Statistics 251b/551b, spring 2009 Homework #8 solutions

For this sheet you might find it useful to know the Cauchy-Schwarz inequality: if X and Y are random variables then $(\mathbb{E}XY)^2 \leq (\mathbb{E}X^2) (\mathbb{E}Y^2)$. A similar inequality holds for integrals of real-valued functions:

<1>
$$\left| \int_{0}^{1} f(s)g(s) \, ds \right|^{2} \leq \int_{0}^{1} f(s)^{2} ds \int_{0}^{1} g(s)^{2} ds$$

As a special case, when $Y \equiv 1$ or $g(s) \equiv 1$, we have

$$<2> \qquad (\mathbb{E}X)^2 \le \mathbb{E}X^2 \qquad and \qquad \left(\int_0^1 f(s)\,ds\right)^2 \le \int_0^1 f(s)^2\,ds$$

When combined, the two Cauchy-Schwarz inequalities give a bound for stochastic processes. Suppose $F(s, \omega)$ and $G(s, \omega)$ are stochastic processes indexed by sin [0, 1]. Then

$$\left(\int_{0}^{1} \mathbb{E}F_{s}G_{s} ds\right)^{2} \leq \left(\int_{0}^{1} |\mathbb{E}F_{s}G_{s}| ds\right)^{2}$$
$$\leq \left(\int_{0}^{1} \sqrt{\mathbb{E}F_{s}^{2}} \sqrt{\mathbb{E}G_{s}^{2}} ds\right)^{2}$$
$$\leq \int_{0}^{1} \mathbb{E}F_{s}^{2} ds \int_{0}^{1} \mathbb{E}G_{s}^{2} ds.$$
<3>

See the note at the end of the sheet for the proof of the Cauchy-Schwarz inequality.

[1] Suppose $\{B_t : 0 \le t \le 1\}$ is a standard Brownian motion and

$$H_n(s,\omega) = \sum_i h_i(\omega) \mathbf{1}\{t_i < s \le t_{i+1}\}$$
 for $n = 1, 2, ...$

is a sequence of simple predictable processes for which

where *H* is a process for which $\int_0^1 \mathbb{E} H_s^2 ds < \infty$. Here $G_n : 0 = t_0 < t_1 < \cdots < t_n = 1$ is a sequence of grids for which $\max_i \delta_i \to 0$, where $\delta_i = t_{i+1} - t_i$. As usual, write $\Delta_i B$ for $B_{t_{i+1}} - B_{t_i}$. Show that $\sum_i h_i (\Delta_i B)^2$ converges to $\int_0^1 H_s ds$, in an appropriate sense as *n* tends to infinity, by the following steps.

(i) [20 points] Define $\xi_i = (\Delta_i B)^2 - \delta_i$. Show that

$$\sum_{i} h_i (\Delta_i B)^2 = \int_0^1 H_n(s) \, ds + Z_n$$

where $Z_n = \sum_i h_i \xi_i$.

With H_n as defined, $\int_0^1 H_n(s) ds = \sum_i h_i \delta_i$. The rest is subtraction. (*ii*) [20 points] Show that

$$\mathbb{E}\left|\int_{0}^{1} H_{n}(s) \, ds - \int_{0}^{1} H(s) \, ds\right|^{2} \leq \int_{0}^{1} \mathbb{E}|H_{n}(s) - H(s)|^{2} \, ds \to 0.$$

Inequality <2> for integrals gives

$$\left(\int_0^1 H_n(s) - H(s) \, ds\right)^2 \le \int_0^1 \left(H_n(s) - H(s)\right)^2 \, ds$$

Take expectations, then move the \mathbb{E} inside the integral. Assumption <4> completes the argument.

(iii) [20 points] Explain why

$$\int_0^1 \mathbb{E}H_n(s)^2 \, ds \le 4 \int_0^1 \mathbb{E}H(s)^2 \, ds + 4 \int_0^1 \mathbb{E}|H_n(s) - H(s)|^2 \, ds,$$

so that $\int_0^1 \mathbb{E} H_n(s)^2 ds$ stays bounded as n tends to infinity.

