walk on the weighted graph has transition probabilities

$$Q(i,j) = w_{i,j}/W_i \qquad \text{if } \{i,j\} \in \mathcal{E}.$$

Suppose λ is a probability distribution on S for which $\max_{i \in S} \lambda_i / W_i > \min_{i \in S} \lambda_i / W_i$. (i) Explain why there must exist at least one edge $\{i, j\}$ for which $\lambda_i / W_i > \lambda_j / W_j$. (ii) Explain why the the chain with transition probabilities

$$P(i,j) = Q(i,j) \min\left(1, \frac{\lambda_j Q(j,i)}{\lambda_i Q(i,j)}\right) \quad \text{for } \{i,j\} \in \mathcal{E}$$

is irreducible, aperiodic, and positive recurrent.

Many of you noticed that the assertions would fail, even if you could make sense of the definition of P(i, j), if any of the λ_i 's were zero. In fact, one runs Metropolis-Hastings only to get convergence to a stationary probability distribution. For an irreducible, finite state space, such a stationary probability distribution must give strictly positive weight to every state; one could not hope for λ to be a stationary distribution if λ_i were zero some *i*. So assume $\lambda_i > 0$ for every *i* in S.

Connectedness of the graph ensures existence of a path $i_0 \mapsto i_1 \mapsto \dots \mapsto i_k$ along the edges of the graph between each pair of vertices i_0 and i_k . For this path, each $w(i_{\alpha-1}, i_{\alpha})$ is strictly positive, which makes each $Q(i_{\alpha-1}, i_{\alpha})$, and hence each $P(i_{\alpha-1}, i_{\alpha})$, strictly positive. The *P*-chain is irreducible.

Positive recurrence follows from HW 1.1.

Define $M = \max_{i \in S} \lambda_i / W_i$ and $m = \min_{i \in S} \lambda_i / W_i$. By irredicibility there must exist some path leading from the set $\{i \in S : \lambda_i / W_i = M\}$ to the set $\{i \in S : \lambda_i / W_i = m\}$. Somewhere along the path there must be an edge $\{i, j\}$ with $\lambda_i / W_i > \lambda_j / W_j$. For this edge,

$$\frac{\lambda_j Q(j,i)}{\lambda_i Q(i,j)} = \frac{\lambda_j w_{i,j}/W_j}{\lambda_i w_{i,j}/W_i} < 1$$

so that P(i, j) < Q(i, j). Let \mathcal{N}_i denote the set of all vertices k for which $\{i, k\} \in \mathcal{E}$. For Metropolis-Hastings,

$$P(i,i) = 1 - \sum_{k \in \mathcal{N}_i} P(i,k),$$

which is strictly greater than $1 - \sum_{k \in \mathcal{N}_i} Q(i, k) \ge 0$ because the vertex j belongs to \mathcal{N}_i and $P(i, k) \le Q(i, k)$ for all k. It follows that state i is aperiodic, which makes the whole (irreducible) chain aperiodic.

[3] Chang Problem 2.20. [Facts about the top-in-at-random shuffle: irreducible; aperiodic; stationary probability distribution is the uniform distribution on *S*.]

To avoid notational confusion, I will write i, j, \ldots to denote only integers between 1 and d, reserving σ, τ, \ldots for elements of S, the set of all d! permutations of the numbers $1, 2, \ldots, d$.

Aperiodicity is easy because $P(\sigma, \sigma) = 1/d$ for every σ .

For *irreducibility*, consider two different permutations, $\sigma = (\sigma_1, \ldots, \sigma_d)$ and τ . We need to find a path with positive probability that leads from σ

to τ . The following steps, which each have probability 1/d, provide such a path.

First move the card labelled σ_1 below the card labelled σ_d . Then move the new top card, which is labelled σ_2 , below the σ_d card into the one of the two slots that puts cards σ_1 and σ_2 into the same relative order they have in τ . For example, if $\sigma_1 = 5$, $\sigma_2 = 11$, $\sigma_d = 3$ and if card 5 comes somewhere after card 11 in the τ permutation, then card number 11 is placed below card number 3 and above card number 5 at the end of the deck.

And so on. At the *k*th step, the card number σ_k is placed below the card numbered σ_d into the slot that gives the cards numbered $\sigma_1, \sigma_2, \ldots, \sigma_k$ the same relative order as the corresponding cards in the τ permutation.

When the card numbered σ_d is finally placed in its appropriate slot then the ordering of the deck is given by the permutation τ .

Finally, I need to show that the uniform distribution, π , on S is *stationary*. It might seem intuitively obvious that uniform followed by a mindless shift of the top card should equal uniform, but the question asked for a more rigorous argument.

I need to show $\mathbb{P}_{\pi}{X_1 = \sigma} = 1/d!$ for each σ in S. Condition on the value of X_0 and on the slot number, N, into which the top card is moved. (If N = 1 then the card stays on top; if N = d it is moved to the bottom of the deck.) By assumption, X_0 and N are independent,

$$\mathbb{P}_{\pi}\{X_0 = \tau, N = k\} = \frac{1}{d!} \times \frac{1}{d} \qquad \text{for } \tau \in \mathbb{S} \text{ and } 1 \le k \le d.$$

For a fixed σ , let $\tau^{(k)}$ denote the permutation obtained by moving the *k*th element of σ back to position 1. For example, if $\sigma = (2, 5, 3, 1, 4)$ then $\tau^{(4)} = (1, 2, 5, 3, 4)$. Note: if $X_0 = \tau$ and N = k then $X_1 = \sigma$ if and only if $\tau = \tau^{(k)}$. Put another way,

$$\mathbb{P}_{\pi}\{X_1 = \sigma \mid X_0 = \tau, N = k\} = \begin{cases} 1 & \text{if } \tau = \tau^{(k)} \\ 0 & \text{otherwise.} \end{cases}$$

Now I can condition.

$$\mathbb{P}_{\pi} \{ X_1 = \sigma \} = \sum_{k=1}^{d} \sum_{\tau \in \mathbb{S}} \mathbb{P}_{\pi} \{ X_1 = \sigma \mid X_0 = \tau, N = k \} \mathbb{P}_{\pi} \{ X_0 = \tau, N = k \}.$$

For each k, the only nonzero τ term is $\tau^{(k)}$. Thus

$$\mathbb{P}_{\pi}\{X_1 = \sigma\} = \sum_{k=1}^{d} 1 \times \mathbb{P}_{\pi}\{X_0 = \tau^{(k)}, N = k\} = \frac{1}{d!}.$$

The stationary probability distribution is π .