
Page 5

1. Markov chains

Section 1. What is a Markov chain? How to simulate one.
Section 2. The Markov property.
Section 3. How matrix multiplication gets into the picture.
Section 4. Statement of the Basic Limit Theorem about conver-
gence to stationarity. A motivating example shows how compli-
cated random objects can be generated using Markov chains.
Section 5. Stationary distributions, with examples. Probability
flux.
Section 6. Other concepts from the Basic Limit Theorem: ir-
reducibility, periodicity, and recurrence. An interesting classical
example: recurrence or transience of random walks.
Section 7. Introduces the idea of coupling.
Section 8. Uses coupling to prove the Basic Limit Theorem.
Section 9. A Strong Law of Large Numbers for Markov chains.

Markov chains are a relatively simple but very interesting and useful class of random
processes. A Markov chain describes a system whose state changes over time. The changes
are not completely predictable, but rather are governed by probability distributions. These
probability distributions incorporate a simple sort of dependence structure, where the con-
ditional distribution of future states of the system, given some information about past
states, depends only on the most recent piece of information. That is, what matters in
predicting the future of the system is its present state, and not the path by which the
system got to its present state. Markov chains illustrate many of the important ideas of
stochastic processes in an elementary setting. This classical subject is still very much alive,
with important developments in both theory and applications coming at an accelerating
pace in recent decades.

1.1 Specifying and simulating a Markov chain

What is a Markov chain∗? One answer is to say that it is a sequence {X0, X1, X2, . . .} of
random variables that has the “Markov property”; we will discuss this in the next section.
For now, to get a feeling for what a Markov chain is, let’s think about how to simulate one,
that is, how to use a computer or a table of random numbers to generate a typical “sample

∗ Unless stated otherwise, when we use the term “Markov chain,” we will be restricting our attention
to the subclass of time-homogeneous Markov chains. We’ll do this to avoid monotonous repetition of the
phrase “time-homogeneous.” I’ll point out below the place at which the assumption of time-homogeneity
enters.
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path.” To start, how do I tell you which particular Markov chain I want you to simulate?
There are three items involved: to specify a Markov chain, I need to tell you its

• State space S.

S is a finite or countable set of states, that is, values that the random variables Xi

may take on. For definiteness, and without loss of generality, let us label the states as
follows: either S = {1, 2, . . . , N} for some finite N , or S = {1, 2, . . .}, which we may
think of as the case “N =∞”.

• Initial distribution π0.

This is the probability distribution of the Markov chain at time 0. For each state
i ∈ S, we denote by π0(i) the probability P{X0 = i} that the Markov chain starts out
in state i. Formally, π0 is a function taking S into the interval [0,1] such that

π0(i) ≥ 0 for all i ∈ S

and
∑

i∈S

π0(i) = 1.

Equivalently, instead of thinking of π0 as a function from S to [0,1], we could think
of π0 as the vector whose ith entry is π0(i) = P{X0 = i}.

• Probability transition rule.

This is specified by giving a matrix P = (Pij). If S contains N states, then P is an
N × N matrix. The interpretation of the number Pij is the conditional probability,
given that the chain is in state i at time n, say, that the chain jumps to the state j
at time n+ 1. That is,

Pij = P{Xn+1 = j | Xn = i}.

We will also use the notation P (i, j) for the same thing. Note that we have written
this probability as a function of just i and j, but of course it could depend on n
as well. The time homogeneity restriction mentioned in the previous footnote is
just the assumption that this probability does not depend on the time n, but rather
remains constant over time.

Formally, a probability transition matrix is an N × N matrix whose entries are
all nonnegative and whose rows sum to 1.

Finally, you may be wondering why we bother to arrange these conditional probabil-
ities into a matrix. That is a good question, and will be answered soon.
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(1.1) Figure. The Markov frog.

We can now get to the question of how to simulate a Markov chain, now that we know how
to specify what Markov chain we wish to simulate. Let’s do an example: suppose the state
space is S = {1, 2, 3}, the initial distribution is π0 = (1/2, 1/4, 1/4), and the probability
transition matrix is

(1.2) P =





1 2 3

1 0 1 0
2 1/3 0 2/3
3 1/3 1/3 1/3



.

Think of a frog hopping among lily pads as in Figure 1.1. How does the Markov frog
choose a path? To start, he chooses his initial position X0 according to the specified
initial distribution π0. He could do this by going to his computer to generate a uniformly
distributed random number U0 ∼ Unif(0, 1), and then taking†

X0 =






1 if 0 ≤ U0 ≤ 1/2
2 if 1/2 < U0 ≤ 3/4
3 if 3/4 < U0 ≤ 1

For example, suppose that U0 comes out to be 0.8419, so that X0 = 3. Then the frog
chooses X1 according to the probability distribution in row 3 of P , namely, (1/3, 1/3, 1/3);
to do this, he paws his computer again to generate U1 ∼ Unif(0, 1) independently of U0,
and takes

X1 =






1 if 0 ≤ U0 ≤ 1/3
2 if 1/3 < U0 ≤ 2/3
3 if 2/3 < U0 ≤ 1.

†Don’t be distracted by the distinctions between “<” and “≤” below—for example, what we do if U0

comes out be exactly 1/2 or 3/4—since the probability of U0 taking on any particular precise value is 0.
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Suppose he happens to get U1 = 0.1234, so that X1 = 1. Then he chooses X2 according to
row 1 of P , so that X2 = 2; there’s no choice this time. Next, he chooses X3 according to
row 2 of P . And so on. . . .

1.2 The Markov property

Clearly, in the previous example, if I told you that we came up with the values X0 = 3,
X1 = 1, and X2 = 2, then the conditional probability distribution for X3 is

P{X3 = j | X0 = 3, X1 = 1, X2 = 2} =






1/3 for j = 1

0 for j = 2

2/3 for j = 3,

which is also the conditional probability distribution for X3 given only the information that
X2 = 2. In other words, given that X0 = 3, X1 = 1, and X2 = 2, the only information
relevant to the distribution to X3 is the information that X2 = 2; we may ignore the
information that X0 = 3 and X1 = 1. This is clear from the description of how to simulate
the chain! Thus,

P{X3 = j | X2 = 2, X1 = 1, X0 = 3} = P{X3 = j | X2 = 2} for all j.

This is an example of the Markov property.

(1.3) Definition. A process X0, X1, . . . satisfies the Markov property if

P{Xn+1 = in+1 | Xn = in, Xn−1 = in−1, . . . , X0 = i0}
= P{Xn+1 = in+1 | Xn = in}

for all n and all i0, . . . , in+1 ∈ S.

The issue addressed by the Markov property is the dependence structure among random
variables. The simplest dependence structure for X0, X1, . . . is no dependence at all, that
is, independence. The Markov property could be said to capture the next simplest sort
of dependence: in generating the process X0, X1, . . . sequentially, the “next” state Xn+1

depends only on the “current” value Xn, and not on the “past” values X0, . . . , Xn−1. The
Markov property allows much more interesting and general processes to be considered than
if we restricted ourselves to independent random variables Xi, without allowing so much
generality that a mathematical treatment becomes intractable.

⊲ The idea of the Markov property might be expressed in a pithy phrase, “Conditional on the
present, the future does not depend on the past.” But there are subtleties. Exercise [1.1]
shows the need to think carefully about what the Markov property does and does not say.
[[The exercises are collected in the final section of the chapter.]]
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The Markov property implies a simple expression for the probability of our Markov
chain taking any specified path, as follows:

P{X0 = i0, X1 = i1, X2 = i2, . . . , Xn = in}
= P{X0 = i0}P{X1 = i1 | X0 = i0}P{X2 = i2 | X1 = i1, X0 = i0}

· · ·P{Xn = in | Xn−1 = in−1, . . . , X1 = i1, X0 = i0}
= P{X0 = i0}P{X1 = i1 | X0 = i0}P{X2 = i2 | X1 = i1}

· · ·P{Xn = in | Xn−1 = in−1}
= π0(i0)P (i0, i1)P (i1, i2) · · ·P (in−1, in).

So, to get the probability of a path, we start out with the initial probability of the first state
and successively multiply by the matrix elements corresponding to the transitions along the
path.

The Markov property of Markov chains can be generalized to allow dependence on the
previous several values. The next definition makes this idea precise.

(1.4) Definition. We say that a process X0, X1, . . . is rth order Markov if

P{Xn+1 = in+1 | Xn = in, Xn−1 = in−1, . . . , X0 = i0}
= P{Xn+1 = in+1 | Xn = in, . . . , Xn−r+1 = in−r+1}

for all n ≥ r and all i0, . . . , in+1 ∈ S.

⊲ Is this generalization general enough to capture everything of interest? No; for example,
Exercise [1.6] shows that an important type of stochastic process, the “moving average pro-
cess,” is generally not rth order Markov for any r.

1.3 “It’s all just matrix theory”

Recall that the vector π0 having components π0(i) = P{X0 = i} is the initial distribution of
the chain. Let πn denote the distribution of the chain at time n, that is, πn(i) = P{Xn = i}.
Suppose for simplicity that the state space is finite: S = {1, . . . , N}, say. Then the Markov
chain has an N ×N probability transition matrix

P = (Pij) = (P (i, j)),

where P (i, j) = P{Xn+1 = j | Xn = i} = P{X1 = j | X0 = i}. The law of total probability
gives

πn+1(j) = P{Xn+1 = j}

=

N∑

i=1

P{Xn = i}P{Xn+1 = j | Xn = i}

=
N∑

i=1

πn(i)P (i, j),
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which, in matrix notation, is just the equation

πn+1 = πnP.

Note that here we are thinking of πn and πn+1 as row vectors, so that, for example,

πn = (πn(1), . . . , πn(N)).

Thus, we have

π1 = π0P(1.5)

π2 = π1P = π0P
2

π3 = π2P = π0P
3,

and so on, so that by induction

(1.6) πn = π0P
n.

We will let Pn(i, j) denote the (i, j) element in the matrix Pn.

⊲ Exercise [1.7] gives some basic practice with the definitions.

So, in principle, we can find the answer to any question about the probabilistic behavior
of a Markov chain by doing matrix algebra, finding powers of matrices, etc. However, what
is viable in practice may be another story. For example, the state space for a Markov chain
that describes repeated shuffling of a deck of cards contains 52! elements—the permutations
of the 52 cards of the deck. This number 52! is large: about 80 million million million million
million million million million million million million. The probability transition matrix that
describes the effect of a single shuffle is a 52! by 52! matrix. So, “all we have to do” to answer
questions about shuffling is to take powers of such a matrix, find its eigenvalues, and so
on! In a practical sense, simply reformulating probability questions as matrix calculations
often provides only minimal illumination in concrete questions like “how many shuffles are
required in order to mix the deck well?” Probabilistic reasoning can lead to insights and
results that would be hard to come by from thinking of these problems as “just” matrix
theory problems.