Use the inequality $(a+b)^2 \leq 4a^2 + 4b^2$ [actually the 4's could be replaced by 2's] with a = H(s) and $b = H_n(s) - H(s)$, then take $\int_0^1 \mathbb{E}$ of both sides. Assumption <4> and the finiteness of $\int_0^1 \mathbb{E} H_s^2 ds < \infty$ complete the argument.

(iv) [20 points] Show that $\mathbb{E}Z_n = 0$ and

$$\mathbb{E}Z_n^2 = \sum_i \mathbb{E}\left(h_i^2 \xi_i^2\right) \le C \max_i \delta_i \int_0^1 \mathbb{E}H_n(s)^2 \, ds$$

for some constant C. Deduce that $\mathbb{E}Z_n^2 \to 0$ as $n \to \infty$.

By the properties of Brownian motion, $\mathbb{E}(\xi_j | \mathcal{F}_{t_j}) = 0$, which implies $\mathbb{E}(\xi_j W_j) = 0$ for each W_j that depends only on \mathcal{F}_{t_j} information. [Alternatively, use the facts that ξ_j is independent of every random variable that depends only on \mathcal{F}_{t_j} information and $\mathbb{E}\xi_j = 0$.]

Expand the sum for Z_n then take expectations to get

$$\mathbb{E}Z_n^2 = \sum_i \mathbb{E}\left(h_i^2 \xi_i^2\right) + 2\sum_{i < j} \mathbb{E}\left(h_i \xi_i h_j \xi_j\right).$$

The cross-product term for i < j vanishes because $h_i \xi_i h_j$ depends only on \mathcal{F}_{t_j} information.

For the terms with i = j, independence of ξ_i^2 and h_i^2 gives

$$\mathbb{E}\left(h_{i}^{2}\xi_{i}^{2}\right) = \mathbb{E}\left(h_{i}^{2}\right)\mathbb{E}\left(\xi_{i}^{2}\right).$$

Use the fact that Δ_i has the same distribution as $\sqrt{\delta_i}\eta$, with $\eta \sim N(0,1)$, to see that ξ^2 has the same distribution as $\delta_i^2(\eta^2-1)^2$. Let $C = \mathbb{E}(\eta^2-1)^2$, which is finite. Then $\mathbb{E}\xi_i^2 = \delta_i^2 C$ and

$$\mathbb{E}Z_n^2 = \sum_i \mathbb{E}\left(h_i^2\right) C\delta_i^2 \le (\max_i \delta_i) C\mathbb{E}\int_0^1 \sum_i h_i^2 \mathbf{1}\{t_i < s \le t_{i+1}\} ds$$

The conclusion follows from (iii) and the assumption that $\max_i \delta \to 0$.

[2] [10+20 points] Let $Y = \int_0^1 B_s ds$. Show that $\mathbb{E}Y = 0$ and find var(Y). Hint: For the second part, write Y^2 as $\int_0^1 \int_0^1 B_s B_t ds dt$.

Both results come from taking expectations inside integral signs.

$$\mathbb{E}Y = \int_0^1 \mathbb{E}B_s \, ds = 0$$
 because $\mathbb{E}B_s = 0$.

Similarly,

$$\operatorname{var}(Y) = \mathbb{E}(Y^2) = \int_0^1 \int_0^1 \mathbb{E}(B_s B_t) \, ds \, dt$$

Substitute $\min(s, t)$ for $\mathbb{E}(B_s B_t)$. Then argue by symmetry that the last expression equals

$$2\int_0^1 \int_0^t s \, ds \, dt = \int_0^1 t^2 \, dt = 1/3.$$

- [3] Suppose $\{B_t : 0 \le t \le 1\}$ is a standard Brownian motion.
 - (i) [20 points] Use the Itô formula to find $\int_0^1 B_s^3 dB_s$.

For $f(x,y) = x^4$ we have $f_x(x,y) = 4x^3$ and $f_{xx}(x,y) = 12x^2$ and $f_y(x,y) = 0$. Itô gives

$$B_t^4 - 0^4 = \int_0^t 4B_s^3 \, dB_s + \int_0^t 6B_s^2 \, ds$$

Thus

$$\int_0^t B_s^3 \, dB_s = \frac{1}{4} B_t^4 - \frac{3}{2} \int_0^t B_s^2 \, ds$$

(ii) [20 points] Grind out the result from part (i) by first principles. Start from the expansion of $B_{t_{i+1}}^4 - B_{t_i}^4$. Kill off terms that need to be killed by calculating

expected values and variances. You may invoke the result from Problem 1 when needed.

