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1. Markov chains

Section 1. What is a Markov chain? How to simulate one.
Section 2. The Markov property.
Section 3. How matrix multiplication gets into the picture.
Section 4. Statement of the Basic Limit Theorem about conver-
gence to stationarity. A motivating example shows how compli-
cated random objects can be generated using Markov chains.
Section 5. Stationary distributions, with examples. Probability
flux.
Section 6. Other concepts from the Basic Limit Theorem: ir-
reducibility, periodicity, and recurrence. An interesting classical
example: recurrence or transience of random walks.
Section 7. Introduces the idea of coupling.
Section 8. Uses coupling to prove the Basic Limit Theorem.
Section 9. A Strong Law of Large Numbers for Markov chains.

Markov chains are a relatively simple but very interesting and useful class of random
processes. A Markov chain describes a system whose state changes over time. The changes
are not completely predictable, but rather are governed by probability distributions. These
probability distributions incorporate a simple sort of dependence structure, where the con-
ditional distribution of future states of the system, given some information about past
states, depends only on the most recent piece of information. That is, what matters in
predicting the future of the system is its present state, and not the path by which the
system got to its present state. Markov chains illustrate many of the important ideas of
stochastic processes in an elementary setting. This classical subject is still very much alive,
with important developments in both theory and applications coming at an accelerating
pace in recent decades.

1.1 Specifying and simulating a Markov chain

What is a Markov chain∗? One answer is to say that it is a sequence {X0, X1, X2, . . .} of
random variables that has the “Markov property”; we will discuss this in the next section.
For now, to get a feeling for what a Markov chain is, let’s think about how to simulate one,
that is, how to use a computer or a table of random numbers to generate a typical “sample

∗ Unless stated otherwise, when we use the term “Markov chain,” we will be restricting our attention
to the subclass of time-homogeneous Markov chains. We’ll do this to avoid monotonous repetition of the
phrase “time-homogeneous.” I’ll point out below the place at which the assumption of time-homogeneity
enters.

Stochastic Processes J. Chang, February 2, 2007
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path.” To start, how do I tell you which particular Markov chain I want you to simulate?
There are three items involved: to specify a Markov chain, I need to tell you its

• State space S.

S is a finite or countable set of states, that is, values that the random variables Xi

may take on. For definiteness, and without loss of generality, let us label the states as
follows: either S = {1, 2, . . . , N} for some finite N , or S = {1, 2, . . .}, which we may
think of as the case “N =∞”.

• Initial distribution π0.

This is the probability distribution of the Markov chain at time 0. For each state
i ∈ S, we denote by π0(i) the probability P{X0 = i} that the Markov chain starts out
in state i. Formally, π0 is a function taking S into the interval [0,1] such that

π0(i) ≥ 0 for all i ∈ S

and
∑

i∈S

π0(i) = 1.

Equivalently, instead of thinking of π0 as a function from S to [0,1], we could think
of π0 as the vector whose ith entry is π0(i) = P{X0 = i}.

• Probability transition rule.

This is specified by giving a matrix P = (Pij). If S contains N states, then P is an
N × N matrix. The interpretation of the number Pij is the conditional probability,
given that the chain is in state i at time n, say, that the chain jumps to the state j
at time n+ 1. That is,

Pij = P{Xn+1 = j | Xn = i}.

We will also use the notation P (i, j) for the same thing. Note that we have written
this probability as a function of just i and j, but of course it could depend on n
as well. The time homogeneity restriction mentioned in the previous footnote is
just the assumption that this probability does not depend on the time n, but rather
remains constant over time.

Formally, a probability transition matrix is an N × N matrix whose entries are
all nonnegative and whose rows sum to 1.

Finally, you may be wondering why we bother to arrange these conditional probabil-
ities into a matrix. That is a good question, and will be answered soon.

Stochastic Processes J. Chang, February 2, 2007
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(1.1) Figure. The Markov frog.

We can now get to the question of how to simulate a Markov chain, now that we know how
to specify what Markov chain we wish to simulate. Let’s do an example: suppose the state
space is S = {1, 2, 3}, the initial distribution is π0 = (1/2, 1/4, 1/4), and the probability
transition matrix is

(1.2) P =





1 2 3

1 0 1 0
2 1/3 0 2/3
3 1/3 1/3 1/3



.

Think of a frog hopping among lily pads as in Figure 1.1. How does the Markov frog
choose a path? To start, he chooses his initial position X0 according to the specified
initial distribution π0. He could do this by going to his computer to generate a uniformly
distributed random number U0 ∼ Unif(0, 1), and then taking†

X0 =






1 if 0 ≤ U0 ≤ 1/2
2 if 1/2 < U0 ≤ 3/4
3 if 3/4 < U0 ≤ 1

For example, suppose that U0 comes out to be 0.8419, so that X0 = 3. Then the frog
chooses X1 according to the probability distribution in row 3 of P , namely, (1/3, 1/3, 1/3);
to do this, he paws his computer again to generate U1 ∼ Unif(0, 1) independently of U0,
and takes

X1 =






1 if 0 ≤ U0 ≤ 1/3
2 if 1/3 < U0 ≤ 2/3
3 if 2/3 < U0 ≤ 1.

†Don’t be distracted by the distinctions between “<” and “≤” below—for example, what we do if U0

comes out be exactly 1/2 or 3/4—since the probability of U0 taking on any particular precise value is 0.

Stochastic Processes J. Chang, February 2, 2007
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Suppose he happens to get U1 = 0.1234, so that X1 = 1. Then he chooses X2 according to
row 1 of P , so that X2 = 2; there’s no choice this time. Next, he chooses X3 according to
row 2 of P . And so on. . . .

1.2 The Markov property

Clearly, in the previous example, if I told you that we came up with the values X0 = 3,
X1 = 1, and X2 = 2, then the conditional probability distribution for X3 is

P{X3 = j | X0 = 3, X1 = 1, X2 = 2} =






1/3 for j = 1

0 for j = 2

2/3 for j = 3,

which is also the conditional probability distribution for X3 given only the information that
X2 = 2. In other words, given that X0 = 3, X1 = 1, and X2 = 2, the only information
relevant to the distribution to X3 is the information that X2 = 2; we may ignore the
information that X0 = 3 and X1 = 1. This is clear from the description of how to simulate
the chain! Thus,

P{X3 = j | X2 = 2, X1 = 1, X0 = 3} = P{X3 = j | X2 = 2} for all j.

This is an example of the Markov property.

(1.3) Definition. A process X0, X1, . . . satisfies the Markov property if

P{Xn+1 = in+1 | Xn = in, Xn−1 = in−1, . . . , X0 = i0}
= P{Xn+1 = in+1 | Xn = in}

for all n and all i0, . . . , in+1 ∈ S.

The issue addressed by the Markov property is the dependence structure among random
variables. The simplest dependence structure for X0, X1, . . . is no dependence at all, that
is, independence. The Markov property could be said to capture the next simplest sort
of dependence: in generating the process X0, X1, . . . sequentially, the “next” state Xn+1

depends only on the “current” value Xn, and not on the “past” values X0, . . . , Xn−1. The
Markov property allows much more interesting and general processes to be considered than
if we restricted ourselves to independent random variables Xi, without allowing so much
generality that a mathematical treatment becomes intractable.

⊲ The idea of the Markov property might be expressed in a pithy phrase, “Conditional on the
present, the future does not depend on the past.” But there are subtleties. Exercise [1.1]
shows the need to think carefully about what the Markov property does and does not say.
[[The exercises are collected in the final section of the chapter.]]

Stochastic Processes J. Chang, February 2, 2007
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The Markov property implies a simple expression for the probability of our Markov
chain taking any specified path, as follows:

P{X0 = i0, X1 = i1, X2 = i2, . . . , Xn = in}
= P{X0 = i0}P{X1 = i1 | X0 = i0}P{X2 = i2 | X1 = i1, X0 = i0}

· · ·P{Xn = in | Xn−1 = in−1, . . . , X1 = i1, X0 = i0}
= P{X0 = i0}P{X1 = i1 | X0 = i0}P{X2 = i2 | X1 = i1}

· · ·P{Xn = in | Xn−1 = in−1}
= π0(i0)P (i0, i1)P (i1, i2) · · ·P (in−1, in).

So, to get the probability of a path, we start out with the initial probability of the first state
and successively multiply by the matrix elements corresponding to the transitions along the
path.

The Markov property of Markov chains can be generalized to allow dependence on the
previous several values. The next definition makes this idea precise.

(1.4) Definition. We say that a process X0, X1, . . . is rth order Markov if

P{Xn+1 = in+1 | Xn = in, Xn−1 = in−1, . . . , X0 = i0}
= P{Xn+1 = in+1 | Xn = in, . . . , Xn−r+1 = in−r+1}

for all n ≥ r and all i0, . . . , in+1 ∈ S.

⊲ Is this generalization general enough to capture everything of interest? No; for example,
Exercise [1.6] shows that an important type of stochastic process, the “moving average pro-
cess,” is generally not rth order Markov for any r.

1.3 “It’s all just matrix theory”

Recall that the vector π0 having components π0(i) = P{X0 = i} is the initial distribution of
the chain. Let πn denote the distribution of the chain at time n, that is, πn(i) = P{Xn = i}.
Suppose for simplicity that the state space is finite: S = {1, . . . , N}, say. Then the Markov
chain has an N ×N probability transition matrix

P = (Pij) = (P (i, j)),

where P (i, j) = P{Xn+1 = j | Xn = i} = P{X1 = j | X0 = i}. The law of total probability
gives

πn+1(j) = P{Xn+1 = j}

=

N∑

i=1

P{Xn = i}P{Xn+1 = j | Xn = i}

=
N∑

i=1

πn(i)P (i, j),

Stochastic Processes J. Chang, February 2, 2007
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which, in matrix notation, is just the equation

πn+1 = πnP.

Note that here we are thinking of πn and πn+1 as row vectors, so that, for example,

πn = (πn(1), . . . , πn(N)).

Thus, we have

π1 = π0P(1.5)

π2 = π1P = π0P
2

π3 = π2P = π0P
3,

and so on, so that by induction

(1.6) πn = π0P
n.

We will let Pn(i, j) denote the (i, j) element in the matrix Pn.

⊲ Exercise [1.7] gives some basic practice with the definitions.

So, in principle, we can find the answer to any question about the probabilistic behavior
of a Markov chain by doing matrix algebra, finding powers of matrices, etc. However, what
is viable in practice may be another story. For example, the state space for a Markov chain
that describes repeated shuffling of a deck of cards contains 52! elements—the permutations
of the 52 cards of the deck. This number 52! is large: about 80 million million million million
million million million million million million million. The probability transition matrix that
describes the effect of a single shuffle is a 52! by 52! matrix. So, “all we have to do” to answer
questions about shuffling is to take powers of such a matrix, find its eigenvalues, and so
on! In a practical sense, simply reformulating probability questions as matrix calculations
often provides only minimal illumination in concrete questions like “how many shuffles are
required in order to mix the deck well?” Probabilistic reasoning can lead to insights and
results that would be hard to come by from thinking of these problems as “just” matrix
theory problems.

1.4 The basic limit theorem of Markov chains

As indicated by its name, the theorem we will discuss in this section occupies a fundamental
and important role in Markov chain theory. What is it all about? Let’s start with an
example in which we can all see intuitively what is going on.

Stochastic Processes J. Chang, February 2, 2007
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(1.7) Figure. A random walk on a clock.

(1.8) Example [Random walk on a clock]. For ease of writing and drawing, consider
a clock with 6 numbers on it: 0,1,2,3,4,5. Suppose we perform a random walk by moving
clockwise, moving counterclockwise, and staying in place with probabilities 1/3 each at
every time n. That is,

P (i, j) =






1/3 if j = i− 1 mod 6

1/3 if j = i

1/3 if j = i+ 1 mod 6.

Suppose we start out at X0 = 2, say. That is,

π0 = (π0(0), π0(1), . . . , π0(5)) = (0, 0, 1, 0, 0, 0).

Then of course

π1 = (0,
1

3
,
1

3
,
1

3
, 0, 0),

and it is easy to calculate

π2 = (
1

9
,
2

9
,
1

3
,
2

9
,
1

9
, 0)

and

π3 = (
3

27
,

6

27
,

7

27
,

6

27
,

3

27
,

2

27
).

Notice how the probability is spreading out away from its initial concentration on the state
2. We could keep calculating πn for more values of n, but it is intuitively clear what will
happen: the probability will continue to spread out, and πn will approach the uniform
distribution:

πn → (
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
)
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Page 12 1. MARKOV CHAINS

as n → ∞. Just imagine: if the chain starts out in state 2 at time 0, then we close our
eyes while the random walk takes 10,000 steps, and then we are asked to guess what state
the random walk is in at time 10,000, what would we think the probabilities of the various
states are? I would say: “X10,000 is for all practical purposes uniformly distributed over
the 6 states.” By time 10,000, the random walk has essentially “forgotten” that it started
out in state 2 at time 0, and it is nearly equally likely to be anywhere.

