
Statistics 251b/551b, spring 2009
Homework #4 solutions

For each real number x, the positive part x+ is defined as max(0, x) and the
negative part is defined as max(0,−x). Note that x = x+−x− and |x| = x++x−.

[1] Suppose λ and µ are probability measures on a countable set S. The total varia-
tion distance ‖λ− µ‖TV is defined as supA⊆S |λA− µA|.

(i) Show that the supremum in the definition must be achieved either by the set A0 =
{i ∈ S : λi ≥ µi} or by the set A1 = {i ∈ S : λi ≤ µi}.

(ii) Deduce that ‖λ− µ‖TV = max (α0, α1) where α0 =
∑

i∈S(λi − µi)+ and α1 =∑
i∈S(λi − µi)−.

(iii) Show that α0 = α1 = 1
2

∑
i∈S |λi − µi|.

For each A ⊆ S,
λA− µA =

∑
i∈A

(λi − µi)

The right-hand side is maximized when A contains precisely those i for
which λi − µi ≥ 0, that is, when A = A0. It is minimized (that is, it is the
most negative) when A = A1. Note that

(λi − µi)+ =

{
λi − µi if i ∈ A0

0 if i ∈ Ac0

and

(λi − µi)− =

{
−(λi − µi) if i ∈ A1

0 if i ∈ Ac1
The equalities in part (iii) follow from∑

i∈S

(
(λi − µi)+ + (λi − µi)+

)
=
∑

i∈S
|λi − µi|

and∑
i∈S

(
(λi − µi)+ − (λi − µi)+

)
=
∑

i∈S
λi −

∑
i∈S

µi = 1− 1 = 0

[2] Let G be a finite, connected graph with vertex set S and edge set E. For each
edge e suppose we is a strictly positive weight. Define Wi =

∑
{i,j}∈Ewij . The

random walk on the weighted graph has transition probabilities

Q(i, j) = wi,j/Wi if {i, j} ∈ E.

Suppose λ is a probability distribution on S for which maxi∈S λi/Wi > mini∈S λi/Wi.
(i) Explain why there must exist at least one edge {i, j} for which λi/Wi > λj/Wj .



(ii) Explain why the the chain with transition probabilities

P (i, j) = Q(i, j) min

(
1,
λjQ(j, i)

λiQ(i, j)

)
for {i, j} ∈ E

is irreducible, aperiodic, and positive recurrent.
Many of you noticed that the assertions would fail, even if you could make
sense of the definition of P (i, j), if any of the λi’s were zero. In fact, one
runs Metropolis-Hastings only to get convergence to a stationary proba-
bility distribution. For an irreducible, finite state space, such a stationary
probability distribution must give strictly positive weight to every state;
one could not hope for λ to be a stationary distribution if λi were zero
some i. So assume λi > 0 for every i in S.

Connectedness of the graph ensures existence of a path i0 7→ i1 7→
. . . 7→ ik along the edges of the graph between each pair of vertices i0
and ik. For this path, each w(iα−1, iα) is strictly positive, which makes
each Q(iα−1, iα), and hence each P (iα−1, iα), strictly positive. The P -
chain is irreducible.

Positive recurrence follows from HW 1.1.
Define M = maxi∈S λi/Wi and m = mini∈S λi/Wi. By irredicibility

there must exist some path leading from the set {i ∈ S : λi/Wi = M} to
the set {i ∈ S : λi/Wi = m}. Somewhere along the path there must be an
edge {i, j} with λi/Wi > λj/Wj . For this edge,

λjQ(j, i)

λiQ(i, j)
=
λjwi,j/Wj

λiwi,j/Wi

< 1

so that P (i, j) < Q(i, j). Let Ni denote the set of all vertices k for
which {i, k} ∈ E. For Metropolis-Hastings,

P (i, i) = 1−
∑

k∈Ni

P (i, k),

which is strictly greater than 1 −
∑

k∈Ni
Q(i, k) ≥ 0 because the vertex j

belongs to Ni and P (i, k) ≤ Q(i, k) for all k. It follows that state i is
aperiodic, which makes the whole (irreducible) chain aperiodic.

[3] Chang Problem 2.20. [Facts about the top-in-at-random shuffle: irreducible; ape-
riodic; stationary probability distribution is the uniform distribution on S.]

To avoid notational confusion, I will write i, j, . . . to denote only integers
between 1 and d, reserving σ, τ, . . . for elements of S, the set of all d!
permutations of the numbers 1, 2, . . . , d.

Aperiodicity is easy because P (σ, σ) = 1/d for every σ.
For irreducibility , consider two different permutations, σ = (σ1, . . . , σd)

and τ . We need to find a path with positive probability that leads from σ



to τ . The following steps, which each have probability 1/d, provide such
a path.

First move the card labelled σ1 below the card labelled σd. Then move
the new top card, which is labelled σ2, below the σd card into the one of
the two slots that puts cards σ1 and σ2 into the same relative order they
have in τ . For example, if σ1 = 5, σ2 = 11, σd = 3 and if card 5 comes
somewhere after card 11 in the τ permutation, then card number 11 is
placed below card number 3 and above card number 5 at the end of the
deck.

And so on. At the kth step, the card number σk is placed below the card
numbered σd into the slot that gives the cards numbered σ1, σ2, . . . , σk the
same relative order as the corresponding cards in the τ permutation.

When the card numbered σd is finally placed in its appropriate slot then
the ordering of the deck is given by the permutation τ .

Finally, I need to show that the uniform distribution, π, on S is sta-
tionary . It might seem intuitively obvious that uniform followed by a
mindless shift of the top card should equal uniform, but the question asked
for a more rigorous argument.

I need to show Pπ{X1 = σ} = 1/d! for each σ in S. Condition on the
value of X0 and on the slot number, N , into which the top card is moved.
(If N = 1 then the card stays on top; if N = d it is moved to the bottom
of the deck.) By assumption, X0 and N are independent,

Pπ{X0 = τ,N = k} =
1

d!
× 1

d
for τ ∈ S and 1 ≤ k ≤ d.

For a fixed σ, let τ (k) denote the permutation obtained by moving the
kth element of σ back to position 1. For example, if σ = (2, 5, 3, 1, 4) then
τ (4) = (1, 2, 5, 3, 4). Note: if X0 = τ and N = k then X1 = σ if and only
if τ = τ (k). Put another way,

Pπ{X1 = σ | X0 = τ,N = k} =

{
1 if τ = τ (k)

0 otherwise.

Now I can condition.

Pπ{X1 = σ}

=
∑d

k=1

∑
τ∈S

Pπ{X1 = σ | X0 = τ,N = k}Pπ{X0 = τ,N = k}.

For each k, the only nonzero τ term is τ (k). Thus

Pπ{X1 = σ} =
∑d

k=1
1× Pπ{X0 = τ (k), N = k} =

1

d!
.

The stationary probability distribution is π.