1.4 The basic limit theorem of Markov chains

As indicated by its name, the theorem we will discuss in this section occupies a fundamental
and important role in Markov chain theory. What is it all about? Let’s start with an
example in which we can all see intuitively what is going on.
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(1.7) Figure. A random walk on a clock.

(1.8) Example [Random walk on a clock]. For ease of writing and drawing, consider
a clock with 6 numbers on it: 0,1,2,3,4,5. Suppose we perform a random walk by moving
clockwise, moving counterclockwise, and staying in place with probabilities 1/3 each at
every time n. That is,

P (i, j) =






1/3 if j = i− 1 mod 6

1/3 if j = i

1/3 if j = i+ 1 mod 6.

Suppose we start out at X0 = 2, say. That is,

π0 = (π0(0), π0(1), . . . , π0(5)) = (0, 0, 1, 0, 0, 0).

Then of course

π1 = (0,
1

3
,
1

3
,
1

3
, 0, 0),

and it is easy to calculate

π2 = (
1

9
,
2

9
,
1

3
,
2

9
,
1

9
, 0)

and

π3 = (
3

27
,

6

27
,

7

27
,

6

27
,

3

27
,

2

27
).

Notice how the probability is spreading out away from its initial concentration on the state
2. We could keep calculating πn for more values of n, but it is intuitively clear what will
happen: the probability will continue to spread out, and πn will approach the uniform
distribution:

πn → (
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
)
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as n → ∞. Just imagine: if the chain starts out in state 2 at time 0, then we close our
eyes while the random walk takes 10,000 steps, and then we are asked to guess what state
the random walk is in at time 10,000, what would we think the probabilities of the various
states are? I would say: “X10,000 is for all practical purposes uniformly distributed over
the 6 states.” By time 10,000, the random walk has essentially “forgotten” that it started
out in state 2 at time 0, and it is nearly equally likely to be anywhere.

Now observe that the starting state 2 was not special; we could have started from
anywhere, and over time the probabilities would spread out away from the initial point,
and approach the same limiting distribution. Thus, πn approaches a limit that does not
depend upon the initial distribution π0.

The following “Basic Limit Theorem” says that the phenomenon discussed in the pre-
vious example happens quite generally. We will start with a statement and discussion of
the theorem, and then prove the theorem later.

(1.9) Theorem [Basic Limit Theorem]. Let X0, X1, . . . be an irreducible, aperiodic
Markov chain having a stationary distribution π(·). Let X0 have the distribution π0, an
arbitrary initial distribution. Then limn→∞ πn(i) = π(i) for all states i.
We need to define the words “irreducible,” “aperiodic,” and “stationary distribution.” Let’s
start with “stationary distribution.”

1.5 Stationary distributions

Suppose a distribution π on S is such that, if our Markov chain starts out with initial
distribution π0 = π, then we also have π1 = π. That is, if the distribution at time 0 is π,
then the distribution at time 1 is still π. Then π is called a stationary distribution for
the Markov chain. From (1.5) we see that the definition of stationary distribution amounts
to saying that π satisfies the equation

(1.10) π = πP,

that is,

π(j) =
∑

i∈S

π(i)P (i, j) for all j ∈ S.

[[In the case of an infinite state space, (1.10) is an infinite system of equations.]] Also from
equations (1.5) we can see that if the Markov chain has initial distribution π0 = π, then we
have not only π1 = π, but also πn = π for all n. That is, a Markov chain started out in a
stationary distribution π stays in the distribution π forever; that’s why the distribution π
is called “stationary.”

(1.11) Example. If the N × N probability transition matrix P is symmetric, then the
uniform distribution [[π(i) = 1/N for all i]] is stationary. More generally, the uniform
distribution is stationary if the matrix P is doubly stochastic, that is, the column-sums of
P are 1 (we already know the row-sums of P are all 1).
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It should not be surprising that π appears as the limit in Theorem (1.9). It is easy to
see that if πn approaches a limiting distribution as n→∞, then that limiting distribution
must be stationary. To see this, suppose that limn→∞ πn = π̃, and let n → ∞ in the
equation πn+1 = πnP to obtain π̃ = π̃P , which says that π̃ is stationary.

⊲ The argument just stated goes through clearly and easily when the state space is finite—there
are no issues of mathematical analysis that arise in taking the limits. I’ll leave it as Exer-
cise [1.10] for the mathematically inclined among you to worry about the details of carrying
through the above argument in the case of a countably infinite state space.

Computing stationary distributions is an algebra problem.

(1.12) Example. Let’s find the stationary distribution for the frog chain, whose probability
transition matrix was given in (1.2). Since most people are accustomed to solving linear
systems of the form Ax = b, let us take the transpose of the equation π(P − I) = 0,
obtaining the equation (P T − I)πT = 0. In our example, this becomes




−1 1/3 1/3

1 −1 1/3
0 2/3 −2/3








π(1)
π(2)
π(3)



 = 0,

or 


−1 1/3 1/3

0 −2/3 2/3
0 2/3 −2/3








π(1)
π(2)
π(3)



 = 0,

which has solutions of the form π = const(2/3, 1, 1). For the unique solution that satisfies
the constraint

∑
π(i) = 1, take the constant to be 3/8, so that π = (1/4, 3/8, 3/8).

As an alternative approach, here is another way, aside from solving the linear equations,
to address the problem of finding a stationary distribution; this idea can work particularly
well with computers. If we believe the Basic Limit Theorem, we should see the stationary
distribution in the limit as we run the chain for a long time. Let’s try it: Here are some
calculations of powers of the transition matrix P from (1.2):

P 5 =




0.246914 0.407407 0.345679
0.251029 0.36214 0.386831
0.251029 0.366255 0.382716



 ,

P 10 =




0.250013 0.37474 0.375248
0.249996 0.375095 0.374909
0.249996 0.375078 0.374926



 ,

P 20 =




0.2500000002 0.3749999913 0.3750000085
0.2499999999 0.375000003 0.374999997
0.2499999999 0.3750000028 0.3749999973



 .

So we don’t really have to solve equations; in this example, any of the rows of the matrix
P 20 provides a very accurate approximation for π. No matter what state we start from, the
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distribution after 20 steps of the chain is very close to (.25, .375, .375). This is the Basic
Limit Theorem in action.

(1.13) Example [Ehrenfest chain]. The Ehrenfest chain is a simple model of “mixing”
processes. This chain can shed light on perplexing questions like “Why aren’t people dying
all the time due to the air molecules bunching up in some odd corner of their bedrooms
while they sleep?” The model considers d balls distributed among two urns, and results
in a Markov chain {X0, X1, . . .} having state space {0, 1, . . . , d}, with the state Xn of the
chain at time n being the number of balls in urn #1 at time n. At each time, we choose a
ball at random uniformly from the d possibilities, take that ball out of its current urn, and
drop it into the other urn. Thus, P (i, i− 1) = i/d and P (i, i+ 1) = (d− i)/d for all i.

⊲ What is the stationary distribution of the Ehrenfest chain? Exercise [1.9] asks you to
discover and explain the answer, which turns out to be a distribution that is one of your old
friends.

A Markov chain might have no stationary distribution, one stationary distribution, or
infinitely many stationary distributions. We just saw examples with one stationary distribu-
tion. A trivial example with infinitely many is when P is the identity matrix, in which case
all distributions are stationary. To find an example without any stationary distribution, we
need to consider an infinite state space. [[We will see later that any finite-state Markov chain
has at least one stationary distribution.]] An easy example of this has S = {1, 2, . . .} and
P (i, i+ 1) = 1 for all i, which corresponds to a Markov chain that moves deterministically
“to the right.” In this case, the equation π(j) =

∑
i∈S

π(i)P (i, j) reduces to π(j) = π(j−1),
which clearly has no solution satisfying

∑
π(j) = 1. Another interesting example is the

simple, symmetric random walk on the integers: P (i, i − 1) = 1/2 = P (i, i + 1). Here the
equations for stationarity become

π(j) =
1

2
π(j − 1) +

1

2
π(j + 1).

Again it is easy to see [[how?]] that these equations have no solution π that is a probability
mass function.

Intuitively, notice the qualitative difference: in the examples without a stationary dis-
tribution, the probability doesn’t settle down to a limit probability distribution—in the
first example the probability moves off to infinity, and in the second example it spreads out
in both directions. In both cases, the probability on any fixed state converges to 0; one
might say the probability escapes off to infinity (or −∞).

⊲ Exercise [1.8] analyzes an example of a Markov chain that moves around on all of the
integers, while no probability escapes to infinity, and the chain has a stationary distribution.
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A Markov chain in its stationary distribution π is at peace with itself; its distribution
stays constant, with no desire to change into anything else. This property is explored
further in terms of the idea of “probability flux.”

(1.14) Definition. For subsets A and B of the state space, define the probability flux
from the set A into the set B to be

flux(A,B) =
∑

i∈A

∑

j∈B
π(i)P (i, j)

A fundamental balancing property occurs when we consider the probability flux between
a set A and its complement Ac, in which case

(1.15) flux(A,Ac) = flux(Ac, A).

⊲ Exercise [1.11] supplies some hints to help you prove this.

The left side of (1.15) is the “probability flux flowing out of A into Ac.” The equality
says that this must be the same as the flux from Ac back into A. This has the suggestive
interpretation that the stationary probabilities describe a stable system in which all the
probability is happy where it is, and does not want to flow to anywhere else, so that the
net flow from A to Ac must be zero. We can say this in a less mysterious way as follows.
Think of π(i) as the long run fraction of time that the chain is in state i. [[We will soon
see a theorem (“a strong law of large numbers for Markov chains”) that supports this
interpretation.]] Then π(i)P (i, j) is the long run fraction of times that a transition from i to
j takes place. But clearly the long run fraction of times occupied by transitions going from a
state in A to a state in Ac must equal the long run fraction of times occupied by transitions
going the opposite way. [[In fact, along any sample path, the numbers of transitions that
have occurred in the two directions up to any time n may differ by at most 1!]]

1.6 Irreducibility, periodicity, and recurrence

We’ll start by introducing some convenient notation to be used throughout the remainder
of this chapter, then we’ll define irreducibility and related terms.