Now observe that the starting state 2 was not special; we could have started from
anywhere, and over time the probabilities would spread out away from the initial point,
and approach the same limiting distribution. Thus, πn approaches a limit that does not
depend upon the initial distribution π0.

The following “Basic Limit Theorem” says that the phenomenon discussed in the pre-
vious example happens quite generally. We will start with a statement and discussion of
the theorem, and then prove the theorem later.

(1.9) Theorem [Basic Limit Theorem]. Let X0, X1, . . . be an irreducible, aperiodic
Markov chain having a stationary distribution π(·). Let X0 have the distribution π0, an
arbitrary initial distribution. Then limn→∞ πn(i) = π(i) for all states i.
We need to define the words “irreducible,” “aperiodic,” and “stationary distribution.” Let’s
start with “stationary distribution.”

1.5 Stationary distributions

Suppose a distribution π on S is such that, if our Markov chain starts out with initial
distribution π0 = π, then we also have π1 = π. That is, if the distribution at time 0 is π,
then the distribution at time 1 is still π. Then π is called a stationary distribution for
the Markov chain. From (1.5) we see that the definition of stationary distribution amounts
to saying that π satisfies the equation

(1.10) π = πP,

that is,

π(j) =
∑

i∈S

π(i)P (i, j) for all j ∈ S.

[[In the case of an infinite state space, (1.10) is an infinite system of equations.]] Also from
equations (1.5) we can see that if the Markov chain has initial distribution π0 = π, then we
have not only π1 = π, but also πn = π for all n. That is, a Markov chain started out in a
stationary distribution π stays in the distribution π forever; that’s why the distribution π
is called “stationary.”

(1.11) Example. If the N × N probability transition matrix P is symmetric, then the
uniform distribution [[π(i) = 1/N for all i]] is stationary. More generally, the uniform
distribution is stationary if the matrix P is doubly stochastic, that is, the column-sums of
P are 1 (we already know the row-sums of P are all 1).
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It should not be surprising that π appears as the limit in Theorem (1.9). It is easy to
see that if πn approaches a limiting distribution as n→∞, then that limiting distribution
must be stationary. To see this, suppose that limn→∞ πn = π̃, and let n → ∞ in the
equation πn+1 = πnP to obtain π̃ = π̃P , which says that π̃ is stationary.

⊲ The argument just stated goes through clearly and easily when the state space is finite—there
are no issues of mathematical analysis that arise in taking the limits. I’ll leave it as Exer-
cise [1.10] for the mathematically inclined among you to worry about the details of carrying
through the above argument in the case of a countably infinite state space.

Computing stationary distributions is an algebra problem.

(1.12) Example. Let’s find the stationary distribution for the frog chain, whose probability
transition matrix was given in (1.2). Since most people are accustomed to solving linear
systems of the form Ax = b, let us take the transpose of the equation π(P − I) = 0,
obtaining the equation (P T − I)πT = 0. In our example, this becomes




−1 1/3 1/3

1 −1 1/3
0 2/3 −2/3








π(1)
π(2)
π(3)



 = 0,

or 


−1 1/3 1/3

0 −2/3 2/3
0 2/3 −2/3








π(1)
π(2)
π(3)



 = 0,

which has solutions of the form π = const(2/3, 1, 1). For the unique solution that satisfies
the constraint

∑
π(i) = 1, take the constant to be 3/8, so that π = (1/4, 3/8, 3/8).

As an alternative approach, here is another way, aside from solving the linear equations,
to address the problem of finding a stationary distribution; this idea can work particularly
well with computers. If we believe the Basic Limit Theorem, we should see the stationary
distribution in the limit as we run the chain for a long time. Let’s try it: Here are some
calculations of powers of the transition matrix P from (1.2):

P 5 =




0.246914 0.407407 0.345679
0.251029 0.36214 0.386831
0.251029 0.366255 0.382716



 ,

P 10 =




0.250013 0.37474 0.375248
0.249996 0.375095 0.374909
0.249996 0.375078 0.374926



 ,

P 20 =




0.2500000002 0.3749999913 0.3750000085
0.2499999999 0.375000003 0.374999997
0.2499999999 0.3750000028 0.3749999973



 .

So we don’t really have to solve equations; in this example, any of the rows of the matrix
P 20 provides a very accurate approximation for π. No matter what state we start from, the
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distribution after 20 steps of the chain is very close to (.25, .375, .375). This is the Basic
Limit Theorem in action.

(1.13) Example [Ehrenfest chain]. The Ehrenfest chain is a simple model of “mixing”
processes. This chain can shed light on perplexing questions like “Why aren’t people dying
all the time due to the air molecules bunching up in some odd corner of their bedrooms
while they sleep?” The model considers d balls distributed among two urns, and results
in a Markov chain {X0, X1, . . .} having state space {0, 1, . . . , d}, with the state Xn of the
chain at time n being the number of balls in urn #1 at time n. At each time, we choose a
ball at random uniformly from the d possibilities, take that ball out of its current urn, and
drop it into the other urn. Thus, P (i, i− 1) = i/d and P (i, i+ 1) = (d− i)/d for all i.

⊲ What is the stationary distribution of the Ehrenfest chain? Exercise [1.9] asks you to
discover and explain the answer, which turns out to be a distribution that is one of your old
friends.

A Markov chain might have no stationary distribution, one stationary distribution, or
infinitely many stationary distributions. We just saw examples with one stationary distribu-
tion. A trivial example with infinitely many is when P is the identity matrix, in which case
all distributions are stationary. To find an example without any stationary distribution, we
need to consider an infinite state space. [[We will see later that any finite-state Markov chain
has at least one stationary distribution.]] An easy example of this has S = {1, 2, . . .} and
P (i, i+ 1) = 1 for all i, which corresponds to a Markov chain that moves deterministically
“to the right.” In this case, the equation π(j) =

∑
i∈S

π(i)P (i, j) reduces to π(j) = π(j−1),
which clearly has no solution satisfying

∑
π(j) = 1. Another interesting example is the

simple, symmetric random walk on the integers: P (i, i − 1) = 1/2 = P (i, i + 1). Here the
equations for stationarity become

π(j) =
1

2
π(j − 1) +

1

2
π(j + 1).

Again it is easy to see [[how?]] that these equations have no solution π that is a probability
mass function.

Intuitively, notice the qualitative difference: in the examples without a stationary dis-
tribution, the probability doesn’t settle down to a limit probability distribution—in the
first example the probability moves off to infinity, and in the second example it spreads out
in both directions. In both cases, the probability on any fixed state converges to 0; one
might say the probability escapes off to infinity (or −∞).

⊲ Exercise [1.8] analyzes an example of a Markov chain that moves around on all of the
integers, while no probability escapes to infinity, and the chain has a stationary distribution.
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A Markov chain in its stationary distribution π is at peace with itself; its distribution
stays constant, with no desire to change into anything else. This property is explored
further in terms of the idea of “probability flux.”

(1.14) Definition. For subsets A and B of the state space, define the probability flux
from the set A into the set B to be

flux(A,B) =
∑

i∈A

∑

j∈B
π(i)P (i, j)

A fundamental balancing property occurs when we consider the probability flux between
a set A and its complement Ac, in which case

(1.15) flux(A,Ac) = flux(Ac, A).

⊲ Exercise [1.11] supplies some hints to help you prove this.

The left side of (1.15) is the “probability flux flowing out of A into Ac.” The equality
says that this must be the same as the flux from Ac back into A. This has the suggestive
interpretation that the stationary probabilities describe a stable system in which all the
probability is happy where it is, and does not want to flow to anywhere else, so that the
net flow from A to Ac must be zero. We can say this in a less mysterious way as follows.
Think of π(i) as the long run fraction of time that the chain is in state i. [[We will soon
see a theorem (“a strong law of large numbers for Markov chains”) that supports this
interpretation.]] Then π(i)P (i, j) is the long run fraction of times that a transition from i to
j takes place. But clearly the long run fraction of times occupied by transitions going from a
state in A to a state in Ac must equal the long run fraction of times occupied by transitions
going the opposite way. [[In fact, along any sample path, the numbers of transitions that
have occurred in the two directions up to any time n may differ by at most 1!]]

1.6 Irreducibility, periodicity, and recurrence

We’ll start by introducing some convenient notation to be used throughout the remainder
of this chapter, then we’ll define irreducibility and related terms.

(1.16) Notation. We will use the shorthand “ Pi” to indicate a probability taken in a
Markov chain started in state i at time 0. That is, “ Pi(A)” is shorthand for “ P{A | X0 =
i}.” We’ll also use the notation “ Ei” in an analogous way for expectation.

(1.17) Definition. Let i and j be two states. We say that j is accessible from i if it
is possible [[with positive probability]] for the chain ever to visit state j if the chain starts in
state i, or, in other words,

Pi

{ ∞⋃

n=0

{Xn = j}
}
> 0.
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Clearly an equivalent condition is

(1.18)
∞∑

n=0

Pn(i, j)
△

=
∞∑

n=0

Pi{Xn = j} > 0.

We say i communicates with j if j is accessible from i and i is accessible from j. We
say that the Markov chain is irreducible if all pairs of states communicate.

⊲ In Exercise [1.15] you are asked to show that the relation “communicates with” is an equiv-
alence relation. That is, you will show that the “communicates with” relation is reflexive,
symmetric, and transitive.

Recall that an equivalence relation on a set induces a partition of that set into equiva-
lence classes. Thus, by Exercise [1.15], the state space S may be partitioned into what we
will call “communicating classes,” or simply “classes.” The chain is irreducible if there is
just one communicating class, that is, the whole state space S. Note that whether or not
a Markov chain is irreducible is determined by the state space S and the transition matrix
(P (i, j)); the initial distribution π0 is irrelevant. In fact, all that matters is the pattern of
zeroes in the transition matrix.

Why do we require irreducibility in the “Basic Limit Theorem” (1.9)? Here is a trivial
example of how the conclusion can fail if we do not assume irreducibility. Let S = {0, 1}
and let P =

(
1 0
0 1

)
. Clearly the resulting Markov chain is not irreducible. Also, clearly

the conclusion of the Basic Limit Theorem does not hold; that is, πn does not approach
any limit that is independent of π0. In fact, πn = π0 for all n.

Next, to discuss periodicity, let’s begin with another trivial example: take S = {0, 1}
again, and let P =

(
0 1
1 0

)
. The conclusion of the Basic Limit Theorem does not hold

here: for example, if π0 = (1, 0), then πn = (1, 0) if n is even and πn = (0, 1) if n is odd.
So in this case πn(1) alternates between the two values 0 and 1 as n increases, and hence
does not converge to anything. The problem in this example is not lack of irreducibility;
clearly this chain is irreducible. So, assuming the Basic Limit Theorem is true, the chain
must not be aperiodic! That is, the chain is periodic. The trouble stems from the fact
that, starting from state 1 at time 0, the chain can visit state 1 only at even times. The
same holds for state 2.

(1.19) Definition. Given a Markov chain {X0, X1, . . .}, define the period of a state i
to be the greatest common divisor (gcd)

di = gcd{n : Pn(i, i) > 0}.

Note that both states 1 and 2 in the example P =

(
0 1
1 0

)
have period 2. In fact, the

next result shows that if two states i and j communicate, then they must have the same
period.

(1.20) Theorem. If the states i and j communicate, then di = dj.
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Proof: Since j is accessible from i, by (1.18) there exists an n1 such that Pn1(i, j) > 0.
Similarly, since i is accessible from j, there is an n2 such that Pn2(j, i) > 0. Noting that
Pn1+n2(i, i) > 0, it follows that

di | n1 + n2,

that is, di divides n1 + n2, which means that n1 + n2 is an integer multiple of di. Now
suppose that Pn(j, j) > 0. Then Pn1+n+n2(i, i) > 0, so that

di | n1 + n+ n2.

Subtracting the last two displays gives di | n. Since n was an arbitrary integer satisfying
Pn(j, j) > 0, we have found that di is a common divisor of the set {n : Pn(j, j) > 0}. Since
dj is defined to be the greatest common divisor of this set, we have shown that dj ≥ di.
Interchanging the roles of i and j in the previous argument gives the opposite inequality
di ≥ dj . This completes the proof.

It follows from Theorem (1.20) that all states in a communicating class have the same
period. We say that the period of a state is a “class property.” In particular, all states in
an irreducible Markov chain have the same period. Thus, we can speak of the period of
a Markov chain if that Markov chain is irreducible: the period of an irreducible Markov
chain is the period of any of its states.

(1.21) Definition. An irreducible Markov chain is said to be aperiodic if its period is
1, and periodic otherwise.

⊲ A simple sufficient (but not necessary) condition for an irreducible chain to be aperiodic is
that there exist a state i such that P (i, i) > 0. This is Exercise [1.16].

We have now discussed all of the words we need in order to understand the statement
of the Basic Limit Theorem (1.9). We will need another concept or two before we can
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get to the proof, and the proof will then take some time beyond that. So I propose that
we pause to discuss an interesting example of an application of the Basic Limit Theorem;
this will help us build up some motivation to carry us through the proof, and will also
give some practice that should be helpful in assimilating the concepts of irreducibility and
aperiodicity. We’ll also use the next example to introduce the important idea of using the
Basic Limit Theorem, in a sense, in reverse, to generate random objects from specified
distributions. This idea underlies many of the modern uses of Markov chains.