Start from a grid $0 = t_0 < t_1 < \cdots < t_n = 1$ with $t_i = i/n$. To simplify notation, write Z_i for B_{t_i} and Δ_i for $\Delta_i B = Z_{i+1} - Z_i$ and δ_i for $t_{i+1} - t_i = 1/n$. Remember that $\Delta_i \sim N(0, \delta_i)$ and it is independent of Z_1, \ldots, Z_i .

We need to find a telescoping sum. Note that

$$Z_{i+1}^4 - Z_i^4 = (Z_i + \Delta_i)^4 - Z_i^4 = 4Z_i^3 \Delta_i + 6Z_i^2 \Delta_i^2 + 4Z_i \Delta_i^3 + \Delta_i^4$$

Sum.

$$4\sum_{i < n} Z_i^3 \Delta_i = B_1^4 - 6\sum_{i < n} Z_i^2 \delta_i - 6U_n - 4V_n - W_n$$

where $U_n = \sum_{i < n} Z_i^2 (\Delta_i^2 - \delta_i)$, $V_n = \sum_{i < n} Z_i \Delta_i^3$, $W_n = \sum_{i < n} \Delta_i^4$

The term $\sum_{i < n} Z_i^2 \delta_i$ converges to $\int_0^1 B_s^2 ds$ as *n* tends to infinity. The other three terms should go to zero, in some sense, leaving an expression that agrees with the Itô formula.

For U_n , first note that $\xi_i := \Delta_i^2 - \delta_i$ is distributed like $\delta_i(\eta^2 - 1)$, where $\eta \sim N(0, 1)$; it has zero expected value and $\operatorname{var}(\xi_i) = \mathbb{E}\xi_i^2 = C\delta_i^2$ where $C = \mathbb{E}(\eta^2 - 1)^2$. By independence of ξ_i and Z_i ,

$$\mathbb{E}U_n = \sum_{i < n} \mathbb{E}Z_i^2 \mathbb{E}\xi_i = 0.$$

Similarly, ξ_j and $Z_i^2 \xi_i Z_j^2$ are independent if i < j and Z_i^2 is distributed like $\sqrt{t_i}\eta$, which leads to

$$\begin{split} \mathbb{E}U_n^2 &= \sum_{i < n} \mathbb{E}\left(Z_i^4\right) \mathbb{E}\left(\xi_i^2\right) + 2\sum_{i < j < n} \mathbb{E}(Z_i^2 \xi_i Z_j^2) \mathbb{E}(\xi_j) \\ &= \sum_{i < n} t_i^2 \mathbb{E}\left(\eta^4\right) C \delta_i^2 + 0 \\ &\leq E(\eta^4) C/n \to 0 \qquad \text{as } n \to \infty. \end{split}$$

Thus the contribution from U_n goes away in the limit.

For V_n a calculation with expected values suffices.

$$\mathbb{E}|V_n| \leq \sum_{i < n} \mathbb{E}|Z_i|\mathbb{E}|\Delta_i|^3$$
$$\leq \sum_{i < n} \sqrt{t_i} \mathbb{E}|\eta| \delta_i^{3/2} \mathbb{E}|\eta|^3$$
$$= O(n^{-1/2}) \to 0.$$

Similarly, since $W_n \ge 0$,

$$\mathbb{E}|W_n| = \sum_{i < n} \mathbb{E}\Delta_i^4 = \sum_{i < n} \delta_i^2 \mathbb{E}\eta^4 = O(n^{-1}) \to 0.$$

Proof of the Cauchy-Schwarz inequality.

Write c for $\sqrt{\mathbb{E}X^2}$ and d for $\sqrt{\mathbb{E}Y^2}$. *Expand the left-hand side of the inequality*

$$\mathbb{E}\left|\frac{X}{c} \pm \frac{Y}{d}\right|^2 \ge 0$$

into $\mathbb{E}X^2/c^2 + \mathbb{E}Y^2/d^2 \pm 2\mathbb{E}(XY)/(cd)$ then rearrange to get

 $2 \pm 2\mathbb{E}(XY)/(cd) \ge 0,$

which implies $\pm E(XY) \leq cd$. The argument for the other form of the inequality is similar.