(1.16) Notation. We will use the shorthand “ Pi” to indicate a probability taken in a
Markov chain started in state i at time 0. That is, “ Pi(A)” is shorthand for “ P{A | X0 =
i}.” We’ll also use the notation “ Ei” in an analogous way for expectation.

(1.17) Definition. Let i and j be two states. We say that j is accessible from i if it
is possible [[with positive probability]] for the chain ever to visit state j if the chain starts in
state i, or, in other words,

Pi

{ ∞⋃

n=0

{Xn = j}
}
> 0.
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Clearly an equivalent condition is

(1.18)
∞∑

n=0

Pn(i, j)
△

=
∞∑

n=0

Pi{Xn = j} > 0.

We say i communicates with j if j is accessible from i and i is accessible from j. We
say that the Markov chain is irreducible if all pairs of states communicate.

⊲ In Exercise [1.15] you are asked to show that the relation “communicates with” is an equiv-
alence relation. That is, you will show that the “communicates with” relation is reflexive,
symmetric, and transitive.

Recall that an equivalence relation on a set induces a partition of that set into equiva-
lence classes. Thus, by Exercise [1.15], the state space S may be partitioned into what we
will call “communicating classes,” or simply “classes.” The chain is irreducible if there is
just one communicating class, that is, the whole state space S. Note that whether or not
a Markov chain is irreducible is determined by the state space S and the transition matrix
(P (i, j)); the initial distribution π0 is irrelevant. In fact, all that matters is the pattern of
zeroes in the transition matrix.

Why do we require irreducibility in the “Basic Limit Theorem” (1.9)? Here is a trivial
example of how the conclusion can fail if we do not assume irreducibility. Let S = {0, 1}
and let P =

(
1 0
0 1

)
. Clearly the resulting Markov chain is not irreducible. Also, clearly

the conclusion of the Basic Limit Theorem does not hold; that is, πn does not approach
any limit that is independent of π0. In fact, πn = π0 for all n.

Next, to discuss periodicity, let’s begin with another trivial example: take S = {0, 1}
again, and let P =

(
0 1
1 0

)
. The conclusion of the Basic Limit Theorem does not hold

here: for example, if π0 = (1, 0), then πn = (1, 0) if n is even and πn = (0, 1) if n is odd.
So in this case πn(1) alternates between the two values 0 and 1 as n increases, and hence
does not converge to anything. The problem in this example is not lack of irreducibility;
clearly this chain is irreducible. So, assuming the Basic Limit Theorem is true, the chain
must not be aperiodic! That is, the chain is periodic. The trouble stems from the fact
that, starting from state 1 at time 0, the chain can visit state 1 only at even times. The
same holds for state 2.

(1.19) Definition. Given a Markov chain {X0, X1, . . .}, define the period of a state i
to be the greatest common divisor (gcd)

di = gcd{n : Pn(i, i) > 0}.

Note that both states 1 and 2 in the example P =

(
0 1
1 0

)
have period 2. In fact, the

next result shows that if two states i and j communicate, then they must have the same
period.

(1.20) Theorem. If the states i and j communicate, then di = dj.
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Proof: Since j is accessible from i, by (1.18) there exists an n1 such that Pn1(i, j) > 0.
Similarly, since i is accessible from j, there is an n2 such that Pn2(j, i) > 0. Noting that
Pn1+n2(i, i) > 0, it follows that

di | n1 + n2,

that is, di divides n1 + n2, which means that n1 + n2 is an integer multiple of di. Now
suppose that Pn(j, j) > 0. Then Pn1+n+n2(i, i) > 0, so that

di | n1 + n+ n2.

Subtracting the last two displays gives di | n. Since n was an arbitrary integer satisfying
Pn(j, j) > 0, we have found that di is a common divisor of the set {n : Pn(j, j) > 0}. Since
dj is defined to be the greatest common divisor of this set, we have shown that dj ≥ di.
Interchanging the roles of i and j in the previous argument gives the opposite inequality
di ≥ dj . This completes the proof.

It follows from Theorem (1.20) that all states in a communicating class have the same
period. We say that the period of a state is a “class property.” In particular, all states in
an irreducible Markov chain have the same period. Thus, we can speak of the period of
a Markov chain if that Markov chain is irreducible: the period of an irreducible Markov
chain is the period of any of its states.

(1.21) Definition. An irreducible Markov chain is said to be aperiodic if its period is
1, and periodic otherwise.

⊲ A simple sufficient (but not necessary) condition for an irreducible chain to be aperiodic is
that there exist a state i such that P (i, i) > 0. This is Exercise [1.16].

We have now discussed all of the words we need in order to understand the statement
of the Basic Limit Theorem (1.9). We will need another concept or two before we can
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get to the proof, and the proof will then take some time beyond that. So I propose that
we pause to discuss an interesting example of an application of the Basic Limit Theorem;
this will help us build up some motivation to carry us through the proof, and will also
give some practice that should be helpful in assimilating the concepts of irreducibility and
aperiodicity. We’ll also use the next example to introduce the important idea of using the
Basic Limit Theorem, in a sense, in reverse, to generate random objects from specified
distributions. This idea underlies many of the modern uses of Markov chains.

(1.22) Example [Generating a random table with fixed row and column sums].
Consider the 4× 4 table of numbers that is enclosed within the rectangle below. The four
numbers along the bottom of the table are the column sums, and those along the right edge
of the table are the row sums.

68 119 26 7 220
20 84 17 94 215
15 54 14 10 93
5 29 14 16 64

108 286 71 127

Suppose we want to generate a random, uniformly distributed, 4 × 4 table of nonnegative
integers that has the same row and column sums as the table above. To make sure the
goal is clear, define S to be the set of all nonnegative 4× 4 tables that have the given row
and column sums. Let #(S) denote the cardinality of S, that is, the number of elements in
S. Remember, each element of S is a 4× 4 table! We want to generate a random element,
that is, a random 4 × 4 table, from S, with each element having equal probability—that’s
the “uniform” part. That is, each of the #(S) tables in S should have probability 1/#(S)
of being the table actually generated.

In spirit, this problem is the same as the much simpler problem of drawing a uniformly
distributed state from our random walk on a clock as described in Example (1.8). This
much simpler problem is merely to generate a uniformly distributed random element X
from the set S = {1, 2, 3, 4, 5, 6}, and we can do that without any fancy Markov chains.
Just generate a random number U ∼ U [0, 1], and then take X = i if U is between (i− 1)/6
and i/6.

Although the two problems may be spiritually the same, there is a crucial practical
difference. The set S for the clock problem has only 6 elements. The set S for the 4 × 4
tables is much larger, and in fact we don’t know how many elements it has!

So an approach that works fine for S = {1, 2, 3, 4, 5, 6}—generate a U ∼ U [0, 1] and chop
up the interval [0, 1] into the appropriate number of pieces—cannot be used to generate a
random 4 × 4 table in our example. However, the Basic Limit Theorem suggests another
general approach: start from any state in S, and run an appropriate Markov chain [[such
as the random walk on the clock]] for a sufficiently long time, and take whatever state the
chain finds itself in. This approach is rather silly if S is very simple, like S = {1, 2, 3, 4, 5, 6},
but in many practical problems, it is the only approach that has a hope of working. In our
4 × 4 table problem, we can indeed generate an approximate solution, that is, a random
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table having a distribution arbitrarily close to uniform, by running a Markov chain on S,
our set of tables.

Here is one way to do it. Start with any table having the correct row and column sums;
so of course the 4 × 4 table given above will do. Denote the entries in that table by aij .
Choose a pair {i1, i2} of rows at random, that is, uniformly over the

(
4
2

)
= 6 possible pairs.

Similarly, choose a random pair of columns {j1, j2}. Then flip a coin. If you get heads: add
1 to ai1j1 and ai2j2 , and subtract 1 from ai1j2 and ai2j1 if you can do so without producing
any negative entries—if you cannot do so, then do nothing. Similarly, if the coin flip comes
up tails, then subtract 1 from ai1j1 and ai2j2 , and add 1 to ai1j2 and ai2j1 , with the same
nonnegativity proviso, and otherwise do nothing. This describes a random transformation
of the original table that results in a new table in the desired set of tables S. Now repeat
the same random transformation on the new table, and so on.

⊲ In this example, a careful check that the conditions allowing application of the Basic Limit
Theorem hold constitutes a challenging exercise, which you are asked to do in Exercise [1.17].
Exercise [1.18] suggests an alternative Markov chain for the same purpose, and Exer-
cise [1.19] introduces a fascinating connection between two problems: generating an ap-
proximately uniformly distributed random element of a set, and approximately counting the
number of elements in the set. My hope is that these interesting applications of the Basic
Limit Theorem are stimulating enough to whet your appetite for digesting the proof of that
theorem!

For the proof of the Basic Limit Theorem, we will need one more concept: recurrence.
Analogously to what we did with the notion of periodicity, we will begin by saying what a
recurrent state is, and then show [[in Theorem (1.24) below]] that recurrence is actually a
class property. In particular, in an irreducible Markov chain, either all states are recurrent
or all states are transient , which means “not recurrent.” Thus, if a chain is irreducible, we
can speak of the chain being either recurrent or transient.

The idea of recurrence is this: a state i is recurrent if, starting from the state i at time
0, the chain is sure to return to i eventually. More precisely, define the first hitting time Ti
of the state i by

Ti = inf{n > 0 : Xn = i},

and make the following definition.

(1.23) Definition. The state i is recurrent if Pi{Ti <∞} = 1. If i is not recurrent, it
is called transient .

The meaning of recurrence is this: state i is recurrent if, when the Markov chain is
started out in state i, the chain is certain to return to i at some finite future time. Observe
the difference in spirit between this and the definition of “accessible from” [[see the para-
graph containing (1.18)]], which requires only that it be possible for the chain to hit a state
j. In terms of the first hitting time notation, the definition of “accessible from” may be
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restated as follows: for distinct states i 6= j, we say that j is accessible from i if and only
if Pi{Tj <∞} > 0. [[Why did I bother to say “for distinct states i 6= j”?]]

Here is the promised result that implies that recurrence is a class property.

(1.24) Theorem. Let i be a recurrent state, and suppose that j is accessible from i. Then
in fact all of the following hold:

(i) Pi{Tj <∞} = 1;

(ii) Pj{Ti <∞} = 1;

(iii) The state j is recurrent.

Proof: The proof will be given somewhat informally; it can be rigorized. Suppose i 6= j,
since the result is trivial otherwise.