(1.22) Example [Generating a random table with fixed row and column sums].
Consider the 4× 4 table of numbers that is enclosed within the rectangle below. The four
numbers along the bottom of the table are the column sums, and those along the right edge
of the table are the row sums.

68 119 26 7 220
20 84 17 94 215
15 54 14 10 93
5 29 14 16 64

108 286 71 127

Suppose we want to generate a random, uniformly distributed, 4 × 4 table of nonnegative
integers that has the same row and column sums as the table above. To make sure the
goal is clear, define S to be the set of all nonnegative 4× 4 tables that have the given row
and column sums. Let #(S) denote the cardinality of S, that is, the number of elements in
S. Remember, each element of S is a 4× 4 table! We want to generate a random element,
that is, a random 4 × 4 table, from S, with each element having equal probability—that’s
the “uniform” part. That is, each of the #(S) tables in S should have probability 1/#(S)
of being the table actually generated.

In spirit, this problem is the same as the much simpler problem of drawing a uniformly
distributed state from our random walk on a clock as described in Example (1.8). This
much simpler problem is merely to generate a uniformly distributed random element X
from the set S = {1, 2, 3, 4, 5, 6}, and we can do that without any fancy Markov chains.
Just generate a random number U ∼ U [0, 1], and then take X = i if U is between (i− 1)/6
and i/6.

Although the two problems may be spiritually the same, there is a crucial practical
difference. The set S for the clock problem has only 6 elements. The set S for the 4 × 4
tables is much larger, and in fact we don’t know how many elements it has!

So an approach that works fine for S = {1, 2, 3, 4, 5, 6}—generate a U ∼ U [0, 1] and chop
up the interval [0, 1] into the appropriate number of pieces—cannot be used to generate a
random 4 × 4 table in our example. However, the Basic Limit Theorem suggests another
general approach: start from any state in S, and run an appropriate Markov chain [[such
as the random walk on the clock]] for a sufficiently long time, and take whatever state the
chain finds itself in. This approach is rather silly if S is very simple, like S = {1, 2, 3, 4, 5, 6},
but in many practical problems, it is the only approach that has a hope of working. In our
4 × 4 table problem, we can indeed generate an approximate solution, that is, a random
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table having a distribution arbitrarily close to uniform, by running a Markov chain on S,
our set of tables.

Here is one way to do it. Start with any table having the correct row and column sums;
so of course the 4 × 4 table given above will do. Denote the entries in that table by aij .
Choose a pair {i1, i2} of rows at random, that is, uniformly over the

(
4
2

)
= 6 possible pairs.

Similarly, choose a random pair of columns {j1, j2}. Then flip a coin. If you get heads: add
1 to ai1j1 and ai2j2 , and subtract 1 from ai1j2 and ai2j1 if you can do so without producing
any negative entries—if you cannot do so, then do nothing. Similarly, if the coin flip comes
up tails, then subtract 1 from ai1j1 and ai2j2 , and add 1 to ai1j2 and ai2j1 , with the same
nonnegativity proviso, and otherwise do nothing. This describes a random transformation
of the original table that results in a new table in the desired set of tables S. Now repeat
the same random transformation on the new table, and so on.

⊲ In this example, a careful check that the conditions allowing application of the Basic Limit
Theorem hold constitutes a challenging exercise, which you are asked to do in Exercise [1.17].
Exercise [1.18] suggests an alternative Markov chain for the same purpose, and Exer-
cise [1.19] introduces a fascinating connection between two problems: generating an ap-
proximately uniformly distributed random element of a set, and approximately counting the
number of elements in the set. My hope is that these interesting applications of the Basic
Limit Theorem are stimulating enough to whet your appetite for digesting the proof of that
theorem!

For the proof of the Basic Limit Theorem, we will need one more concept: recurrence.
Analogously to what we did with the notion of periodicity, we will begin by saying what a
recurrent state is, and then show [[in Theorem (1.24) below]] that recurrence is actually a
class property. In particular, in an irreducible Markov chain, either all states are recurrent
or all states are transient , which means “not recurrent.” Thus, if a chain is irreducible, we
can speak of the chain being either recurrent or transient.

The idea of recurrence is this: a state i is recurrent if, starting from the state i at time
0, the chain is sure to return to i eventually. More precisely, define the first hitting time Ti
of the state i by

Ti = inf{n > 0 : Xn = i},

and make the following definition.

(1.23) Definition. The state i is recurrent if Pi{Ti <∞} = 1. If i is not recurrent, it
is called transient .

The meaning of recurrence is this: state i is recurrent if, when the Markov chain is
started out in state i, the chain is certain to return to i at some finite future time. Observe
the difference in spirit between this and the definition of “accessible from” [[see the para-
graph containing (1.18)]], which requires only that it be possible for the chain to hit a state
j. In terms of the first hitting time notation, the definition of “accessible from” may be
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restated as follows: for distinct states i 6= j, we say that j is accessible from i if and only
if Pi{Tj <∞} > 0. [[Why did I bother to say “for distinct states i 6= j”?]]

Here is the promised result that implies that recurrence is a class property.

(1.24) Theorem. Let i be a recurrent state, and suppose that j is accessible from i. Then
in fact all of the following hold:

(i) Pi{Tj <∞} = 1;

(ii) Pj{Ti <∞} = 1;

(iii) The state j is recurrent.

Proof: The proof will be given somewhat informally; it can be rigorized. Suppose i 6= j,
since the result is trivial otherwise.

Firstly, let us observe that (iii) follows from (i) and (ii): clearly if (ii) holds [[that is,
starting from j the chain is certain to visit i eventually]] and (i) holds [[so that starting from
i the chain is certain to visit j eventually]], then (iii) must also hold [[since starting from j
the chain is certain to visit i, after which it will definitely get back to j]].

To prove (i), let us imagine starting the chain in state i, so thatX0 = i. With probability
one, the chain returns at some time Ti <∞ to i. For the same reason, continuing the chain
after time Ti, the chain is sure to return to i for a second time. In fact, by continuing this
argument we see that, with probability one, the chain returns to i infinitely many times.
Thus, we may visualize the path followed by the Markov chain as a succession of infinitely
many “cycles,” where a cycle is a portion of the path between two successive visits to i.
That is, we’ll say that the first cycle is the segment X1, . . . , XTi

of the path, the second cycle
starts with XTi+1 and continues up to and including the second return to i, and so on. The
behaviors of the chain in successive cycles are independent and have identical probabilistic
characteristics. In particular, letting In = 1 if the chain visits j sometime during the nth
cycle and In = 0 otherwise, we see that I1, I2, . . . is an iid sequence of Bernoulli trials. Let
p denote the common “success probability”

p = P{visit j in a cycle} = Pi

[
Ti⋃

k=1

{Xk = j}
]

for these trials. Clearly if p were 0, then with probability one the chain would not visit j
in any cycle, which would contradict the assumption that j is accessible from i. Therefore,
p > 0. Now observe that in such a sequence of iid Bernoulli trials with a positive success
probability, with probability one we will eventually observe a success. In fact,

Pi{chain does not visit j in the first n cycles} = (1− p)n → 0

as n → ∞. That is, with probability one, eventually there will be a cycle in which the
chain does visit j, so that (i) holds.

It is also easy to see that (ii) must hold. In fact, suppose to the contrary that Pj{Ti =
∞} > 0. Combining this with the hypothesis that j is accessible from i, we see that it is
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possible with positive probability for the chain to go from i to j in some finite amount of
time, and then, continuing from state j, never to return to i. But this contradicts the fact
that starting from i the chain must return to i infinitely many times with probability one.
Thus, (ii) holds, and we are done.

The “cycle” idea used in the previous proof is powerful and important; we will be using
it again.

The next theorem gives a useful equivalent condition for recurrence. The statement
uses the notation Ni for the total number of visits of the Markov chain to the state i, that
is,

Ni =

∞∑

n=0

I{Xn = i}.

(1.25) Theorem. The state i is recurrent if and only if Ei(Ni) =∞.

Proof: We already know that if i is recurrent, then

Pi{Ni =∞} = 1,

that is, starting from i, the chain visits i infinitely many times with probability one. But
of course the last display implies that Ei(Ni) = ∞. To prove the converse, suppose that
i is transient, so that q := Pi{Ti = ∞} > 0. Considering the sample path of the Markov
chain as a succession of “cycles” as in the proof of Theorem (1.24), we see that each cycle
has probability q of never ending, so that there are no more cycles, and no more visits to i.
In fact, a bit of thought shows that Ni, the total number of visits to i [[including the visit
at time 0]], has a geometric distribution with “success probability” q, and hence expected
value 1/q, which is finite, since q > 0.

(1.26) Corollary. If j is transient, then limn→∞ Pn(i, j) = 0 for all states i.

Proof: Supposing j is transient, we know that Ej(Nj) < ∞. Starting from an arbitrary
state i 6= j, we have

Ei(Nj) = Pi{Tj <∞}Ei(Nj | Tj <∞).

However, Ei(Nj | Tj < ∞) = Ej(Nj); this is clear intuitively since, starting from i, if the
Markov chain hits j at the finite time Tj , then it “probabilistically restarts” at time Tj .
[[Exercise: give a formal argument.]] Thus, Ei(Nj) ≤ Ej(Nj) < ∞, so that in fact we have
Ei(Nj) =

∑∞
n=1 P

n(i, j) <∞, which implies the conclusion of the Corollary.

(1.27) Example [“A drunk man will find his way home, but a drunk bird may
get lost forever,” or, recurrence and transience of random walks]. The
quotation is from Yale’s own professor Kakutani, as told by R. Durrett in his probability
book. We’ll consider a certain model of a random walk in d dimensions, and show that the
walk is recurrent if d = 1 or d = 2, and the walk is transient if d ≥ 3.
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In one dimension, our random walk is the “simple, symmetric” random walk on the inte-
gers, which takes steps of +1 and −1 with probability 1/2 each. That is, letting X1, X2, . . .
be iid taking the values ±1 with probability 1/2, we define the position of the random walk
at time n to be Sn = X1 + · · ·+Xn. What is a random walk in d dimensions? Here is what
we will take it to be: the position of such a random walk at time n is

Sn = (Sn(1), . . . , Sn(d)) ∈ Zd,

where the coordinates Sn(1), . . . , Sn(d) are independent simple, symmetric random walks in
Z. That is, to form a random walk in Zd, simply concatenate d independent one-dimensional
random walks into a d-dimensional vector process.

Thus, our random walk Sn may be written as Sn = X1 + · · · + Xn, where X1, X2, . . .
are iid taking on the 2d values (±1, . . . ,±1) with probability 2−d each. This might not be
the first model that would come to your mind. Another natural model would be to have
the random walk take a step by choosing one of the d coordinate directions at random
(probability 1/d each) and then taking a step of +1 or −1 with probability 1/2. That is,
the increments X1, X2, . . . would be iid taking the 2d values

(±1, 0, . . . , 0), (0,±1, . . . , 0), . . . , (0, 0, . . . ,±1)

with probability 1/2d each. This is indeed a popular model, and can be analyzed to reach
the conclusion “recurrent in d ≤ 2 and transient in d ≥ 3” as well. But the “concatenation of
d independent random walks” model we will consider is a bit simpler to analyze. Also, for all
you Brownian motion fans out there, our model is the random walk analog of d-dimensional
Brownian motion, which is a concatenation of d independent one-dimensional Brownian
motions.

We’ll start with d = 1. It is obvious that S0, S1, . . . is an irreducible Markov chain.
Since recurrence is a class property, to show that every state is recurrent it suffices to show
that the state 0 is recurrent. Thus, by Theorem (1.25) we want to show that

(1.28) E0(N0) =
∑

n

Pn(0, 0) =∞.

But Pn(0, 0) = 0 if n is odd, and for even n = 2m, say, P 2m(0, 0) is the probability that a
Binomial(2m, 1/2) takes the value m, or

P 2m(0, 0) =

(
2m

m

)
2−2m.

This can be closely approximated in a convenient form by using Stirling’s formula, which
says that

k! ∼
√

2πk (k/e)k,

where the notation “ak ∼ bk” means that ak/bk → 1 as k →∞. Applying Stirling’s formula
gives

P 2m(0, 0) =
(2m)!

