
Statistics 251b/551b, spring 2009
Homework #6 solutions

[1] Suppose Z has a standard normal distribution and x is a positive constant.
(i) [5 points] Explain why 1{Z > x} ≤ exp (λZ − λx) for each λ > 0.

When Z ≤ x the indicator function is zero. The inequality is then triv-
ially true because exp(. . . ) is always ≥ 0. When Z > x the indicator
function is one and the right-hand side is ≥ 1 because λ(Z − x) > 0 and
exp(nonneg) ≥ 1.

(ii) [5 points] Deduce that P{Z > x} ≤ exp(λ2/2− λx) for each λ > 0.
Take expectations of both sides of the inequality from (i). Then note that
P{Z > x} = E1{Z > x} and EeλZ = exp(λ2/2), the moment generating
function of a N(0, 1).

(iii) [5 points] Deduce that P{Z > x} ≤ exp(−x2/2).
Choose λ = x in (ii) to minimize the quadratic in the exponent.

[2] [20+20 points] Chang Problem 5.9.
Remember that cov (Wa,Wb) = min(a, b). Thus

cov(Xs, Xt) = e−se−tcov
(
W (e2s),W (e2t)

)
= e−s−t min(e2s, e2t)

If s ≤ t the last expression equals e−s−t+2s; if s > t it equals e−s−t+2t. In
both cases the covariance can be rewritten as e−|s−t|.

The increment ∆h = W (e2(t+h)) −W (e2t) has a N(0, e2(t+h) − e2t)
distribution independently of any information about what happens up to
time t. In particular,

E (∆h | Xt = x) = 0

and

var(∆h | Xt = x) = e2(t+h) − e2t = e2t
(
2h+ 1

2
(2h)2 + . . .

)
Thus

E (Xt+h | Xt) = e−t−hE
(
W (e2t) + ∆h | Xt

)
=
(
1− h+ 1

2
h2 + . . .

)
e−t
(
W (e2t) + 0

)
≈ (1− h)Xt if h is small.

Equivalently,

E (Xt+h −Xt | Xt = x) = −hx+ smaller order terms,



which gives µ(x, t) = −x.
Similarly,

var (Xt+h | Xt = x) = e−2(t+h)var
(
W (e2t) + ∆h | Xt = x

)
= e−2he−2tvar (∆h | Xt = x)

= (1− . . . ) e−2te2t(2h+ . . . )

Note how the W (e2t) is treated as a constant, which has no effect on the
conditonal variance, when we condition on Xt. Also, note that any terms
contributed by the e−2h beyond the initial constant 1 get swallowed up in
the lower order terms, leaving σ2(x, t) = 2.

[3] [30 points] Chang Problem 5.13. Hint: Write P{Y (τ) ≤ y} as an integral then
differentiate with respect to y.

The distribution of Y (τ) given τ = t is N(0, t); and (cf. Chang Prob-
lem 5.10) the random variable τ has a distribution with density f(t) =
b(2π)−1/2t−3/2 exp(−b2/2t) for t > 0. By the conditioning formula when
the conditioning variable has a continuous distribution,

P{Y (τ) ≤ y} =

∫ ∞
0

P{Y (τ) ≤ y | τ = t}f(t) dt =

∫ ∞
0

Φ(y/
√
t)f(t) dt,

where Φ denotes the distribution function for the N(0, 1). Differentiate
both sides with respect to y to get the density function g(y) for the distri-
bution of Y (τ). Note that dΦ(y/

√
t)/dy = t−1/2φ(y/

√
t), where φ is the

N(0, 1) density function. That is,

g(y) =

∫ ∞
0

t−1/2φ(y/
√
t)f(t) dt =

b

2π

∫ ∞
0

t−2 exp

(
−y

2 + b2

2t

)
dt.

Temporarily write z for (y2 + b2)/2. Make the change of variable s = z/t
to reduce the last integral to∫ ∞

0

z−1 exp(−s) ds = z−1.

That is,

g(y) =
b

2π

2

y2 + b2
=

b

π(y2 + b2)
.

The distribution of Y (τ)/b has density bg(by), which is the standard Cauchy
density.

[4] [20 points] Let {Bt : t ≥ 0} be a standard Brownian motion. Find the constant C
for which the process Xt = B3

t − CtBt is a martingale.



For a fixed s > 0 write ∆ for Bt+s − Bt. Remember that ∆ has a N(0, s)
distribution, independently of anything determined by the information, Ft,
determined by what happens up to time t. Notice that E(∆ | Ft) = 0 =
E(∆3 | Ft) by symmetry of the N(0, s) around zero. Thus

E
(
B3
t+s | Ft

)
= E

(
(Bt + ∆)3 | Ft

)
= B3

t + 3B2
tE(∆ | Ft) + 3BtE(∆2 | Ft) + E(∆3 | Ft)

= B3
t + 0 + 3Bts+ 0

and

E((t+ s)Bt+s | Ft) = (t+ s)(Bt + 0).

By subtraction,

E
(
B3
t+s − 3(t+ s)Bt+s | Ft

)
= B3

t − 3tBt.

That is, Mt = B3
t − 3tBt is a martingale.