Firstly, let us observe that (iii) follows from (i) and (ii): clearly if (ii) holds [[that is,
starting from j the chain is certain to visit i eventually]] and (i) holds [[so that starting from
i the chain is certain to visit j eventually]], then (iii) must also hold [[since starting from j
the chain is certain to visit i, after which it will definitely get back to j]].

To prove (i), let us imagine starting the chain in state i, so thatX0 = i. With probability
one, the chain returns at some time Ti <∞ to i. For the same reason, continuing the chain
after time Ti, the chain is sure to return to i for a second time. In fact, by continuing this
argument we see that, with probability one, the chain returns to i infinitely many times.
Thus, we may visualize the path followed by the Markov chain as a succession of infinitely
many “cycles,” where a cycle is a portion of the path between two successive visits to i.
That is, we’ll say that the first cycle is the segment X1, . . . , XTi

of the path, the second cycle
starts with XTi+1 and continues up to and including the second return to i, and so on. The
behaviors of the chain in successive cycles are independent and have identical probabilistic
characteristics. In particular, letting In = 1 if the chain visits j sometime during the nth
cycle and In = 0 otherwise, we see that I1, I2, . . . is an iid sequence of Bernoulli trials. Let
p denote the common “success probability”

p = P{visit j in a cycle} = Pi

[
Ti⋃

k=1

{Xk = j}
]

for these trials. Clearly if p were 0, then with probability one the chain would not visit j
in any cycle, which would contradict the assumption that j is accessible from i. Therefore,
p > 0. Now observe that in such a sequence of iid Bernoulli trials with a positive success
probability, with probability one we will eventually observe a success. In fact,

Pi{chain does not visit j in the first n cycles} = (1− p)n → 0

as n → ∞. That is, with probability one, eventually there will be a cycle in which the
chain does visit j, so that (i) holds.

It is also easy to see that (ii) must hold. In fact, suppose to the contrary that Pj{Ti =
∞} > 0. Combining this with the hypothesis that j is accessible from i, we see that it is
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possible with positive probability for the chain to go from i to j in some finite amount of
time, and then, continuing from state j, never to return to i. But this contradicts the fact
that starting from i the chain must return to i infinitely many times with probability one.
Thus, (ii) holds, and we are done.

The “cycle” idea used in the previous proof is powerful and important; we will be using
it again.

The next theorem gives a useful equivalent condition for recurrence. The statement
uses the notation Ni for the total number of visits of the Markov chain to the state i, that
is,

Ni =

∞∑

n=0

I{Xn = i}.

(1.25) Theorem. The state i is recurrent if and only if Ei(Ni) =∞.

Proof: We already know that if i is recurrent, then

Pi{Ni =∞} = 1,

that is, starting from i, the chain visits i infinitely many times with probability one. But
of course the last display implies that Ei(Ni) = ∞. To prove the converse, suppose that
i is transient, so that q := Pi{Ti = ∞} > 0. Considering the sample path of the Markov
chain as a succession of “cycles” as in the proof of Theorem (1.24), we see that each cycle
has probability q of never ending, so that there are no more cycles, and no more visits to i.
In fact, a bit of thought shows that Ni, the total number of visits to i [[including the visit
at time 0]], has a geometric distribution with “success probability” q, and hence expected
value 1/q, which is finite, since q > 0.

(1.26) Corollary. If j is transient, then limn→∞ Pn(i, j) = 0 for all states i.

Proof: Supposing j is transient, we know that Ej(Nj) < ∞. Starting from an arbitrary
state i 6= j, we have

Ei(Nj) = Pi{Tj <∞}Ei(Nj | Tj <∞).

However, Ei(Nj | Tj < ∞) = Ej(Nj); this is clear intuitively since, starting from i, if the
Markov chain hits j at the finite time Tj , then it “probabilistically restarts” at time Tj .
[[Exercise: give a formal argument.]] Thus, Ei(Nj) ≤ Ej(Nj) < ∞, so that in fact we have
Ei(Nj) =

∑∞
n=1 P

n(i, j) <∞, which implies the conclusion of the Corollary.

(1.27) Example [“A drunk man will find his way home, but a drunk bird may
get lost forever,” or, recurrence and transience of random walks]. The
quotation is from Yale’s own professor Kakutani, as told by R. Durrett in his probability
book. We’ll consider a certain model of a random walk in d dimensions, and show that the
walk is recurrent if d = 1 or d = 2, and the walk is transient if d ≥ 3.
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In one dimension, our random walk is the “simple, symmetric” random walk on the inte-
gers, which takes steps of +1 and −1 with probability 1/2 each. That is, letting X1, X2, . . .
be iid taking the values ±1 with probability 1/2, we define the position of the random walk
at time n to be Sn = X1 + · · ·+Xn. What is a random walk in d dimensions? Here is what
we will take it to be: the position of such a random walk at time n is

Sn = (Sn(1), . . . , Sn(d)) ∈ Zd,

where the coordinates Sn(1), . . . , Sn(d) are independent simple, symmetric random walks in
Z. That is, to form a random walk in Zd, simply concatenate d independent one-dimensional
random walks into a d-dimensional vector process.

Thus, our random walk Sn may be written as Sn = X1 + · · · + Xn, where X1, X2, . . .
are iid taking on the 2d values (±1, . . . ,±1) with probability 2−d each. This might not be
the first model that would come to your mind. Another natural model would be to have
the random walk take a step by choosing one of the d coordinate directions at random
(probability 1/d each) and then taking a step of +1 or −1 with probability 1/2. That is,
the increments X1, X2, . . . would be iid taking the 2d values

(±1, 0, . . . , 0), (0,±1, . . . , 0), . . . , (0, 0, . . . ,±1)

with probability 1/2d each. This is indeed a popular model, and can be analyzed to reach
the conclusion “recurrent in d ≤ 2 and transient in d ≥ 3” as well. But the “concatenation of
d independent random walks” model we will consider is a bit simpler to analyze. Also, for all
you Brownian motion fans out there, our model is the random walk analog of d-dimensional
Brownian motion, which is a concatenation of d independent one-dimensional Brownian
motions.

We’ll start with d = 1. It is obvious that S0, S1, . . . is an irreducible Markov chain.
Since recurrence is a class property, to show that every state is recurrent it suffices to show
that the state 0 is recurrent. Thus, by Theorem (1.25) we want to show that

(1.28) E0(N0) =
∑

n

Pn(0, 0) =∞.

But Pn(0, 0) = 0 if n is odd, and for even n = 2m, say, P 2m(0, 0) is the probability that a
Binomial(2m, 1/2) takes the value m, or

P 2m(0, 0) =

(
2m

m

)
2−2m.

This can be closely approximated in a convenient form by using Stirling’s formula, which
says that

k! ∼
√

2πk (k/e)k,

where the notation “ak ∼ bk” means that ak/bk → 1 as k →∞. Applying Stirling’s formula
gives

P 2m(0, 0) =
(2m)!

(m!)222m
∼

√
2π(2m) (2m/e)2m

2πm(m/e)2m22m
=

1√
πm

.
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Thus, from the fact that
∑

(1/
√
m) = ∞ it follows that (1.28) holds, so that the random

walk is recurrent.
Now it’s easy to see what happens in higher dimensions. In d = 2 dimensions, for

example, again we have an irreducible Markov chain, so we may determine the recurrence
or transience of chain by determining whether the sum

(1.29)

∞∑

n=0

P(0,0){S2n = (0, 0)}

is infinite or finite, where S2n is the vector (S1
2n, S

2
2n), say. By the assumed independence

of the two components of the random walk, we have

P(0,0){S2m = (0, 0)} = P0{S1
2m = 0}P0{S2

2m = 0} ∼
(

1√
πm

)(
1√
πm

)
=

1

πm
,

so that (1.29) is infinite, and the random walk is again recurrent. However, in d = 3
dimensions, the analogous sum

∞∑

n=0

P(0,0,0){S2n = (0, 0, 0)}

is finite, since

P(0,0,0){S2m = (0, 0, 0)} = P0{S1
2m = 0}P0{S2

2m = 0}P0{S3
2m = 0} ∼

(
1√
πm

)3

,

so that in three [[or more]] dimensions the random walk is transient.
The calculations are simple once we know that in one dimension P0{S2m = 0} is of order

of magnitude 1/
√
m. In a sense it is not very satisfactory to get this by using Stirling’s for-

mula and having huge exponentially large titans in the numerator and denominator fighting
it out and killing each other off, leaving just a humble

√
m standing in the denominator

after the dust clears. In fact, it is easy to guess without any unnecessary violence or cal-
culation that the order of magnitude is 1/

√
m—note that the distribution of S2m, having

variance 2m, is “spread out” over a range of order
√
m, so that the probabilities of points

in that range should be of order 1/
√
m. Another way to see the answer is to use a Nor-

mal approximation to the binomial distribution. We approximate the Binomial(2m, 1/2)
distribution by the Normal distribution N(m,m/2), with the usual continuity correction:

P{Binomial(2m, 1/2) = m} ∼ P{m− 1/2 < N(m,m/2) < m+ 1/2}
= P{−(1/2)

√
2/m < N(0, 1) < (1/2)

√
2/m}

∼ φ(0)
√

2/m = (1/
√

2π)
√

2/m = 1/
√
πm.

Although this calculation does not follow as a direct consequence of the usual Central Limit
Theorem, it is an example of a “local Central Limit Theorem.”
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⊲ Do you feel that the 3-dimensional random walk we have considered was not the one you
would have naturally defined? Would you have considered a random walk that at each time
moved either North or South, or East or West, or Up or Down? Exercise [1.20] shows that
this random walk is also transient. The analysis is somewhat more complicated than that
for the 3-dimensional random walk we have just considered.

We’ll end this section with a discussion of the relationship between recurrence and the
existence of a stationary distribution. The results will be useful in the next section.

(1.30) Proposition. Suppose a Markov chain has a stationary distribution π. If the state
j is transient, then π(j) = 0.

Proof: Since π is stationary, we have πPn = π for all n, so that

(1.31)
∑

i

π(i)Pn(i, j) = π(j) for all n.

However, since j is transient, Corollary (1.26) says that limn→∞ Pn(i, j) = 0 for all i. Thus,
the left side of (1.31) approaches 0 as n approaches ∞, which implies that π(j) must be 0.

The last bit of reasoning about equation (1.31) may look a little strange, but in fact
π(i)Pn(i, j) = 0 for all i and n. In light of what we now know, this is easy to see. First, if
i is transient, then π(i) = 0. Otherwise, if i is recurrent, then Pn(i, j) = 0 for all n, since
if not, then j would be accessible from i, which would contradict the assumption that j is
transient.