(m!)222m
∼

√
2π(2m) (2m/e)2m

2πm(m/e)2m22m
=

1√
πm

.
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Thus, from the fact that
∑

(1/
√
m) = ∞ it follows that (1.28) holds, so that the random

walk is recurrent.
Now it’s easy to see what happens in higher dimensions. In d = 2 dimensions, for

example, again we have an irreducible Markov chain, so we may determine the recurrence
or transience of chain by determining whether the sum

(1.29)

∞∑

n=0

P(0,0){S2n = (0, 0)}

is infinite or finite, where S2n is the vector (S1
2n, S

2
2n), say. By the assumed independence

of the two components of the random walk, we have

P(0,0){S2m = (0, 0)} = P0{S1
2m = 0}P0{S2

2m = 0} ∼
(

1√
πm

)(
1√
πm

)
=

1

πm
,

so that (1.29) is infinite, and the random walk is again recurrent. However, in d = 3
dimensions, the analogous sum

∞∑

n=0

P(0,0,0){S2n = (0, 0, 0)}

is finite, since

P(0,0,0){S2m = (0, 0, 0)} = P0{S1
2m = 0}P0{S2

2m = 0}P0{S3
2m = 0} ∼

(
1√
πm

)3

,

so that in three [[or more]] dimensions the random walk is transient.
The calculations are simple once we know that in one dimension P0{S2m = 0} is of order

of magnitude 1/
√
m. In a sense it is not very satisfactory to get this by using Stirling’s for-

mula and having huge exponentially large titans in the numerator and denominator fighting
it out and killing each other off, leaving just a humble

√
m standing in the denominator

after the dust clears. In fact, it is easy to guess without any unnecessary violence or cal-
culation that the order of magnitude is 1/

√
m—note that the distribution of S2m, having

variance 2m, is “spread out” over a range of order
√
m, so that the probabilities of points

in that range should be of order 1/
√
m. Another way to see the answer is to use a Nor-

mal approximation to the binomial distribution. We approximate the Binomial(2m, 1/2)
distribution by the Normal distribution N(m,m/2), with the usual continuity correction:

P{Binomial(2m, 1/2) = m} ∼ P{m− 1/2 < N(m,m/2) < m+ 1/2}
= P{−(1/2)

√
2/m < N(0, 1) < (1/2)

√
2/m}

∼ φ(0)
√

2/m = (1/
√

2π)
√

2/m = 1/
√
πm.

Although this calculation does not follow as a direct consequence of the usual Central Limit
Theorem, it is an example of a “local Central Limit Theorem.”
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⊲ Do you feel that the 3-dimensional random walk we have considered was not the one you
would have naturally defined? Would you have considered a random walk that at each time
moved either North or South, or East or West, or Up or Down? Exercise [1.20] shows that
this random walk is also transient. The analysis is somewhat more complicated than that
for the 3-dimensional random walk we have just considered.

We’ll end this section with a discussion of the relationship between recurrence and the
existence of a stationary distribution. The results will be useful in the next section.

(1.30) Proposition. Suppose a Markov chain has a stationary distribution π. If the state
j is transient, then π(j) = 0.

Proof: Since π is stationary, we have πPn = π for all n, so that

(1.31)
∑

i

π(i)Pn(i, j) = π(j) for all n.

However, since j is transient, Corollary (1.26) says that limn→∞ Pn(i, j) = 0 for all i. Thus,
the left side of (1.31) approaches 0 as n approaches ∞, which implies that π(j) must be 0.

The last bit of reasoning about equation (1.31) may look a little strange, but in fact
π(i)Pn(i, j) = 0 for all i and n. In light of what we now know, this is easy to see. First, if
i is transient, then π(i) = 0. Otherwise, if i is recurrent, then Pn(i, j) = 0 for all n, since
if not, then j would be accessible from i, which would contradict the assumption that j is
transient.

(1.32) Corollary. If an irreducible Markov chain has a stationary distribution, then the
chain is recurrent.

Proof: Being irreducible, the chain must be either recurrent or transient. However, if the
chain were transient, then the previous Proposition would imply that π(j) = 0 for all j,
which would contradict the assumption that π is a probability distribution, and so must
sum to 1.

The previous Corollary says that for an irreducible Markov chain, the existence of a
stationary distribution implies recurrence. However, we know that the converse is not
true. That is, there are irreducible, recurrent Markov chains that do not have stationary
distributions. For example, we have seen that the simple symmetric random walk on
the integers in one dimension is irreducible and recurrent but does not have a stationary
distribution. This random walk is recurrent all right, but in a sense it is “just barely
recurrent.” That is, by recurrence we have P0{T0 <∞} = 1, for example, but we also have
E0(T0) =∞. The name for this kind of recurrence is null recurrence: the state i is null
recurrent if it is recurrent and Ei(Ti) =∞. Otherwise, a recurrent state is called positive
recurrent : the state i is positive recurrent if Ei(Ti) < ∞. A positive recurrent state i is
not just barely recurrent, it is recurrent by a comfortable margin—when started at i, we
have not only that Ti is finite almost surely, but also that Ti has finite expectation.
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Positive recurrence is in a sense the right notion to relate to the existence of a stationary
distibution. For now let me state just the facts, ma’am; these will be justified later. Positive
recurrence is also a class property, so that if a chain is irreducible, the chain is either
transient, null recurrent, or positive recurrent. It turns out that an irreducible chain has
a stationary distribution if and only if it is positive recurrent. That is, strengthening
“recurrence” to “positive recurrence” gives the converse to Corollary (1.32).

1.7 An aside on coupling

Coupling is a powerful technique in probability. It has a distinctly probabilistic flavor. That
is, using the coupling idea entails thinking probabilistically, as opposed to simply applying
analysis or algebra or some other area of mathematics. Many people like to prove assertions
using coupling and feel happy when they have done so—a probabilisitic assertion deserves
a probabilistic proof, and a good coupling proof can make obvious what might otherwise
be a mysterious statement. For example, we will prove the Basic Limit Theorem of Markov
chains using coupling. As I have said before, we could do it using matrix theory, but the
probabilist tends to find the coupling proof much more appealing, and I hope you do too.

It is a little hard to give a crisp definition of coupling, and different people vary in how
they use the word and what they feel it applies to. Let’s start by discussing a very simple
example of coupling, and then say something about what the common ideas are.

(1.33) Example [Connectivity of a random graph]. A graph is said to be connected
if for each pair of distinct nodes i and j there is a path from i to j that consists of edges of
the graph.

Consider a random graph on a given finite set of nodes, in which each pair of nodes
is joined by an edge independently with probability p. We could simulate, or “construct,”
such a random graph as follows: for each pair of nodes i < j, generate a random number
Uij ∼ U [0, 1], and join nodes i and j with an edge if Uij ≤ p. Here is a problem: show that
the probability of the resulting graph being connected is nondecreasing in p. That is, for
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p1 < p2, we want to show that

Pp1{graph connected} ≤ Pp2{graph connected}.

I would say that this is intuitively obvious, but we want to give an actual proof. Again,
the example is just meant to illustrate the idea of coupling, not to give an example that
can be solved only with coupling!

One way that one might approach this problem is to try to find an explicit expression
for the probability of being connected as a function of p. Then one would hope to show
that that function is increasing, perhaps by differentiating with respect to p and showing
that the derivative is nonnegative.

That is conceptually a straightforward approach, but you may become discouraged at
the first step—I don’t think there is an obvious way of writing down the probability the
graph is connected. Anyway, doesn’t it seem somehow very inefficient, or at least “overkill,”
to have to give a precise expression for the desired probability if all one desires is to show
the inituitively obvious monotonicity property? Wouldn’t you hope to give an argument
that somehow simply formalizes the intuition that we all have?

One nice way to show that probabilities are ordered is to show that the corresponding
events are ordered: if A ⊆ B then PA ≤ PB. So let’s make two events by making two
random graphs G1 and G2 on the same set of nodes. The graph G1 is constructed by having
each possible edge appear with probability p1. Similarly, for G2, each edge is present with
probability p2. We could do this by using two sets of U [0, 1] random variables: {Uij} for
G1 and {Vij} for G2. OK, so now we ask: is it true that

(1.34) {G1 connected} ⊆ {G2 connected}?

The answer is no; indeed, the random graphs G1 and G2 are independent, so that clearly

P{G1 connected, G2 not connected} = P{G1 connected}P{G2 not connected} > 0.

The problem is that we have used different, independent random numbers in constructing
the graphs G1 and G2, so that, for example, it is perfectly possible to have simultaneously
Uij ≤ p1 and Vij > p2 for all i < j, in which the graph G1 would be completely connected
and the graph G2 would be completely disconnected.

Here is a simple way to fix the argument: use the same random numbers in defining the
two graphs. That is, draw the edge (i, j) in graph G1 if Uij ≤ p1 and the edge (i, j) in graph
G2 if Uij ≤ p2. Now notice how the picture has changed: with the modified definitions it is
obvious that, if an edge (i, j) is in the graph G1, then that edge is also in G2. From this, it
is equally obvious that (1.34) now holds. This establishes the desired monotonicity of the
probability of being connected. Perfectly obvious, isn’t it?

So, what characterizes a coupling argument? In our example, we wanted to establish
a statement about two distributions: the distributions of random graphs with edge proba-
bilities p1 and p2. To do this, we showed how to “construct” [[i.e., simulate using uniform
random numbers!]] random objects having the desired distributions in such a way that the
desired conclusion became obvious. The trick was to make appropriate use of the same
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uniform random variables in constructing the two objects. I think this is a general feature
of coupling arguments: somewhere in there you will find the same set of random variables
used to construct two different objects about which one wishes to make some probabilistic
statement. The term “coupling” reflects the fact that the two objects are related in this
way.

⊲ Exercise [1.24] uses this type of coupling idea, proving a result for one process by comparing
it with another process.

1.8 Proof of the Basic Limit Theorem

The Basic Limit Theorem says that if an irreducible, aperiodic Markov chain has a station-
ary distribution π, then for each initial distribution π0, as n → ∞ we have πn(i) → π(i)
for all states i. Let me start by pointing something out, just in case the wording of the
statement strikes you as a bit strange. Why does the statement read “. . .a stationary dis-
tribution”? For example, what if the chain has two stationary distributions? The answer
is that this is impossible: the assumed conditions imply that a stationary distribution is in
fact unique. In fact, once we prove the Basic Limit Theorem, we will know this to be the
case. Clearly if the Basic Limit Theorem is true, an irreducible and aperodic Markov chain
cannot have two different stationary distributions π and π̃, since obviously πn(i) cannot
approach both π(i) and π̃(i) for all i.

An equivalent but conceptually useful reformulation is to define a distance between
probability distributions, and then to show that as n → ∞, the distance between the
distribution πn and the distribution π converges to 0. The notion of distance that we will
use is called “total variation distance.”

(1.35) Definition. Let λ and µ be two probability distributions on the set S. Then the
total variation distance ‖λ− µ‖ between λ and µ is defined by

‖λ− µ‖ = sup
A⊂S

[λ(A)− µ(A)].

(1.36) Proposition. The total variation distance ‖λ − µ‖ may also be expressed in the
alternative forms

‖λ− µ‖ = sup
A⊂S

|λ(A)− µ(A)| = 1

2

∑

i∈S

|λ(i)− µ(i)| = 1−
∑

i∈S

min{λ(i), µ(i)}.

⊲ The proof of this simple Proposition is Exercise [1.25].

Two probability distributions λ and µ assign probabilites to all possible events. The
total variation distance between λ and µ is the largest possible discrepancy between the
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probabilities assigned by λ and µ to any event. For example, let π7 denote the distribution
of the ordering of a deck of cards after 7 shuffles, and let π denote the uniform distribution
on all 52! permutations of the deck, which corresponds to the result of perfect shuffling
(or “shuffling infinitely many times”). Suppose, for illustration, that the total variation
distance ‖π7 − π‖ happens to be 0.17. This tells us that the probability of any event —
for example, the probability of winning any specified card game — using a deck shuffled
7 times differs by at most 0.17 from the probability of the same event using a perfectly
shuffled deck.

To introduce the coupling method, let Y0, Y1, . . . be a Markov chain with the same
probability transition matrix as X0, X1, . . ., but let Y0 have the distribution π; that is, we
start the Y chain off in the initial distribution π instead of the initial distribution π0 of the
X chain. Note that {Yn} is a stationary Markov chain, and, in particular, that Yn has the
distribution π for all n. Further let the Y chain be independent of the X chain.

Roughly speaking, we want to show that for large n, the probabilistic behavior of Xn

is close to that of Yn. The next result says that we can do this by showing that for large
n, the X and Y chains will have met with high probability by time n. Define the coupling
time T to be the first time at which Xn equals Yn:

T = inf{n : Xn = Yn},

where of course we define T =∞ if Xn 6= Yn for all n.

(1.37) Lemma [“The coupling inequality”]. For all n we have

‖πn − π‖ ≤ P{T > n}.

Proof: Define the process {Y ∗
n } by

Y ∗
n =

{
Yn if n < T

Xn if n ≥ T .