(1.32) Corollary. If an irreducible Markov chain has a stationary distribution, then the
chain is recurrent.

Proof: Being irreducible, the chain must be either recurrent or transient. However, if the
chain were transient, then the previous Proposition would imply that π(j) = 0 for all j,
which would contradict the assumption that π is a probability distribution, and so must
sum to 1.

The previous Corollary says that for an irreducible Markov chain, the existence of a
stationary distribution implies recurrence. However, we know that the converse is not
true. That is, there are irreducible, recurrent Markov chains that do not have stationary
distributions. For example, we have seen that the simple symmetric random walk on
the integers in one dimension is irreducible and recurrent but does not have a stationary
distribution. This random walk is recurrent all right, but in a sense it is “just barely
recurrent.” That is, by recurrence we have P0{T0 <∞} = 1, for example, but we also have
E0(T0) =∞. The name for this kind of recurrence is null recurrence: the state i is null
recurrent if it is recurrent and Ei(Ti) =∞. Otherwise, a recurrent state is called positive
recurrent : the state i is positive recurrent if Ei(Ti) < ∞. A positive recurrent state i is
not just barely recurrent, it is recurrent by a comfortable margin—when started at i, we
have not only that Ti is finite almost surely, but also that Ti has finite expectation.
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Positive recurrence is in a sense the right notion to relate to the existence of a stationary
distibution. For now let me state just the facts, ma’am; these will be justified later. Positive
recurrence is also a class property, so that if a chain is irreducible, the chain is either
transient, null recurrent, or positive recurrent. It turns out that an irreducible chain has
a stationary distribution if and only if it is positive recurrent. That is, strengthening
“recurrence” to “positive recurrence” gives the converse to Corollary (1.32).

1.7 An aside on coupling

Coupling is a powerful technique in probability. It has a distinctly probabilistic flavor. That
is, using the coupling idea entails thinking probabilistically, as opposed to simply applying
analysis or algebra or some other area of mathematics. Many people like to prove assertions
using coupling and feel happy when they have done so—a probabilisitic assertion deserves
a probabilistic proof, and a good coupling proof can make obvious what might otherwise
be a mysterious statement. For example, we will prove the Basic Limit Theorem of Markov
chains using coupling. As I have said before, we could do it using matrix theory, but the
probabilist tends to find the coupling proof much more appealing, and I hope you do too.

It is a little hard to give a crisp definition of coupling, and different people vary in how
they use the word and what they feel it applies to. Let’s start by discussing a very simple
example of coupling, and then say something about what the common ideas are.

(1.33) Example [Connectivity of a random graph]. A graph is said to be connected
if for each pair of distinct nodes i and j there is a path from i to j that consists of edges of
the graph.

Consider a random graph on a given finite set of nodes, in which each pair of nodes
is joined by an edge independently with probability p. We could simulate, or “construct,”
such a random graph as follows: for each pair of nodes i < j, generate a random number
Uij ∼ U [0, 1], and join nodes i and j with an edge if Uij ≤ p. Here is a problem: show that
the probability of the resulting graph being connected is nondecreasing in p. That is, for
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p1 < p2, we want to show that

Pp1{graph connected} ≤ Pp2{graph connected}.

I would say that this is intuitively obvious, but we want to give an actual proof. Again,
the example is just meant to illustrate the idea of coupling, not to give an example that
can be solved only with coupling!

One way that one might approach this problem is to try to find an explicit expression
for the probability of being connected as a function of p. Then one would hope to show
that that function is increasing, perhaps by differentiating with respect to p and showing
that the derivative is nonnegative.

That is conceptually a straightforward approach, but you may become discouraged at
the first step—I don’t think there is an obvious way of writing down the probability the
graph is connected. Anyway, doesn’t it seem somehow very inefficient, or at least “overkill,”
to have to give a precise expression for the desired probability if all one desires is to show
the inituitively obvious monotonicity property? Wouldn’t you hope to give an argument
that somehow simply formalizes the intuition that we all have?

One nice way to show that probabilities are ordered is to show that the corresponding
events are ordered: if A ⊆ B then PA ≤ PB. So let’s make two events by making two
random graphs G1 and G2 on the same set of nodes. The graph G1 is constructed by having
each possible edge appear with probability p1. Similarly, for G2, each edge is present with
probability p2. We could do this by using two sets of U [0, 1] random variables: {Uij} for
G1 and {Vij} for G2. OK, so now we ask: is it true that

(1.34) {G1 connected} ⊆ {G2 connected}?

The answer is no; indeed, the random graphs G1 and G2 are independent, so that clearly

P{G1 connected, G2 not connected} = P{G1 connected}P{G2 not connected} > 0.

The problem is that we have used different, independent random numbers in constructing
the graphs G1 and G2, so that, for example, it is perfectly possible to have simultaneously
Uij ≤ p1 and Vij > p2 for all i < j, in which the graph G1 would be completely connected
and the graph G2 would be completely disconnected.

Here is a simple way to fix the argument: use the same random numbers in defining the
two graphs. That is, draw the edge (i, j) in graph G1 if Uij ≤ p1 and the edge (i, j) in graph
G2 if Uij ≤ p2. Now notice how the picture has changed: with the modified definitions it is
obvious that, if an edge (i, j) is in the graph G1, then that edge is also in G2. From this, it
is equally obvious that (1.34) now holds. This establishes the desired monotonicity of the
probability of being connected. Perfectly obvious, isn’t it?

So, what characterizes a coupling argument? In our example, we wanted to establish
a statement about two distributions: the distributions of random graphs with edge proba-
bilities p1 and p2. To do this, we showed how to “construct” [[i.e., simulate using uniform
random numbers!]] random objects having the desired distributions in such a way that the
desired conclusion became obvious. The trick was to make appropriate use of the same
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uniform random variables in constructing the two objects. I think this is a general feature
of coupling arguments: somewhere in there you will find the same set of random variables
used to construct two different objects about which one wishes to make some probabilistic
statement. The term “coupling” reflects the fact that the two objects are related in this
way.

⊲ Exercise [1.24] uses this type of coupling idea, proving a result for one process by comparing
it with another process.

1.8 Proof of the Basic Limit Theorem

The Basic Limit Theorem says that if an irreducible, aperiodic Markov chain has a station-
ary distribution π, then for each initial distribution π0, as n → ∞ we have πn(i) → π(i)
for all states i. Let me start by pointing something out, just in case the wording of the
statement strikes you as a bit strange. Why does the statement read “. . .a stationary dis-
tribution”? For example, what if the chain has two stationary distributions? The answer
is that this is impossible: the assumed conditions imply that a stationary distribution is in
fact unique. In fact, once we prove the Basic Limit Theorem, we will know this to be the
case. Clearly if the Basic Limit Theorem is true, an irreducible and aperodic Markov chain
cannot have two different stationary distributions π and π̃, since obviously πn(i) cannot
approach both π(i) and π̃(i) for all i.

An equivalent but conceptually useful reformulation is to define a distance between
probability distributions, and then to show that as n → ∞, the distance between the
distribution πn and the distribution π converges to 0. The notion of distance that we will
use is called “total variation distance.”

(1.35) Definition. Let λ and µ be two probability distributions on the set S. Then the
total variation distance ‖λ− µ‖ between λ and µ is defined by

‖λ− µ‖ = sup
A⊂S

[λ(A)− µ(A)].

(1.36) Proposition. The total variation distance ‖λ − µ‖ may also be expressed in the
alternative forms

‖λ− µ‖ = sup
A⊂S

|λ(A)− µ(A)| = 1

2

∑

i∈S

|λ(i)− µ(i)| = 1−
∑

i∈S

min{λ(i), µ(i)}.

⊲ The proof of this simple Proposition is Exercise [1.25].

Two probability distributions λ and µ assign probabilites to all possible events. The
total variation distance between λ and µ is the largest possible discrepancy between the
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probabilities assigned by λ and µ to any event. For example, let π7 denote the distribution
of the ordering of a deck of cards after 7 shuffles, and let π denote the uniform distribution
on all 52! permutations of the deck, which corresponds to the result of perfect shuffling
(or “shuffling infinitely many times”). Suppose, for illustration, that the total variation
distance ‖π7 − π‖ happens to be 0.17. This tells us that the probability of any event —
for example, the probability of winning any specified card game — using a deck shuffled
7 times differs by at most 0.17 from the probability of the same event using a perfectly
shuffled deck.

To introduce the coupling method, let Y0, Y1, . . . be a Markov chain with the same
probability transition matrix as X0, X1, . . ., but let Y0 have the distribution π; that is, we
start the Y chain off in the initial distribution π instead of the initial distribution π0 of the
X chain. Note that {Yn} is a stationary Markov chain, and, in particular, that Yn has the
distribution π for all n. Further let the Y chain be independent of the X chain.

Roughly speaking, we want to show that for large n, the probabilistic behavior of Xn

is close to that of Yn. The next result says that we can do this by showing that for large
n, the X and Y chains will have met with high probability by time n. Define the coupling
time T to be the first time at which Xn equals Yn:

T = inf{n : Xn = Yn},

where of course we define T =∞ if Xn 6= Yn for all n.

(1.37) Lemma [“The coupling inequality”]. For all n we have

‖πn − π‖ ≤ P{T > n}.

Proof: Define the process {Y ∗
n } by

Y ∗
n =

{
Yn if n < T

Xn if n ≥ T .

It is easy to see that {Y ∗
n } is a Markov chain, and it has the same probability transition

matrix P (i, j) as {Xn} has. [[To understand this, start by thinking of the X chain as a
frog carrying a table of random numbers jumping around in the state space. The frog uses
his table of iid uniform random numbers to generate his path as we described earlier in
the section about specifying and simulating Markov chains. He uses the first number in
his table together with his initial distribution π0 to determine X0, and then reads down
successive numbers in the table to determine the successive transitions on his path. The
Y frog does the same sort of thing, except he uses his own, different table of uniform
random numbers so he will be independent of the X frog, and he starts out with the initial
distribution π instead of π0. How about the Y ∗ frog? Is he also doing a Markov chain?
Well, is he choosing his transitions using uniform random numbers like the other frogs?
Yes, he is; the only difference is that he starts by using Y ’s table of random numbers (and
hence he follows Y ) until the coupling time T , after which he stops reading numbers from
Y ’s table and switches to X’s table. But big deal; he is still generating his path by using
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uniform random numbers in the way required to generate a Markov chain.]] The chain {Y ∗
n }

is stationary: Y ∗
0 ∼ π, since Y ∗

0 = Y0 and Y0 ∼ π. Thus, Y ∗
n ∼ π for all n. so that for A ⊆ S

we have

πn(A)− π(A) = P{Xn ∈ A} − P{Y ∗
n ∈ A}

= P{Xn ∈ A, T ≤ n}+ P{Xn ∈ A, T > n}
−P{Y ∗

n ∈ A, T ≤ n} − P{Y ∗
n ∈ A, T > n}.

However, on the event {T ≤ n}, we have Y ∗
n = Xn, so that the two events {Xn ∈ A, T ≤ n}

and {Y ∗
n ∈ A, T ≤ n} are the same, and hence they have the same probability. Therefore,

the first and third terms in the last expression cancel, yielding

πn(A)− π(A) = P{Xn ∈ A, T > n} − P{Y ∗
n ∈ A, T > n}.

Since the last difference is obviously bounded by P{T > n}, we are done.

Note the significance of the coupling inequality: it reduces the problem of showing that
‖πn − π‖ → 0 to that of showing that P{T > n} → 0, or equivalently, that P{T <∞} = 1.
To do this, we consider the “bivariate chain” {Zn = (Xn, Yn) : n ≥ 0}. A bit of thought
confirms that Z0, Z1, . . . is a Markov chain on the state space S × S. Since the X and Y
chains are independent, the probability transition matrix PZ of the Z chain can be written
as

PZ(ixiy, jxjy) = P (ix, jx)P (iy, jy).

It is easy to check that the Z chain has stationary distribution

πZ(ixiy) = π(ix)π(iy).

Watch closely now; we’re about to make an important reduction of the problem. Recall
that we want to show that P{T <∞} = 1. Stated in terms of the Z chain, we want to show
that with probability one, the Z chain hits the “diagonal” {(j, j) : j ∈ S} in S× S in finite
time. To do this, it is sufficient to show that the Z chain is irreducible and recurrent [[why?]].
However, since we know that the Z chain has a stationary distribution, by Corollary (1.32),
to prove the Basic Limit Theorem, it suffices to show that the Z chain is irreducible.

This is, strangely‡, the hard part. This is where the aperiodicity assumption comes in.
For example, consider a Markov chain {Xn} having the “type A frog” transition matrix

P =

(
0 1
1 0

)
started out in the condition X0 = 0. Then the stationary chain {Yn} starts

out in the uniform distribution: probability 1/2 on each state 0,1. The bivariate chain
{(Xn, Yn)} is not irreducible: for example, from the state (0, 0), we clearly cannot reach
the state (0, 1). And this ruins everything. For example, if Y0 = 1, which happens with
probability 1/2, the X and Y chains can never meet, so that T =∞. Thus, P{T <∞} < 1.

‡Or maybe not so strangely, in view of Exercise [1.17].
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A little number-theoretic result will help us establish irreducibility of the Z chain.

(1.38) Lemma. Suppose A is a set of positive integers that is closed under addition and
has greatest common divisor (gcd) one. Then there exists an integer N such that n ∈ A for
all n ≥ N .

Proof: First we claim that A contains at least one pair of consecutive integers. To see
this, suppose to the contrary that the minimal “spacing” between successive elements of
A is s > 1. That is, any two distinct elements of A differ by at least s, and there exists
an integer n1 such that both n1 ∈ A and n1 + s ∈ A. Let m ∈ A be such that s does not
divide m; we know that such an m exists because gcd(A) = 1. Write m = qs + r, where
0 < r < s. Now observe that, by the closure under addition assumption, the two numbers
a1 = (q+1)(n1 +s) and a2 = (q+1)n1 +m are both in A. However, a1−a2 = s−r ∈ (0, s),
which contradicts the definition of s. This proves the claim.

Thus, A contains two consecutive integers, say, c and c+1. Now we will finish the proof
by showing that n ∈ A for all n ≥ c2. If c = 0 this is trivially true, so assume that c > 0.
We have, by closure under addition,

c2 = (c)(c) ∈ A
c2 + 1 = (c− 1)c+ (c+ 1) ∈ A

...

c2 + c− 1 = c+ (c− 1)(c+ 1) ∈ A.

Thus, {c2, c2 + 1, . . . , c2 + c− 1}, a set of c consecutive integers, is a subset of A. Now we
can add c to all of these numbers to show that the next set {c2 +c, c2 +c+1, . . . , c2 +2c−1}
of c integers is also a subset of A. Repeating this argument, clearly all integers c2 or above
are in A.

Let i ∈ S, and retain the assumption that the chain is aperiodic. Then since the set
{n : Pn(i, i) > 0} is clearly closed under addition, and, by the aperiodicity assumption,
has greatest common divisor 1, the previous lemma applies to give that Pn(i, i) > 0 for all
sufficiently large n. From this, for any i, j ∈ S, since irreducibility implies that Pm(i, j) > 0
for some m, it follows that Pn(i, j) > 0 for all sufficiently large n.

Now we complete the proof of the Basic Limit Theorem by showing that the chain {Zn}
is irreducible. Let ix, iy, jx, jy ∈ S. It is sufficient to show, in the bivariate chain {Zn}, that
(jxjy) is accessible from (ixiy). To do this, it is sufficient to show that PnZ (ixiy, jxjy) > 0
for some n. However, by the assumed independence of {Xn} and {Yn},

PnZ (ixiy, jxjy) = Pn(ix, jx)P
n(iy, jy),

which, by the previous paragraph, is positive for all sufficiently large n. Of course, this
implies the desired result, and we are done.

⊲ Exercises [1.27] and [1.28] give you a chance to think about the coupling idea used in this
proof.
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1.9 A SLLN for Markov chains

The usual Strong Law of Large Numbers for independent and identically distributed
(iid) random variables says that if X1, X2, . . . are iid with mean µ, then the average
(1/n)

∑n
t=1Xt converges to µ with probability 1 as n→∞.

Some fine print: It is possible to have µ = +∞, and the SLLN still holds. For example, supposing that
the random variables Xt take their values in the set of nonnegative integers {0, 1, 2, . . .}, the mean is
defined to be µ =

P∞
k=0 kP{X0 = k}. This sum could diverge, in which case we define µ to be +∞,

and we have (1/n)
Pn

t=1Xt → ∞ with probability 1.

For example, if X0, X1, . . . are iid with values in the set S, then the SLLN tells us that

(1/n)

n∑

t=1

I{Xt = i} → P{X0 = i}

with probability 1 as n→∞. That is, the fraction of times that the iid process takes the
value i in the first n observations converges to P{X0 = i}, the probability that any given
observation is i.

We will do a generalization of this result for Markov chains. This law of large numbers
will tell us that the fraction of times that a Markov chain occupies state i converges to a
limit.

It is possible to view this result as a consequence of a more general and rather advanced
ergodic theorem (see, for example, Durrett’s Probability: Theory and Examples). However,
I do not want to assume prior knowledge of ergodic theory. Also, the result for Markov
chains is quite simple to derive as a consequence of the ordinary law of large numbers for iid
random variables. Although the successive states of a Markov chain are not independent, of
course, we have seen that certain features of a Markov chain are independent of each other.
Here we will use the idea that the path of the chain consists of a succession of independent
“cycles,” the segments of the path between successive visits to a recurrent state. This
independence makes the treatment of Markov chains simpler than the general treatment of
stationary processes, and it allows us to apply the law of large numbers that we already
know.

(1.39) Theorem. Let X0, X1, . . . be a Markov chain starting in the state X0 = i, and
suppose that the state i communicates with another state j. The limiting fraction of time
that the chain spends in state j is 1/EjTj. That is,

Pi

{
lim
n→∞

1

n

n∑

t=1

I{Xt = j} =
1

EjTj

}
= 1.

Proof: The result is easy if the state j is transient, since in that case EjTj =∞ and (with
probability 1) the chain visits j only finitely many times, so that

lim
n→∞

1

n

n∑

t=1

I{Xt = j} = 0 =
1

EjTj
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with probability 1. So we assume that j is recurrent. We will also begin by proving the
result in the case i = j; the general case will be an easy consequence of this special case.
Again we will think of the Markov chain path as a succession of cycles, where a cycle is a
segment of the path that lies between successive visits to j. The cycle lengths C1, C2, . . .
are iid and distributed as Tj ; here we have already made use of the assumption that we are
starting at the state X0 = j. Define Sk = C1 + · · · + Ck and let Vn(j) denote the number
of visits to state j made by X1, . . . , Xn, that is,

Vn(j) =
n∑

t=1

{Xt = j}.

A bit of thought [[see also the picture below]] shows that Vn(j) is also the number of cycles
completed up to time n, that is,

Vn(j) = max{k : Sk ≤ n}.

To ease the notation, let Vn denote Vn(j). Notice that

SVn
≤ n < SVn+1,

and divide by Vn to obtain
SVn

Vn
≤ n

Vn
<
SVn+1

Vn
.

Since j is recurrent, Vn → ∞ with probability one as n → ∞. Thus, by the ordinary
Strong Law of Large Numbers for iid random variables, we have both

SVn

Vn
→ Ej(Tj)
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and
SVn+1

Vn
=

(
SVn+1

Vn + 1

)(
Vn + 1

Vn

)
→ Ej(Tj)× 1 = Ej(Tj)

with probability one. Note that the last two displays hold whether Ej(Tj) is finite or infinite.
Thus, n/Vn → Ej(Tj) with probability one, so that

Vn
n
→ 1

EjTj

with probability one, which is what we wanted to show.
Next, to treat the general case where i may be different from j, note that Pi{Tj <∞} =

1 by Theorem 1.24. Thus, with probability one, a path starting from i behaves as follows.
It starts by going from i to j in some finite number Tj of steps, and then proceeds on from
state j in such a way that the long run fraction of time that Xt = j for t ≥ Tj approaches
1/Ej(Tj). But clearly the long run fraction of time the chain is at j is not affected by the
behavior of the chain on the finite segment X0, . . . , XTj−1. So with probability one, the

long run fraction of time that Xn = j for n ≥ 0 must approach 1/Ej(Tj).

The following result follows directly from Theorem (1.39) by the Bounded Convergence
Theorem from the Appendix. [[That is, we are using the following fact: if Zn → c with
probability one as n→∞ and the random variables Zn all take values in the same bounded
interval, then we also have E(Zn)→ c. To apply this in our situation, note that we have

Zn :=
1

n

n∑

t=1

I{Xt = j} → 1

EjTj

with probability one as n → ∞, and also each Zn lies in the interval [0,1]. Finally, use
the fact that the expectation of an indicator random variable is just the probability of the
corresponding event.]]