It is easy to see that {Y ∗
n } is a Markov chain, and it has the same probability transition

matrix P (i, j) as {Xn} has. [[To understand this, start by thinking of the X chain as a
frog carrying a table of random numbers jumping around in the state space. The frog uses
his table of iid uniform random numbers to generate his path as we described earlier in
the section about specifying and simulating Markov chains. He uses the first number in
his table together with his initial distribution π0 to determine X0, and then reads down
successive numbers in the table to determine the successive transitions on his path. The
Y frog does the same sort of thing, except he uses his own, different table of uniform
random numbers so he will be independent of the X frog, and he starts out with the initial
distribution π instead of π0. How about the Y ∗ frog? Is he also doing a Markov chain?
Well, is he choosing his transitions using uniform random numbers like the other frogs?
Yes, he is; the only difference is that he starts by using Y ’s table of random numbers (and
hence he follows Y ) until the coupling time T , after which he stops reading numbers from
Y ’s table and switches to X’s table. But big deal; he is still generating his path by using
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uniform random numbers in the way required to generate a Markov chain.]] The chain {Y ∗
n }

is stationary: Y ∗
0 ∼ π, since Y ∗

0 = Y0 and Y0 ∼ π. Thus, Y ∗
n ∼ π for all n. so that for A ⊆ S

we have

πn(A)− π(A) = P{Xn ∈ A} − P{Y ∗
n ∈ A}

= P{Xn ∈ A, T ≤ n}+ P{Xn ∈ A, T > n}
−P{Y ∗

n ∈ A, T ≤ n} − P{Y ∗
n ∈ A, T > n}.

However, on the event {T ≤ n}, we have Y ∗
n = Xn, so that the two events {Xn ∈ A, T ≤ n}

and {Y ∗
n ∈ A, T ≤ n} are the same, and hence they have the same probability. Therefore,

the first and third terms in the last expression cancel, yielding

πn(A)− π(A) = P{Xn ∈ A, T > n} − P{Y ∗
n ∈ A, T > n}.

Since the last difference is obviously bounded by P{T > n}, we are done.

Note the significance of the coupling inequality: it reduces the problem of showing that
‖πn − π‖ → 0 to that of showing that P{T > n} → 0, or equivalently, that P{T <∞} = 1.
To do this, we consider the “bivariate chain” {Zn = (Xn, Yn) : n ≥ 0}. A bit of thought
confirms that Z0, Z1, . . . is a Markov chain on the state space S × S. Since the X and Y
chains are independent, the probability transition matrix PZ of the Z chain can be written
as

PZ(ixiy, jxjy) = P (ix, jx)P (iy, jy).

It is easy to check that the Z chain has stationary distribution

πZ(ixiy) = π(ix)π(iy).

Watch closely now; we’re about to make an important reduction of the problem. Recall
that we want to show that P{T <∞} = 1. Stated in terms of the Z chain, we want to show
that with probability one, the Z chain hits the “diagonal” {(j, j) : j ∈ S} in S× S in finite
time. To do this, it is sufficient to show that the Z chain is irreducible and recurrent [[why?]].
However, since we know that the Z chain has a stationary distribution, by Corollary (1.32),
to prove the Basic Limit Theorem, it suffices to show that the Z chain is irreducible.

This is, strangely‡, the hard part. This is where the aperiodicity assumption comes in.
For example, consider a Markov chain {Xn} having the “type A frog” transition matrix

P =

(
0 1
1 0

)
started out in the condition X0 = 0. Then the stationary chain {Yn} starts

out in the uniform distribution: probability 1/2 on each state 0,1. The bivariate chain
{(Xn, Yn)} is not irreducible: for example, from the state (0, 0), we clearly cannot reach
the state (0, 1). And this ruins everything. For example, if Y0 = 1, which happens with
probability 1/2, the X and Y chains can never meet, so that T =∞. Thus, P{T <∞} < 1.

‡Or maybe not so strangely, in view of Exercise [1.17].
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A little number-theoretic result will help us establish irreducibility of the Z chain.

(1.38) Lemma. Suppose A is a set of positive integers that is closed under addition and
has greatest common divisor (gcd) one. Then there exists an integer N such that n ∈ A for
all n ≥ N .

Proof: First we claim that A contains at least one pair of consecutive integers. To see
this, suppose to the contrary that the minimal “spacing” between successive elements of
A is s > 1. That is, any two distinct elements of A differ by at least s, and there exists
an integer n1 such that both n1 ∈ A and n1 + s ∈ A. Let m ∈ A be such that s does not
divide m; we know that such an m exists because gcd(A) = 1. Write m = qs + r, where
0 < r < s. Now observe that, by the closure under addition assumption, the two numbers
a1 = (q+1)(n1 +s) and a2 = (q+1)n1 +m are both in A. However, a1−a2 = s−r ∈ (0, s),
which contradicts the definition of s. This proves the claim.

Thus, A contains two consecutive integers, say, c and c+1. Now we will finish the proof
by showing that n ∈ A for all n ≥ c2. If c = 0 this is trivially true, so assume that c > 0.
We have, by closure under addition,

c2 = (c)(c) ∈ A
c2 + 1 = (c− 1)c+ (c+ 1) ∈ A

...

c2 + c− 1 = c+ (c− 1)(c+ 1) ∈ A.

Thus, {c2, c2 + 1, . . . , c2 + c− 1}, a set of c consecutive integers, is a subset of A. Now we
can add c to all of these numbers to show that the next set {c2 +c, c2 +c+1, . . . , c2 +2c−1}
of c integers is also a subset of A. Repeating this argument, clearly all integers c2 or above
are in A.

Let i ∈ S, and retain the assumption that the chain is aperiodic. Then since the set
{n : Pn(i, i) > 0} is clearly closed under addition, and, by the aperiodicity assumption,
has greatest common divisor 1, the previous lemma applies to give that Pn(i, i) > 0 for all
sufficiently large n. From this, for any i, j ∈ S, since irreducibility implies that Pm(i, j) > 0
for some m, it follows that Pn(i, j) > 0 for all sufficiently large n.

Now we complete the proof of the Basic Limit Theorem by showing that the chain {Zn}
is irreducible. Let ix, iy, jx, jy ∈ S. It is sufficient to show, in the bivariate chain {Zn}, that
(jxjy) is accessible from (ixiy). To do this, it is sufficient to show that PnZ (ixiy, jxjy) > 0
for some n. However, by the assumed independence of {Xn} and {Yn},

PnZ (ixiy, jxjy) = Pn(ix, jx)P
n(iy, jy),

which, by the previous paragraph, is positive for all sufficiently large n. Of course, this
implies the desired result, and we are done.

⊲ Exercises [1.27] and [1.28] give you a chance to think about the coupling idea used in this
proof.
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1.9 A SLLN for Markov chains

The usual Strong Law of Large Numbers for independent and identically distributed
(iid) random variables says that if X1, X2, . . . are iid with mean µ, then the average
(1/n)

∑n
t=1Xt converges to µ with probability 1 as n→∞.

Some fine print: It is possible to have µ = +∞, and the SLLN still holds. For example, supposing that
the random variables Xt take their values in the set of nonnegative integers {0, 1, 2, . . .}, the mean is
defined to be µ =

P∞
k=0 kP{X0 = k}. This sum could diverge, in which case we define µ to be +∞,

and we have (1/n)
Pn

t=1Xt → ∞ with probability 1.

For example, if X0, X1, . . . are iid with values in the set S, then the SLLN tells us that

(1/n)

n∑

t=1

I{Xt = i} → P{X0 = i}

with probability 1 as n→∞. That is, the fraction of times that the iid process takes the
value i in the first n observations converges to P{X0 = i}, the probability that any given
observation is i.

We will do a generalization of this result for Markov chains. This law of large numbers
will tell us that the fraction of times that a Markov chain occupies state i converges to a
limit.

It is possible to view this result as a consequence of a more general and rather advanced
ergodic theorem (see, for example, Durrett’s Probability: Theory and Examples). However,
I do not want to assume prior knowledge of ergodic theory. Also, the result for Markov
chains is quite simple to derive as a consequence of the ordinary law of large numbers for iid
random variables. Although the successive states of a Markov chain are not independent, of
course, we have seen that certain features of a Markov chain are independent of each other.
Here we will use the idea that the path of the chain consists of a succession of independent
“cycles,” the segments of the path between successive visits to a recurrent state. This
independence makes the treatment of Markov chains simpler than the general treatment of
stationary processes, and it allows us to apply the law of large numbers that we already
know.

(1.39) Theorem. Let X0, X1, . . . be a Markov chain starting in the state X0 = i, and
suppose that the state i communicates with another state j. The limiting fraction of time
that the chain spends in state j is 1/EjTj. That is,

Pi

{
lim
n→∞

1

n

n∑

t=1

I{Xt = j} =
1

EjTj

}
= 1.

Proof: The result is easy if the state j is transient, since in that case EjTj =∞ and (with
probability 1) the chain visits j only finitely many times, so that

lim
n→∞

1

n

n∑

t=1

I{Xt = j} = 0 =
1

EjTj
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with probability 1. So we assume that j is recurrent. We will also begin by proving the
result in the case i = j; the general case will be an easy consequence of this special case.
Again we will think of the Markov chain path as a succession of cycles, where a cycle is a
segment of the path that lies between successive visits to j. The cycle lengths C1, C2, . . .
are iid and distributed as Tj ; here we have already made use of the assumption that we are
starting at the state X0 = j. Define Sk = C1 + · · · + Ck and let Vn(j) denote the number
of visits to state j made by X1, . . . , Xn, that is,

Vn(j) =
n∑

t=1

{Xt = j}.

A bit of thought [[see also the picture below]] shows that Vn(j) is also the number of cycles
completed up to time n, that is,

Vn(j) = max{k : Sk ≤ n}.

To ease the notation, let Vn denote Vn(j). Notice that

SVn
≤ n < SVn+1,

and divide by Vn to obtain
SVn

Vn
≤ n

Vn
<
SVn+1

Vn
.

Since j is recurrent, Vn → ∞ with probability one as n → ∞. Thus, by the ordinary
Strong Law of Large Numbers for iid random variables, we have both

SVn

Vn
→ Ej(Tj)
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and
SVn+1

Vn
=

(
SVn+1

Vn + 1

)(
Vn + 1

Vn

)
→ Ej(Tj)× 1 = Ej(Tj)

with probability one. Note that the last two displays hold whether Ej(Tj) is finite or infinite.
Thus, n/Vn → Ej(Tj) with probability one, so that

Vn
n
→ 1

EjTj

with probability one, which is what we wanted to show.
Next, to treat the general case where i may be different from j, note that Pi{Tj <∞} =

1 by Theorem 1.24. Thus, with probability one, a path starting from i behaves as follows.
It starts by going from i to j in some finite number Tj of steps, and then proceeds on from
state j in such a way that the long run fraction of time that Xt = j for t ≥ Tj approaches
1/Ej(Tj). But clearly the long run fraction of time the chain is at j is not affected by the
behavior of the chain on the finite segment X0, . . . , XTj−1. So with probability one, the

long run fraction of time that Xn = j for n ≥ 0 must approach 1/Ej(Tj).

The following result follows directly from Theorem (1.39) by the Bounded Convergence
Theorem from the Appendix. [[That is, we are using the following fact: if Zn → c with
probability one as n→∞ and the random variables Zn all take values in the same bounded
interval, then we also have E(Zn)→ c. To apply this in our situation, note that we have

Zn :=
1

n

n∑

t=1

I{Xt = j} → 1

EjTj

with probability one as n → ∞, and also each Zn lies in the interval [0,1]. Finally, use
the fact that the expectation of an indicator random variable is just the probability of the
corresponding event.]]

(1.40) Corollary. For an irreducible Markov chain, we have

lim
n→∞

1

n

n∑

t=1

P t(i, j) =
1

Ej(Tj)

for all states i and j.

There’s something suggestive here. Consider for the moment an irreducible, aperiodic
Markov chain having a stationary distribution π. From the Basic Limit Theorem, we know
that, Pn(i, j)→ π(j) as n→∞. However, it is a simple fact that if a sequence of numbers
converges to a limit, then the sequence of “Cesaro averages” converges to the same limit;
that is, if at → a as t→∞, then (1/n)

∑n
t=1 at → a as n→∞. Thus, the Cesaro averages

of Pn(i, j) must converge to π(j). However, the previous Corollary shows that the Cesaro
averages converge to 1/Ej(Tj). Thus, it follows that

π(j) =
1

Ej(Tj)
.
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It turns out that the aperiodicity assumption is not needed for this last conclusion; we’ll
see this in the next result. Incidentally, we could have proved this result much earlier; for
example we don’t need the Basic Limit Theorem in the development.

(1.41) Theorem. An irreducible, positive recurrent Markov chain has a unique stationary
distribution π given by

π(j) =
1

Ej(Tj)
.

Proof: For the uniqueness, let π be a stationary distribution. We start with the relation

∑

i

π(i)P t(i, j) = π(j),

which holds for all t. Averaging this over values of t from 1 to n gives

∑

i

π(i)
1

n

n∑

t=1

P t(i, j) = π(j).

By Corollary 1.40 [[and the Dominated Convergence Theorem]], the left side of the last
equation approaches

∑

i

π(i)
1

Ej(Tj)
=

1

Ej(Tj)

as n→∞. Thus, π(j) = 1/Ej(Tj), which establishes the uniqueness assertion.

We begin the proof of existence by doing the proof in the special case where the state
space is finite. The proof is simpler here than in the general case, which involves some
distracting technicalities.

So assume for the moment that the state space is finite. We begin again with Corollary
1.40, which says that

(1.42)
1

n

n∑

t=1

P t(i, j)→ 1

Ej(Tj)
.

However, the sum over all j of the left side of (1.42) is 1, for all n. Therefore,

∑

j

1

Ej(Tj)
= 1.

That’s good, since we want our claimed stationary distribution to be a probability distri-
bution.

Next we write out the matrix equation P tP = P t+1 as follows:

(1.43)
∑

k

P t(i, k)P (k, j) = P t+1(i, j).
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Averaging this over t = 1, . . . , n gives

∑

k

[
1

n

n∑

t=1

P t(i, k)

]
P (k, j) =

1

n

n∑

t=1

P t+1(i, j).

Taking the limit as n→∞ of the last equation and using (1.42) again gives

∑

k

(
1

EkTk

)
P (k, j) =

1

EjTj
.

Thus, our claimed stationary distribution is indeed stationary.
Finally, let’s see how to handle the infinite state space case. Let A ⊂ S be a finite subset

of the state space. Summing (1.42) over j ∈ A gives the inequality

∑

j∈A

1

Ej(Tj)
≤ 1.

Therefore, since this is true for all subsets A, we get

∑

j∈S

1

Ej(Tj)
=: C ≤ 1.

By the assumption of positive recurrence, we have C > 0; in a moment we’ll see that C = 1.
The same sort of treatment of (1.43) [[i.e., sum over k ∈ A, average over t = 1, . . . , n, let
n→∞, and then take supremum over subsets A of S]] gives the inequality

(1.44)
∑

k

(
1

EkTk

)
P (k, j) ≤ 1

EjTj
.

However, the sum over all j of the left side of (1.44) is

∑

k

(
1

EkTk

) ∑

j

P (k, j) =
∑

k

(
1

EkTk

)
,

which is the same as the sum of the right side of (1.44). Thus, the left and right sides of
(1.44) must be the same for all j. From this we may conclude that the distribution

π̃(j) =
1

C

(
1

Ej(Tj)

)

is stationary, so that, in particular, we know that our chain does have a stationary distri-
bution. Thus, by the uniqueness assertion we proved above, we must have C = 1, and we
are done.

⊲ You might like to try Exercise [1.29] at this point. I hope you can play chess.
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1.10 Exercises

[1.1] Let X0, X1, . . . be a Markov chain, and let A and B be subsets of the state space.

(a) Is it true that P{X2 ∈ B | X1 = x1, X0 ∈ A} = P{X2 ∈ B | X1 = x1}? Give a proof
or counterexample.

(b) Is it true that P{X2 ∈ B | X1 ∈ A,X0 = x0} = P{X2 ∈ B | X1 ∈ A}? Give a proof or
counterexample.

[[The moral: be careful about what the Markov property says!]]

[1.2] LetX0, X1, . . . be a Markov chain on the state space {−1, 0, 1}, and suppose that P (i, j) > 0
for all i, j. What is a necessary and sufficient condition for the sequence of absolute values
|X0|, |X1|, . . . to be a Markov chain?

⊲ Exercise [1.3] uses a basic and important technique: conditioning on what happens in the
first step of the chain. And then in Exercise [1.4] you get to use this to do something
interesting.

[1.3] Let {Xn} be a finite-state Markov chain and let A be a subset of the state space. Suppose
we want to determine the expected time until the chain enters the set A, starting from an
arbitrary initial state. That is, letting τA = inf{n ≥ 0 : Xn ∈ A} denote the first time to
hit A [[defined to be 0 if X0 ∈ A]], we want to determine Ei(τA). Show that

Ei(τA) = 1 +
∑

k

P (i, k)Ek(τA)

for i /∈ A.

[1.4] You are tossing a coin repeatedly. Which pattern would you expect to see faster: HH or
HT? For example, if you get the sequence TTHHHTH..., then you see “HH” at the 4th
toss and “HT” at the 6th. Letting N1 and N2 denote the times required to see “HH” and
“HT”, respectively, can you guess intuitively whether E(N1) is smaller than, the same as,
or larger than E(N2)? Go ahead, make a guess [[and my day]]. Why don’t you also simulate
some to see how the answer looks; I recommend a computer, but if you like tossing real
coins, enjoy yourself by all means. Finally, you can use the reasoning of the Exercise [1.3]
to solve the problem and evaluate E(Ni). A hint is to set up a Markov chain having the 4
states HH, HT, TH, and TT.

[1.5] Here is a chance to practice formalizing some typical “intuitively obvious” statements. Let
X0, X1, . . . be a finite-state Markov chain.

a. We start with an observation about conditional probabilities that will be a useful tool
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throughout the rest of this problem. Let F1, . . . , Fm be disjoint events. Show that if
P(E|Fi) = p for all i = 1, . . . ,m then P(E | ⋃m

i=1 Fi) = p.

b. Show that

P{Xn+1 ∈ A1, . . . , Xn+r ∈ Ar | Xn = j,Xn−1 ∈ Bn−1, . . . , X0 ∈ B0}
= Pj{Xn+1 ∈ A1, . . . , Xn+r ∈ Ar}.

c. Recall the definition of hitting times: Ti = inf{n > 0 : Xn = i}. Show that Pi{Ti =
n + m | Tj = n, Ti > n} = Pj{Ti = m}, and conclude that Pi{Ti = Tj + m | Tj <
∞, Ti > Tj} = Pj{Ti = m}. This is one manifestation of the statement that the
Markov chain “probabilistically restarts” after it hits j.

d. Show that Pi{Ti < ∞ | Tj < ∞, Ti > Tj} = Pj{Ti < ∞}. Use this to show that if
Pi{Tj <∞} = 1 and Pj{Ti <∞} = 1, then Pi{Ti <∞} = 1.

e. Let i be a recurrent state and let j 6= i. Recall the idea of “cycles,” the segments
of the path between successive visits to i. For simplicity let’s just look at the first
two cycles. Formulate and prove an assertion to the effect that whether or not the
chain visits state j during the first and second cycles can be described by iid Bernoulli
random variables.

[1.6] [[A moving average process]] Moving average models are used frequently in time series anal-
ysis, economics and engineering. For these models, one assumes that there is an underlying,
unobserved process . . . , Y−1, Y0, Y1, . . . of iid random variables. A moving average pro-
cess takes an average (possibly a weighted average) of these iid random variables in a
“sliding window.” For example, suppose that at time n we simply take the average of
the Yn and Yn−1, defining Xn = (1/2)(Yn + Yn−1). Our goal is to show that the process
X0, X1, . . . defined in this way is not Markov. As a simple example, suppose that the
distribution of the iid Y random variables is P{Yi = 1} = 1/2 = P{Yi = −1}.

(a) Show that X0, X1, . . . is not a Markov chain.

(b) Show that X0, X1, . . . is not an rth order Markov chain for any finite r.

[1.7] Let Pn(i, j) denote the (i, j) element in the matrix Pn, the nth power of P . Show that
Pn(i, j) = P{Xn = j | X0 = i}. Ideally, you should get quite confused about what is being
asked, and then straighten it all out.

[1.8] Consider a Markov chain on the integers with

P (i, i+ 1) = .4 and P (i, i− 1) = .6 for i > 0,

P (i, i+ 1) = .6 and P (i, i− 1) = .4 for i < 0,

P (0, 1) = P (0,−1) = 1/2.

This is a chain with infinitely many states, but it has a sort of probabilistic “restoring force”
that always pushes back toward 0. Find the stationary distribution.
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[1.9] Recall the definition the Ehrenfest chain from Example (1.13).

(a) What is the stationary distribution? You might want to solve the problem for a few
small values of d. You should notice a pattern, and come up with a familiar answer.

(b) Can you explain without calculation why this distribution is stationary? That is,
supposing you start the Ehrenfest chain at time 0 by choosing a state according to the
distribution that you claim is stationary, you should argue without calculation that
the state at time 1 should also have this same distribution.

[1.10] On page 13 we argued that a limiting distribution must be stationary. This argument was
clear in the case of a finite state space. For you fans of mathematical analysis, what happens
in the case of a countably infinite state space? Can you still make the limiting argument
work?

[1.11] Consider a partition of the state space S of a Markov chain into two complementary subsets
A andAc. Suppose the Markov chain has stationary distribution π. Show that flux(A,Ac) =
flux(Ac, A). As a hint, here is an outline of steps you might follow.

(i) Show that the flux function has the following sort of linearity properties: If B and C
are disjoint,

flux(A,B ∪ C) = flux(A,B) + flux(A,C)

flux(B ∪ C,A) = flux(B,A) + flux(C,A)

(ii) Show that flux(S, {k}) = flux({k}, S) for all singleton sets {k}.
(iii) Using the first two steps, show that flux(S, A) = flux(A, S).

(iv) By subtracting a certain flux quantity from both sides, conclude that flux(A,Ac) =
flux(Ac, A).

[1.12] Show by example that for general subsets A and B, the equality flux(A,B) = flux(B,A)
does not necessarily hold.

[1.13] Use Exercise [1.11] to re-do Exercise [1.9], by writing the equations produced by (1.15) with
the choice A = {0, 1, . . . , i} for various i. The calculation should be easier.

[1.14] [[Renewal theory, the residual, and length-biased sampling]] Let X1, X2, . . . be iid taking
values in {1, . . . , d}. You might, for example, think of these random variables as lifetimes
of light bulbs. Define Sk = X1 + · · · + Xk, τ(n) = inf{k : Sk ≥ n}, and Rn = Sτ(n) − n.
Then Rn is called the residual lifetime at time n. This is the amount of lifetime remaining
in the light bulb that is in operation at time n.

(a) The sequence R0, R1, . . . is a Markov chain. What is its transition matrix? What is
the stationary distribution?

Stochastic Processes J. Chang, February 2, 2007



1.10. EXERCISES Page 39

(b) Define the total lifetime Ln at time n by Ln = Xτ(n). This is the total lifetime of the
light bulb in operation at time n. Show that L0, L1, . . . is not a Markov chain. But Ln
still has a limiting distribution, and we’d like to find it. We’ll do this by constructing
a Markov chain by enlarging the state space and considering the sequence of random
vectors (R0, L0), (R1, L1), . . .. This sequence does form a Markov chain. What is its
probability transition function and stationary distribution? Now, assuming the Basic
Limit Theorem applies here, what is the limiting distribution of Ln as n→∞? This
is the famous “length-biased sampling” distribution.

[1.15] Show that the relation “communicates with” is an equivalence relation. That is, show that
the “communicates with” relation is reflexive, symmetric, and transitive.

[1.16] Show that if an irreducible Markov chain has a state i such that P (i, i) > 0, then the chain
is aperiodic. Also show by example that this sufficient condition is not necessary.

[1.17] [[Generating a random 4 × 4 table of numbers satisfying given restrictions]] Show that if
we run the process described in Example (1.22) for a sufficiently long time, then we will
end up with a random table having probability distribution arbitrarily close to the desired
distribution (that is, uniform on S). In order to do this, you need to demonstrate that the
conditions of the Basic Limit Theorem are satisfied in this example, by showing that

(a) The procedure generates a Markov chain whose state space is S,

(b) that Markov chain is irreducible,

(c) that Markov chain is aperiodic, and

(d) that Markov chain has the desired distribution as its stationary distribution.

[1.18] [[More on 4 × 4 tables]] Refer to the description of the Markov chain in Example (1.22).
Imagine that we have already chosen a random pair of rows {i1, i2} and a random pair of
columns {j1, j2}. The Markov chain described in Example (1.22) takes very small steps,
adding ±1 to ai1j1 and ai2j2 , and subtracting ±1 from ai1j2 and ai2j1 , when doing so
produces no negative entries. We could make larger changes by choosing uniformly from
all possible modifications of the form: add m to ai1j1 and ai2j2 , and subtract m from ai1j2
and ai2j1 , where m is any integer that does not cause any table entries to become negative.
Describe in a more explicit way (explicit enough to make it clear how to write a computer
program to do this) how to run this Markov chain. Show that the Basic Limit Theorem
applies here to guarantee convergence to the uniform distribution on S. If you feel inspired
and/or your instructor asks you to do so, simulate this chain in our example and show the
world some random tables from S.

[1.19] [[A computing project: Approximate counting]] In Example (1.22), we don’t know the
cardinality of the state space, #(S). How many such tables are there? About a million? A
billion? A trillion? Hey, we don’t even know approximately how many digits the cardinality
has! In some problems there is a nice connection between being able to generate a nearly
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uniformly distributed element of a set and the problem of approximating the number of
elements in the set. You can try the idea out in the setting of Example (1.22). This is stated
in a somewhat open-ended way; there are many variations in how you might approach this,
some more or less efficient that the others, and there will be lots of details to work out. The
basic idea of the connection between random generation and approximate counting is use
the approximate uniform generation to reduce the original approximate counting problem
recursively to smaller and smaller counting problems. For example, suppose we knew the
fraction, f11, of elements of S that have a “68” as their (1,1) [[upper left-hand corner]] entry.
Then we have reduced the problem to counting a smaller set, namely, the subset S11 = {a ∈
S : a11 = 68} of S meeting this additional restriction, because #(S) = #(S11)/f11. How do
we estimate f11? Well, f11 is the probability of a uniformly distributed A ∈ S satisfying the
extra restriction A11 = 68. Now you see where the uniform generation comes in: you can
estimate f11 by generating many nearly uniformly distributed tables from S and taking the
fraction of those that have “68” in their upper left corner. The same idea may be applied
recursively in this example. Estimating #(S11) involves adding an extra restriction, say on
the (1, 2) entry of the table, which defines a further subset S11,12 of S11. Estimating the
fraction #(S11,12)/#(S11) involves running a Markov chain in the smaller state space S11.
And so on.