(1.40) Corollary. For an irreducible Markov chain, we have

lim
n→∞

1

n

n∑

t=1

P t(i, j) =
1

Ej(Tj)

for all states i and j.

There’s something suggestive here. Consider for the moment an irreducible, aperiodic
Markov chain having a stationary distribution π. From the Basic Limit Theorem, we know
that, Pn(i, j)→ π(j) as n→∞. However, it is a simple fact that if a sequence of numbers
converges to a limit, then the sequence of “Cesaro averages” converges to the same limit;
that is, if at → a as t→∞, then (1/n)

∑n
t=1 at → a as n→∞. Thus, the Cesaro averages

of Pn(i, j) must converge to π(j). However, the previous Corollary shows that the Cesaro
averages converge to 1/Ej(Tj). Thus, it follows that

π(j) =
1

Ej(Tj)
.
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It turns out that the aperiodicity assumption is not needed for this last conclusion; we’ll
see this in the next result. Incidentally, we could have proved this result much earlier; for
example we don’t need the Basic Limit Theorem in the development.

(1.41) Theorem. An irreducible, positive recurrent Markov chain has a unique stationary
distribution π given by

π(j) =
1

Ej(Tj)
.

Proof: For the uniqueness, let π be a stationary distribution. We start with the relation

∑

i

π(i)P t(i, j) = π(j),

which holds for all t. Averaging this over values of t from 1 to n gives

∑

i

π(i)
1

n

n∑

t=1

P t(i, j) = π(j).

By Corollary 1.40 [[and the Dominated Convergence Theorem]], the left side of the last
equation approaches

∑

i

π(i)
1

Ej(Tj)
=

1

Ej(Tj)

as n→∞. Thus, π(j) = 1/Ej(Tj), which establishes the uniqueness assertion.

We begin the proof of existence by doing the proof in the special case where the state
space is finite. The proof is simpler here than in the general case, which involves some
distracting technicalities.

So assume for the moment that the state space is finite. We begin again with Corollary
1.40, which says that

(1.42)
1

n

n∑

t=1

P t(i, j)→ 1

Ej(Tj)
.

However, the sum over all j of the left side of (1.42) is 1, for all n. Therefore,

∑

j

1

Ej(Tj)
= 1.

That’s good, since we want our claimed stationary distribution to be a probability distri-
bution.

Next we write out the matrix equation P tP = P t+1 as follows:

(1.43)
∑

k

P t(i, k)P (k, j) = P t+1(i, j).
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Averaging this over t = 1, . . . , n gives

∑

k

[
1

n

n∑

t=1

P t(i, k)

]
P (k, j) =

1

n

n∑

t=1

P t+1(i, j).

Taking the limit as n→∞ of the last equation and using (1.42) again gives

∑

k

(
1

EkTk

)
P (k, j) =

1

EjTj
.

Thus, our claimed stationary distribution is indeed stationary.
Finally, let’s see how to handle the infinite state space case. Let A ⊂ S be a finite subset

of the state space. Summing (1.42) over j ∈ A gives the inequality

∑

j∈A

1

Ej(Tj)
≤ 1.

Therefore, since this is true for all subsets A, we get

∑

j∈S

1

Ej(Tj)
=: C ≤ 1.

By the assumption of positive recurrence, we have C > 0; in a moment we’ll see that C = 1.
The same sort of treatment of (1.43) [[i.e., sum over k ∈ A, average over t = 1, . . . , n, let
n→∞, and then take supremum over subsets A of S]] gives the inequality

(1.44)
∑

k

(
1

EkTk

)
P (k, j) ≤ 1

EjTj
.

However, the sum over all j of the left side of (1.44) is

∑

k

(
1

EkTk

) ∑

j

P (k, j) =
∑

k

(
1

EkTk

)
,

which is the same as the sum of the right side of (1.44). Thus, the left and right sides of
(1.44) must be the same for all j. From this we may conclude that the distribution

π̃(j) =
1

C

(
1

Ej(Tj)

)

is stationary, so that, in particular, we know that our chain does have a stationary distri-
bution. Thus, by the uniqueness assertion we proved above, we must have C = 1, and we
are done.

⊲ You might like to try Exercise [1.29] at this point. I hope you can play chess.
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1.10 Exercises

[1.1] Let X0, X1, . . . be a Markov chain, and let A and B be subsets of the state space.

(a) Is it true that P{X2 ∈ B | X1 = x1, X0 ∈ A} = P{X2 ∈ B | X1 = x1}? Give a proof
or counterexample.

(b) Is it true that P{X2 ∈ B | X1 ∈ A,X0 = x0} = P{X2 ∈ B | X1 ∈ A}? Give a proof or
counterexample.

[[The moral: be careful about what the Markov property says!]]

[1.2] LetX0, X1, . . . be a Markov chain on the state space {−1, 0, 1}, and suppose that P (i, j) > 0
for all i, j. What is a necessary and sufficient condition for the sequence of absolute values
|X0|, |X1|, . . . to be a Markov chain?

⊲ Exercise [1.3] uses a basic and important technique: conditioning on what happens in the
first step of the chain. And then in Exercise [1.4] you get to use this to do something
interesting.

[1.3] Let {Xn} be a finite-state Markov chain and let A be a subset of the state space. Suppose
we want to determine the expected time until the chain enters the set A, starting from an
arbitrary initial state. That is, letting τA = inf{n ≥ 0 : Xn ∈ A} denote the first time to
hit A [[defined to be 0 if X0 ∈ A]], we want to determine Ei(τA). Show that

Ei(τA) = 1 +
∑

k

P (i, k)Ek(τA)

for i /∈ A.

[1.4] You are tossing a coin repeatedly. Which pattern would you expect to see faster: HH or
HT? For example, if you get the sequence TTHHHTH..., then you see “HH” at the 4th
toss and “HT” at the 6th. Letting N1 and N2 denote the times required to see “HH” and
“HT”, respectively, can you guess intuitively whether E(N1) is smaller than, the same as,
or larger than E(N2)? Go ahead, make a guess [[and my day]]. Why don’t you also simulate
some to see how the answer looks; I recommend a computer, but if you like tossing real
coins, enjoy yourself by all means. Finally, you can use the reasoning of the Exercise [1.3]
to solve the problem and evaluate E(Ni). A hint is to set up a Markov chain having the 4
states HH, HT, TH, and TT.

[1.5] Here is a chance to practice formalizing some typical “intuitively obvious” statements. Let
X0, X1, . . . be a finite-state Markov chain.

a. We start with an observation about conditional probabilities that will be a useful tool

Stochastic Processes J. Chang, February 2, 2007



1.10. EXERCISES Page 37

throughout the rest of this problem. Let F1, . . . , Fm be disjoint events. Show that if
P(E|Fi) = p for all i = 1, . . . ,m then P(E | ⋃m

i=1 Fi) = p.

b. Show that

P{Xn+1 ∈ A1, . . . , Xn+r ∈ Ar | Xn = j,Xn−1 ∈ Bn−1, . . . , X0 ∈ B0}
= Pj{Xn+1 ∈ A1, . . . , Xn+r ∈ Ar}.

c. Recall the definition of hitting times: Ti = inf{n > 0 : Xn = i}. Show that Pi{Ti =
n + m | Tj = n, Ti > n} = Pj{Ti = m}, and conclude that Pi{Ti = Tj + m | Tj <
∞, Ti > Tj} = Pj{Ti = m}. This is one manifestation of the statement that the
Markov chain “probabilistically restarts” after it hits j.

d. Show that Pi{Ti < ∞ | Tj < ∞, Ti > Tj} = Pj{Ti < ∞}. Use this to show that if
Pi{Tj <∞} = 1 and Pj{Ti <∞} = 1, then Pi{Ti <∞} = 1.

e. Let i be a recurrent state and let j 6= i. Recall the idea of “cycles,” the segments
of the path between successive visits to i. For simplicity let’s just look at the first
two cycles. Formulate and prove an assertion to the effect that whether or not the
chain visits state j during the first and second cycles can be described by iid Bernoulli
random variables.

[1.6] [[A moving average process]] Moving average models are used frequently in time series anal-
ysis, economics and engineering. For these models, one assumes that there is an underlying,
unobserved process . . . , Y−1, Y0, Y1, . . . of iid random variables. A moving average pro-
cess takes an average (possibly a weighted average) of these iid random variables in a
“sliding window.” For example, suppose that at time n we simply take the average of
the Yn and Yn−1, defining Xn = (1/2)(Yn + Yn−1). Our goal is to show that the process
X0, X1, . . . defined in this way is not Markov. As a simple example, suppose that the
distribution of the iid Y random variables is P{Yi = 1} = 1/2 = P{Yi = −1}.

(a) Show that X0, X1, . . . is not a Markov chain.

(b) Show that X0, X1, . . . is not an rth order Markov chain for any finite r.

[1.7] Let Pn(i, j) denote the (i, j) element in the matrix Pn, the nth power of P . Show that
Pn(i, j) = P{Xn = j | X0 = i}. Ideally, you should get quite confused about what is being
asked, and then straighten it all out.

[1.8] Consider a Markov chain on the integers with

P (i, i+ 1) = .4 and P (i, i− 1) = .6 for i > 0,

P (i, i+ 1) = .6 and P (i, i− 1) = .4 for i < 0,

P (0, 1) = P (0,−1) = 1/2.

This is a chain with infinitely many states, but it has a sort of probabilistic “restoring force”
that always pushes back toward 0. Find the stationary distribution.
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[1.9] Recall the definition the Ehrenfest chain from Example (1.13).

(a) What is the stationary distribution? You might want to solve the problem for a few
small values of d. You should notice a pattern, and come up with a familiar answer.

(b) Can you explain without calculation why this distribution is stationary? That is,
supposing you start the Ehrenfest chain at time 0 by choosing a state according to the
distribution that you claim is stationary, you should argue without calculation that
the state at time 1 should also have this same distribution.

[1.10] On page 13 we argued that a limiting distribution must be stationary. This argument was
clear in the case of a finite state space. For you fans of mathematical analysis, what happens
in the case of a countably infinite state space? Can you still make the limiting argument
work?

[1.11] Consider a partition of the state space S of a Markov chain into two complementary subsets
A andAc. Suppose the Markov chain has stationary distribution π. Show that flux(A,Ac) =
flux(Ac, A). As a hint, here is an outline of steps you might follow.