Note: as a practical matter and to preserve your sanity, before applying your methodology
to the original large problem, it’s a good idea to test it on some much smaller version of
the problem (smaller than a 4× 4 table) where you know the answer.

[1.20] [[The other 3-dimensional random walk]] Consider a random walk on the 3-dimensional
integer lattice; at each time the random walk moves with equal probability to one of the 6
nearest neighbors, adding or subtracting 1 in just one of the three coordinates. Show that
this random walk is transient.

Hint: You want to show that some series converges. An upper bound on the terms will be
enough. How big is the largest probability in the Multinomial(n; 1/3, 1/3, 1/3) distribution?

⊲ Here are three additional problems about a simple symmetric random walk {Sn} in one
dimension starting from S0 = 0 at time 0.

[1.21] Let a and b be integers with a < 0 < b. Defining the hitting times τc = inf{n ≥ 0 : Sn = c},
show that the probability P{τb < τa} is given by (0− a)/(b− a).

[1.22] Let S0, S1, . . . be a simple, symmetric random walk in one dimension as we have discussed,
with S0 = 0. Show that

P{S1 6= 0, . . . , S2n 6= 0} = P{S2n = 0}.

Now you can do a calculation that explains why the expected time to return to 0 is infinite.
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[1.23] As in the previous exercise, consider a simple, symmetric random walk started out at 0.
Letting k 6= 0 be any fixed state, show that the expected number of times the random walk
visits state k before returning to state 0 is 1.

[1.24] Consider a Markov Chain on the nonnegative integers S = {0, 1, 2, . . .}. Defining P (i, i +
1) = pi and P (i, i − 1) = qi, assume that pi + qi = 1 for all i ∈ S, and also p0 = 1, and
0 < pi ≤ 1/2 for all i ≥ 1. Use what you know about the simple, symmetric random walk
to show that the given Markov chain is recurrent.

[1.25] Prove Proposition (1.36).

[1.26] Let π0 and ρ0 be probability mass functions on S, and define π1 = π0P and ρ1 = ρ0P ,
where P is a probability transition matrix. Show that ‖π1 − ρ1‖ ≤ ‖π0 − ρ0‖. That is, in
terms of total variation distance, π1 and ρ1 are closer to each other than π0 and ρ0 were.

[1.27] Here is a little practice with the coupling idea as used in the proof of the Basic Limit
Theorem. Consider a Markov chain {Xn} having probability transition matrix

P =




1/2 1/4 1/4
1/4 1/2 1/4
1/4 1/4 1/2



 .

Note that {Xn} has stationary distribution π = (1/3, 1/3, 1/3). Using the kind of coupling
we did in the proof of the Basic Limit Theorem, show that, no matter what the initial
distribution π0 of X0 is, we have

‖πn − π‖ ≤
2

3

(
11

16

)n

for all n.

[1.28] Do you think the bound you just derived in Exercise [1.27] is a good one? In particular, is
11/16 the smallest we can get, or can we do better? What is the actual rate of geometric
decrease of ‖πn − π‖? You could think about this in your head, investigate numerically by
matrix multiplication, or both.

[[Hint about coupling: Try to think of a more “aggressive” coupling to get a better bound
What does this mean? The coupling we used in the proof of the Basic Limit Theorem was
not very aggressive, in that it let the two chains evolve independently until they happened
to meet, and only then started to use the same uniform random numbers to generate
the paths. No attempt was made to get the chains together as fast as possible. A more
aggressive coupling would somehow make use of some random numbers in common to both
chains in generating their paths right from the beginning.]]

[1.29] Consider a knight sitting on the lower left corner square of an ordinary 8× 8 chess board.
The knight has residual frog-like tendencies, left over from an old spell an older witch cast
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upon him. So he performs a random walk on the chess board, at each time choosing a
random move uniformly distributed over the set of his possible knight moves. What is the
expected time until he first returns to the lower left corner square?

[1.30] Recall the definition of positive recurrence on page 24. Show that positive recurrence is a
class property.

[1.31] Suppose a Markov chain has a stationary distribution π and the state j is null recurrent.
Show that π(j) = 0.

[1.32] [[Birth-collapse chain]] Consider a Markov chain on S = {0, 1, 2, . . .} having P (i, i+1) = pi,
P (i, 0) = 1− pi for all i, with p0 = 1 and 0 < pi < 1 for all i > 0. Show that

(i) The chain is recurrent if and only if limn→∞
∏n
i=1 pi = 0. [[This, in turn, is equivalent

to the condition
∑∞

i=1(1 − pi) = ∞. (This was just for interest; not a problem or a
hint.)]]

(ii) The chain is positive recurrent if and only if
∑∞

n=1

∏n
i=1 pi <∞.

(iii) What is the stationary distribution if pi = 1/(i+ 1)?

[1.33] Consider an irreducible Markov chain {X0, X1, . . .} on a state space having n < ∞
states. Let π denote the stationary distribution of the chain, and suppose X0 is dis-
tributed according to π. Define τ to be the first return time to the initial state, that
is, τ = inf{k > 0 : Xk = X0}. What is the expectation of τ?
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2. More on Markov chains,
Examples and Applications

Section 1. Branching processes.
Section 2. Time reversibility.
Section 3. Application of time reversibility: a tandem queue
model.
Section 4. The Metropolis method.
Section 5. Simulated annealing.
Section 6. Ergodicity concepts for time-inhomogeneous Markov
chains.
Section 7. Proof of the main theorem of simulated annealing.
Section 8. Card shuffling: speed of convergence to stationarity.

2.1 Branching Processes

The branching process model we will study was formulated in 1873 by Sir Francis Galton,∗

who was interested in the survival and extinction of family names. Suppose children inherit
their fathers’ names, so we need only keep track of fathers and sons. Consider a male who
is the only member of his generation to have a given family name, so that the responsibility
of keeping the family name alive falls upon him—if his line of male descendants terminates,
so does the family name. Suppose for simplicity that each male has probability f(0) of
producing no sons, f(1) of producing one son, and so on. Here is a question: What is the
probability that the family name eventually becomes extinct?

Galton brought the problem to his mathematician friend, Rev. H. W. Watson, who
devised the method of analysis using probability generating functions that is still used
today. However, a minor mathematical slip caused Galton and Watson to get the answer
to the main question wrong. They believed that the extinction probability is 1 — all names
are doomed to eventual extinction. We will see below that this is false: if the expected
number of sons is greater than 1, the branching process model produces lines of descent
that have positive probability of going on forever.

Let us begin with a more formal description of the branching process. Thinking of
Gt as the number of males in generation t, start with G0 = 1. If Gt = i then write
Gt+1 = Xt1 +Xt2 + · · ·+Xti; here Xtj denotes the number of sons fathered by the jth man
in generation t. Assume the random variables {Xtj : t ≥ 0, j ≥ 1} are iid with probability
mass function f , so that P{Xtj = k} = f(k) for k = 0, 1, . . .. To avoid trivial cases we

∗See Jagers (1975) and Guttorp (1991) for more on the history.
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assume that f(0) > 0 and f(0) + f(1) < 1. [[Why are these trivial?]] We are interested in
the extinction probability ρ = P1{Gt = 0 for some t}.

It is clear from the verbal description of the process that {Gt : t ≥ 0} is a Markov
chain. We can say a few interesting things about the process directly from general results
of the previous chapter. Clearly state 0 is absorbing. Therefore, for each i > 0, since
Pi{G1 = 0} = (f(0))i > 0, the state i must be transient—this follows from Theorem (1.24).
Consequently, we know that with probability 1, each state i > 0 is visited only a finite
number of times. From this, a bit of thought shows that, with probability 1, the chain
must either get absorbed at 0 eventually or approach∞. [[Exercise: Think a bit and show
this.]]

We can obtain an equation for ρ by the idea we have used before a number of times—e.g.
see exercise ([1.3])—namely, conditioning on what happens at the first step of the chain.
This gives

ρ =
∞∑

k=0

P{G1 = k | G0 = 1}P{eventual extinction | G1 = k}.

Evidently, since the males all have sons independently (in the terminology above, the ran-
dom variables Xtj are independent), we have P{eventual extinction | G1 = k} = ρk. This
holds because the event of eventual extinction, given G1 = k, requires each of the k male
lines starting at time 1 to reach eventual extinction; this is the intersection of k independent
events, each of which has probability ρ. Thus, ρ satisfies

(2.1) ρ =
∞∑

k=0

f(k)ρk =: ψ(ρ).

The last sum is a function of ρ; for each distribution f there is a corresponding function of
ρ, which we have denoted by ψ. So ρ satisfies ψ(ρ) = ρ: the extinction probability ρ is a
fixed point of ψ.

So the function ψ, which is called the probability generating function of the probability
mass function f , arises in a natural and interesting way in this problem. Let us pause to
collect a few of its properties. The first two derivatives are given by

ψ′(z) =
∞∑

k=1

kf(k)zk−1, ψ′′(z) =
∞∑

k=2

k(k − 1)f(k)zk−2

for z ∈ (0, 1). Since these are positive, the function ψ is strictly increasing and convex on
(0,1). Also, clearly ψ(0) = f(0) and ψ(1) = 1. Finally, notice that ψ′(1) =

∑
kf(k) = µ,

where µ denotes E(X), the expected number of sons for each male.
These properties imply that the graph of ψ over [0,1] must look like one of the three

following pictures, depending on the value of µ = ψ′(1).
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}
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3 4
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}3 4
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}3 4ρ

So you can see what happens. Since ψ(1) = 1, the equation ψ(ρ) = ρ always has a trivial
solution at ρ = 1. When µ ≤ 1, this trivial solution is the only solution, so that, since the
probability ρ of eventual extinction satisfies ψ(ρ) = ρ, it must be the case that ρ = 1. When
µ > 1, there is one additional solution, indicated by the arrow in the picture. This solution
was missed by Watson and Galton (1875), leading them to believe that the probability of
extinction would be 1 in this case as well. We will show that this was incorrect, and that
the probability of extinction is the smaller solution of the equation ψ(ρ) = ρ.

Thus, assuming µ > 1 and defining r to be the smaller solution of ψ(r) = r, we want
to show that ρ = r. Since ψ(ρ) = ρ, we know that ρ must be either r or 1. Defining
pt = P1{Gt = 0}, observe that as t→∞,

pt ↑ P1

[ ∞⋃

n=1

{Gn = 0}
]

= ρ.

Therefore, to rule out the possibility that ρ = 1, it is sufficient to prove the following
statement:

pt ≤ r for all t.

To prove this by induction, observe that p0 = 0, so that the statement holds for t = 0.
Next observe that

pt+1 = P1{Gt+1 = 0} =
∞∑

i=0

P1{G1 = i}P1{Gt+1 = 0 | G1 = i} =
∞∑

i=0

f(i)(pt)
i,

that is, pt+1 = ψ(pt). Thus, using the induction hypothesis pt ≤ r and the fact that the
function ψ is increasing, we obtain pt+1 ≤ ψ(r) = r, which completes the proof.

(2.2) Example. Suppose each man has 3 children, with each child having probability
1/2 of being male, and different children being independent. What is the probability that
a particular man’s line of male descendants will eventually become extinct? Here the
distribution f is the binomial distribution Bin(3,1/2), so that µ = 3/2 > 1. Thus, we know
that the probability ρ of extinction is less than 1. Here f(0) = 1/8, f(1) = 3/8, f(2) = 3/8,
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and f(3) = 1/8, so that the equation ψ(r) = r becomes

1

8
+

3

8
r +

3

8
r2 +

1

8
r3 = r,

or r3 + 3r2 − 5r + 1 = 0. Fortunately, r = 1 is a solution (as it must be!), so we can factor
it out, getting the equation (r − 1)(r2 + 4r − 1) = 0. Solving the quadratic equation gives
ρ =
√

5 − 2 = 0.2361. The man can rest assured that with probability 1 − ρ = 0.7639 his
glorious family name will live on forever.

2.2 Time Reversibility

LetX0, X1, . . . be a Markov chain having probability transition matrix P = P (i, j). Imagine
that I recorded a movie of the sequence of states (X0, . . . , Xn), and I am showing you the
movie on my fancy machine that can play the tape forward or backward equally well. Can
you tell by watching the sequence of transitions on the movie whether I am showing it
forward or backward?

Of course, we are assuming that you know the transition matrix P ; otherwise, this would
be an unreasonable request. There are cases in which distinguishing the direction of time
is very easy. For example, if the state space is {1, 2, 3} and P (1, 2) = P (2, 3) = P (3, 1) = 1
[[one of our standard periodic examples]], observing just one transition of the chain is enough
to tell you for sure the direction of time; for example, a “movie” in which we observe 3
followed by 2 must be running backward.