(i) Show that the flux function has the following sort of linearity properties: If B and C
are disjoint,

flux(A,B ∪ C) = flux(A,B) + flux(A,C)

flux(B ∪ C,A) = flux(B,A) + flux(C,A)

(ii) Show that flux(S, {k}) = flux({k}, S) for all singleton sets {k}.
(iii) Using the first two steps, show that flux(S, A) = flux(A, S).

(iv) By subtracting a certain flux quantity from both sides, conclude that flux(A,Ac) =
flux(Ac, A).

[1.12] Show by example that for general subsets A and B, the equality flux(A,B) = flux(B,A)
does not necessarily hold.

[1.13] Use Exercise [1.11] to re-do Exercise [1.9], by writing the equations produced by (1.15) with
the choice A = {0, 1, . . . , i} for various i. The calculation should be easier.

[1.14] [[Renewal theory, the residual, and length-biased sampling]] Let X1, X2, . . . be iid taking
values in {1, . . . , d}. You might, for example, think of these random variables as lifetimes
of light bulbs. Define Sk = X1 + · · · + Xk, τ(n) = inf{k : Sk ≥ n}, and Rn = Sτ(n) − n.
Then Rn is called the residual lifetime at time n. This is the amount of lifetime remaining
in the light bulb that is in operation at time n.

(a) The sequence R0, R1, . . . is a Markov chain. What is its transition matrix? What is
the stationary distribution?
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(b) Define the total lifetime Ln at time n by Ln = Xτ(n). This is the total lifetime of the
light bulb in operation at time n. Show that L0, L1, . . . is not a Markov chain. But Ln
still has a limiting distribution, and we’d like to find it. We’ll do this by constructing
a Markov chain by enlarging the state space and considering the sequence of random
vectors (R0, L0), (R1, L1), . . .. This sequence does form a Markov chain. What is its
probability transition function and stationary distribution? Now, assuming the Basic
Limit Theorem applies here, what is the limiting distribution of Ln as n→∞? This
is the famous “length-biased sampling” distribution.

[1.15] Show that the relation “communicates with” is an equivalence relation. That is, show that
the “communicates with” relation is reflexive, symmetric, and transitive.

[1.16] Show that if an irreducible Markov chain has a state i such that P (i, i) > 0, then the chain
is aperiodic. Also show by example that this sufficient condition is not necessary.

[1.17] [[Generating a random 4 × 4 table of numbers satisfying given restrictions]] Show that if
we run the process described in Example (1.22) for a sufficiently long time, then we will
end up with a random table having probability distribution arbitrarily close to the desired
distribution (that is, uniform on S). In order to do this, you need to demonstrate that the
conditions of the Basic Limit Theorem are satisfied in this example, by showing that

(a) The procedure generates a Markov chain whose state space is S,

(b) that Markov chain is irreducible,

(c) that Markov chain is aperiodic, and

(d) that Markov chain has the desired distribution as its stationary distribution.

[1.18] [[More on 4 × 4 tables]] Refer to the description of the Markov chain in Example (1.22).
Imagine that we have already chosen a random pair of rows {i1, i2} and a random pair of
columns {j1, j2}. The Markov chain described in Example (1.22) takes very small steps,
adding ±1 to ai1j1 and ai2j2 , and subtracting ±1 from ai1j2 and ai2j1 , when doing so
produces no negative entries. We could make larger changes by choosing uniformly from
all possible modifications of the form: add m to ai1j1 and ai2j2 , and subtract m from ai1j2
and ai2j1 , where m is any integer that does not cause any table entries to become negative.
Describe in a more explicit way (explicit enough to make it clear how to write a computer
program to do this) how to run this Markov chain. Show that the Basic Limit Theorem
applies here to guarantee convergence to the uniform distribution on S. If you feel inspired
and/or your instructor asks you to do so, simulate this chain in our example and show the
world some random tables from S.

[1.19] [[A computing project: Approximate counting]] In Example (1.22), we don’t know the
cardinality of the state space, #(S). How many such tables are there? About a million? A
billion? A trillion? Hey, we don’t even know approximately how many digits the cardinality
has! In some problems there is a nice connection between being able to generate a nearly
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uniformly distributed element of a set and the problem of approximating the number of
elements in the set. You can try the idea out in the setting of Example (1.22). This is stated
in a somewhat open-ended way; there are many variations in how you might approach this,
some more or less efficient that the others, and there will be lots of details to work out. The
basic idea of the connection between random generation and approximate counting is use
the approximate uniform generation to reduce the original approximate counting problem
recursively to smaller and smaller counting problems. For example, suppose we knew the
fraction, f11, of elements of S that have a “68” as their (1,1) [[upper left-hand corner]] entry.
Then we have reduced the problem to counting a smaller set, namely, the subset S11 = {a ∈
S : a11 = 68} of S meeting this additional restriction, because #(S) = #(S11)/f11. How do
we estimate f11? Well, f11 is the probability of a uniformly distributed A ∈ S satisfying the
extra restriction A11 = 68. Now you see where the uniform generation comes in: you can
estimate f11 by generating many nearly uniformly distributed tables from S and taking the
fraction of those that have “68” in their upper left corner. The same idea may be applied
recursively in this example. Estimating #(S11) involves adding an extra restriction, say on
the (1, 2) entry of the table, which defines a further subset S11,12 of S11. Estimating the
fraction #(S11,12)/#(S11) involves running a Markov chain in the smaller state space S11.
And so on.

Note: as a practical matter and to preserve your sanity, before applying your methodology
to the original large problem, it’s a good idea to test it on some much smaller version of
the problem (smaller than a 4× 4 table) where you know the answer.

[1.20] [[The other 3-dimensional random walk]] Consider a random walk on the 3-dimensional
integer lattice; at each time the random walk moves with equal probability to one of the 6
nearest neighbors, adding or subtracting 1 in just one of the three coordinates. Show that
this random walk is transient.

Hint: You want to show that some series converges. An upper bound on the terms will be
enough. How big is the largest probability in the Multinomial(n; 1/3, 1/3, 1/3) distribution?

⊲ Here are three additional problems about a simple symmetric random walk {Sn} in one
dimension starting from S0 = 0 at time 0.

[1.21] Let a and b be integers with a < 0 < b. Defining the hitting times τc = inf{n ≥ 0 : Sn = c},
show that the probability P{τb < τa} is given by (0− a)/(b− a).

[1.22] Let S0, S1, . . . be a simple, symmetric random walk in one dimension as we have discussed,
with S0 = 0. Show that

P{S1 6= 0, . . . , S2n 6= 0} = P{S2n = 0}.

Now you can do a calculation that explains why the expected time to return to 0 is infinite.
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[1.23] As in the previous exercise, consider a simple, symmetric random walk started out at 0.
Letting k 6= 0 be any fixed state, show that the expected number of times the random walk
visits state k before returning to state 0 is 1.

[1.24] Consider a Markov Chain on the nonnegative integers S = {0, 1, 2, . . .}. Defining P (i, i +
1) = pi and P (i, i − 1) = qi, assume that pi + qi = 1 for all i ∈ S, and also p0 = 1, and
0 < pi ≤ 1/2 for all i ≥ 1. Use what you know about the simple, symmetric random walk
to show that the given Markov chain is recurrent.

[1.25] Prove Proposition (1.36).

[1.26] Let π0 and ρ0 be probability mass functions on S, and define π1 = π0P and ρ1 = ρ0P ,
where P is a probability transition matrix. Show that ‖π1 − ρ1‖ ≤ ‖π0 − ρ0‖. That is, in
terms of total variation distance, π1 and ρ1 are closer to each other than π0 and ρ0 were.

[1.27] Here is a little practice with the coupling idea as used in the proof of the Basic Limit
Theorem. Consider a Markov chain {Xn} having probability transition matrix

P =




1/2 1/4 1/4
1/4 1/2 1/4
1/4 1/4 1/2



 .

Note that {Xn} has stationary distribution π = (1/3, 1/3, 1/3). Using the kind of coupling
we did in the proof of the Basic Limit Theorem, show that, no matter what the initial
distribution π0 of X0 is, we have

‖πn − π‖ ≤
2

3

(
11

16

)n

for all n.

[1.28] Do you think the bound you just derived in Exercise [1.27] is a good one? In particular, is
11/16 the smallest we can get, or can we do better? What is the actual rate of geometric
decrease of ‖πn − π‖? You could think about this in your head, investigate numerically by
matrix multiplication, or both.

[[Hint about coupling: Try to think of a more “aggressive” coupling to get a better bound
What does this mean? The coupling we used in the proof of the Basic Limit Theorem was
not very aggressive, in that it let the two chains evolve independently until they happened
to meet, and only then started to use the same uniform random numbers to generate
the paths. No attempt was made to get the chains together as fast as possible. A more
aggressive coupling would somehow make use of some random numbers in common to both
chains in generating their paths right from the beginning.]]

[1.29] Consider a knight sitting on the lower left corner square of an ordinary 8× 8 chess board.
The knight has residual frog-like tendencies, left over from an old spell an older witch cast
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upon him. So he performs a random walk on the chess board, at each time choosing a
random move uniformly distributed over the set of his possible knight moves. What is the
expected time until he first returns to the lower left corner square?

[1.30] Recall the definition of positive recurrence on page 24. Show that positive recurrence is a
class property.

[1.31] Suppose a Markov chain has a stationary distribution π and the state j is null recurrent.
Show that π(j) = 0.

[1.32] [[Birth-collapse chain]] Consider a Markov chain on S = {0, 1, 2, . . .} having P (i, i+1) = pi,
P (i, 0) = 1− pi for all i, with p0 = 1 and 0 < pi < 1 for all i > 0. Show that

(i) The chain is recurrent if and only if limn→∞
∏n
i=1 pi = 0. [[This, in turn, is equivalent

to the condition
∑∞

i=1(1 − pi) = ∞. (This was just for interest; not a problem or a
hint.)]]

(ii) The chain is positive recurrent if and only if
∑∞

n=1

∏n
i=1 pi <∞.

(iii) What is the stationary distribution if pi = 1/(i+ 1)?

[1.33] Consider an irreducible Markov chain {X0, X1, . . .} on a state space having n < ∞
states. Let π denote the stationary distribution of the chain, and suppose X0 is dis-
tributed according to π. Define τ to be the first return time to the initial state, that
is, τ = inf{k > 0 : Xk = X0}. What is the expectation of τ?
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