That one was easy. Let’s consider another example: do you think a stationary Ehrenfest
chain is time-reversible? Here the state space is {0, 1, . . . , d}, say, and X0 ∼ Bin(d, 1/2),
the stationary distribution of the chain. It is clear in this case that you will not be able
to tell for sure from observing any finite movie (X0, . . . , Xn) which direction the movie is
being shown—a sequence has positive probability if and only if its reversal also has positive
probability. But we are asking whether or not you can get any sort of probabilistic hint
about the direction in which the movie is being shown, and I am willing to show you as
long a segment as you would like to request. So you can have plenty of data to look at.
One might suspect that it should be possible to make this sort of distinction. For example,
we know that the Ehrefest chain has a “restoring force” that pulls it toward the level d/2,
where half the balls are in each of the two urns. So, for instance, if we observe a long
sequence that moves from (3/4)d down toward d/2, we might favor the explanation that
the movie is being shown forward, since otherwise we are observing a long sequence moving
against the restoring force.

Did you buy that? I hope not, because in fact we will see that the Ehrenfest chain is
time-reversible: no movie, no matter how long, will give you any probabilistic information
that is useful in distinguishing the direction of time. [[And the argument suggested above
really didn’t make much sense — what comes down must have gone up.]]

Stochastic Processes J. Chang, February 2, 2007



2.2. TIME REVERSIBILITY Page 47

Here is a definition that captures the concept.

(2.3) Definition. We say that a Markov chain {Xn} is time-reversible if, for each n,

(X0, X1, . . . , Xn)
D
= (Xn, Xn−1, . . . , X0)

that is, the joint distribution of (X0, X1, . . . , Xn) is the same as the joint distribution of
(Xn, Xn−1, . . . , X0).

Suppose {Xn} is time-reversible. As a particular consequence of the definition, we see

that (X0, X1)
D
= (X1, X0). This, in turn, implies that X1

D
= X0, that is, π1 = π0. Thus, in

view of the relation π1 = π0P , we obtain π0 = π0P , so that the initial distribution π0 is
stationary. Not surprisingly, we have found that a time-reversible chain must be stationary.

We will write π for the distribution π0 to emphasize that it is stationary. So Xn ∼ π for

all n. The condition (X0, X1)
D
= (X1, X0) says that P{X0 = i,X1 = j} = P{X1 = i,X0 = j}

for all i, j; that is,

(2.4) π(i)P (i, j) = π(j)P (j, i) for all i, j.

We have shown that the condition (2.4) together with X0 ∼ π is necessary for a chain
to be reversible. In fact, these two conditions are also sufficient for reversibility.

(2.5) Proposition. The Markov chain {Xn} is time-reversible if and only if the distri-
bution π of X0 satisfies πP = π and the condition (2.4) holds.
To see this, observe that (2.4) gives, for example,

P{X0 = i,X1 = j,X2 = k} = [π(i)P (i, j)]P (j, k)

= [P (j, i)π(j)]P (j, k)

= P (j, i)[π(j)P (j, k)]

= P (j, i)[P (k, j)π(k)]

= π(k)P (k, j)P (j, i)

= P{X0 = k,X1 = j,X2 = i}
= P{X2 = i,X1 = j,X0 = k},

that is, (X0, X1, X2)
D
= (X2, X1, X0). Notice how (2.4) allowed the π factor to propagate

through the product from the left end to the right, reversing the direction of all of the
transitions along the way. The same trick allows us to deduce the general equality required
in the definition (2.3).

The equalities in (2.4) have a nice interpretation in terms of probability flux. Recall
[[as discussed in one of your homework problems]] that the flux from i to j is defined
as π(i)P (i, j). So (2.4) says that the flux from i to j is the same as the flux from j
to i—flux balances between each pair of states. These are called the “detailed balance”
(or “local balance”) equations; they are more detailed than the “global balance equations”
π(j) =

∑
i π(i)P (i, j) that characterize stationarity. Global balance, which can be rewritten

as
∑

i π(j)P (j, i) =
∑

i π(i)P (i, j) says that the total flux leading out of state j is the same
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as the total flux into state j. If we think of a system of containers of fluid connected by
tubes, one container for each state, and we think of probability flux as fluid flowing around
the system, global balance says that the flow out of container j is balanced by the flow into
j, so that the fluid level in container j stays constant, neither rising nor falling. This is
a less stringent requirement than detailed balance, which requires flow to balance between
each pair of containers.

A more probabilistic interpretation is this: think of π(i)P (i, j) as the limiting long run
fraction of transitions made by the Markov chain that go from state i to state j. Time
reversibility requires that the long run fraction of i-to-j transitions is the same as that of
the j-to-i transitions, for all i and j. This is a more stringent requirement than stationarity,
which equates the long run fraction of transitions that go out of state i to the long run
fraction of transitions that go into state i.

The mathematical formulation of this relationship is simple.

(2.6) Proposition. If the local balance equations (2.4) hold, then the distribution π is
stationary.

Proof: Summing the local balance equations (2.4) over i gives the global balance equations

∑

i

π(i)P (i, j) =
∑

i

π(j)P (j, i) = π(j).

So why is the Ehrenfest chain time-reversible? The Ehrenfest chain is an example
of a birth and death chain, which is defined to be a Markov chain whose states consist
of nonnegative integers and whose transitions increase or decrease the state by at most
1. That is, interpreting the current state of the chain as the population count of living
individuals, the population can change by at most 1 in a transition, which might represent
a birth, a death, or no change. The time reversibility of the Ehrenfest chain is an example
of a more general fact.

(2.7) Claim. All stationary birth and death chains are reversible.

To show this, consider a stationary birth and death chain on the state space S =
{0, 1, . . . , d}.

� � � ll l.4 g

D Df

We ask: does π(i)P (i, j) = π(j)P (j, i) for all i, j? Since a birth and death chain has
P (i, j) = 0 if |i − j| > 1, we need only consider the case where j = i + 1. Recall from
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Exercise [1.11] (the exercise on probability flux) that for any subset A ⊂ S, the flux from
A to Ac must equal the flux from Ac to A. Taking A = {0, . . . , i} as in the picture gives
just what we want: π(i)P (i, i+ 1) = π(i+ 1)P (i+ 1, i). This establishes the claim.

(2.8) Example. Another important class of examples of time-reversible Markov chains is
the random walk on a graph. Defining d(i) to be the degree of node i, the random
walk moves according to the matrix P (i, j) = 1/(d(i)) for each neighbor j of node i, and
P (i, j) = 0 otherwise. Then it is easy to check that the distribution

π(i) =
d(i)∑
j∈S

d(j)

satisfies the detailed balance equations. Thus, the random walk is time-reversible, and π is
its stationary distribution.

4

2 3

5

1

For example, consider a random walk on the house graph above. The degrees are
(d1, d2, d3, d4, d5) = (2, 3, 3, 2, 2). So the stationary distribution is (π1, π2, π3, π4, π5) =
(2/12, 3/12, 3/12, 2/12, 2/12).

2.3 More on Time Reversibility: A Tandem Queue Model

Consider two office workers Andrew and Bertha who have a lot of paper work to do. When
a piece of paper arrives at the office, it goes first to Andrew for processing. When he
completes his task, he puts the paper on Bertha’s pile. When she completes her processing
of the paper, it is sent out of the office.
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d e
s

Let’s specify a model of this in more detail. Consider a Markov chain whose state at time n
is (Xn, Yn), where Xn is the number of papers in Andrew’s work pile and Yn is the number
of papers in Bertha’s pile. Suppose that Xn = i ≥ 0. Then with probability p, a new
piece of work enters the office, resulting in Xn+1 = i + 1. For definiteness, it is helpful
to paint a detailed picture, so let’s suppose that any new arrival is placed onto the top of
Andrew’s current pile of papers, preempting any other task he might have been working on
at the time. Thus, if a new paper arrives, Andrew cannot complete his processing of any
previously received papers that period. If Andrew receives no new arrival in a period and
i > 0, then with probability a Andrew completes the processing of the paper on top of his
pile, resulting in Xn+1 = i− 1. Thus, in summary, Andrew’s pile evolves as follows. Given
Xn = i > 0,

Xn+1 =






i+ 1 with probability p
i with probability (1− p)(1− a)
i− 1 with probability (1− p)a,

and if Xn = 0, then Xn+1 = 1 with probability p and Xn+1 = 0 with probability 1− p.
Let us assume that Bertha’s pile changes in the same way as Andrew’s, except that she

gets her new work from Andrew’s completed papers rather than from the outside, and her
service-completion probability is b rather than a. A sample path of the {(Xn, Yn)} process
is shown in the picture. Notice that in each period in which the X process decreases, the
Y process increases: work completed by Andrew is sent to Bertha.
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The {Xn} process is a birth and death chain in its own right. Letting qa denote the
downward transition probability qa = (1 − p)a, a stationary distribution πa for Andrew’s
process X exists if p < qa, in which case familiar probability flux reasoning gives πa(i)p =
πa(i+ 1)qa, or πa(i+ 1)/πa(i) = p/qa , so that

πa(i) =

(
p

qa

)i (
1− p

qa

)
for i = 0, 1, . . . .

Here is where time reversibility allows us to make an interesting and useful observation.
Assume X0 ∼ πa. Then we know that {Xn}, being a stationary birth and death process, is
time reversible. Define An to be 1 if Andrew has an “arrival” at time n and 0 otherwise,
so that An = 1 occurs when Xn = Xn−1 + 1. Define another indicator random variable Dn

to be 1 if Andrew has a “departure” at time n, that is, when Xn = Xn−1 − 1. Considering
k to be the present time, clearly the present queue size Xk is independent of the future
arrivals Ak+1, Ak+2, . . .. This obvious fact, when applied to the reversed process, gives
something interesting. In the reversed process, if k again represents the “present,” then
“future arrivals” correspond to the departures Dk, Dk−1, . . .. Therefore, we can say that the
departures (D1, D2, . . . , Dk) are independent of the queue size Xk. This is quite surprising,
isn’t it? Also, since reversibility implies that arrivals in the reversed process have the
same probabilistic behavior as arrivals in the forward process, we see that the departures
D1, D2, . . . are iid Bernoulli(p). Thus, the output process of Andrew’s queue is the same
probabilistically as the input process of his queue. Isn’t that interesting? For example, we
have found that the departure process does not depend on the service completion probability
a.

Bertha’s queue size {Yn} is also a birth and death chain, with a similar structure as
Andrew’s. We have just shown that Bertha’s input consists of iid Bernoulli(p) random
variables, just as Andrew’s input does. Defining the downward transition probability qb =
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(1− p)b for {Yn}, if p < qb the stationary distribution πb is given by

πb(i) =

(
p

qb

)i (
1− p

qb

)
for i = 0, 1, . . . .

Now we are ready to show a surprising property of the stationary distribution of
(Xk, Yk): the two queue sizes Xk and Yk are independent! That is, we claim that the
stationary distribution π of {(Xn, Yn)} takes the product form

π(i, j) = πa(i)πb(j).

I’ll try to say the idea loosely in words first, then more carefully. It is helpful to imagine
that at each time, Andrew flips a coin with probability a of heads, and if he gets heads he
completes a piece of work, if that is possible—i.e. if there is work in his pile and if he has
not received a new arrival. Bertha does the same, only with her coin having probability
b. Back to the question: Supposing that X0 and Y0 are independent with distributions
πa and πb, we want to see that Xn and Yn are also independent with distributions πa and
πb. We know the marginal distributions of Xn and Yn are πa and πb; independence is the
real question. The key is the observation made above that Xn is independent of Andrew’s
departures up to time n, which are the same as Bertha’s arrivals up to time n. So since
Yn is determined Y0, Bertha’s arrivals up to time n, and Bertha’s service coin flips, all of
which are independent of Xn, we should have Yn independent of Xn.

To establish this more formally, assuming that (X0, Y0) ∼ π, we want to show that
(X1, Y1) ∼ π. Since πa and πb are stationary for {Xn} and {Yn}, we know that X1 ∼ πa
and Y1 ∼ πb, so our task is to show that X1 and Y1 are independent. Let AXk denote the
indicator of an arrival to Andrew’s desk at time k. Let SXk = 1 if at time k Andrew’s
“service completion coin flip” as described in the previous paragraph comes up heads, and
SXk = 0 otherwise. Define SYk analogously for Bertha. We are assuming that the random
variables X0, Y0, A

X
1 , SX1 , and SY1 are independent. But we can write X1 and AY1 as

functions of (X0, A
X
1 , S

X
1 ). [[The precise functional forms are not important, but just for

fun,

X1 =






X0 + 1 if AX1 = 1
X0 if AX1 = 0 and SX1 = 0
X0 − 1 if AX1 = 0 and SX1 = 1 and X0 > 0
0 if AX1 = 0 and X0 = 0

and

AY1 =

{
1 if X0 > 0 and AX1 = 0 and SX1 = 1
0 otherwise

is one way to write them.]] So Y0 is independent of (X1, A
Y
1 ). But we know that X1 is

independent of whether there is a departure from Andrew’s queue at time 1, which is just
the indicator AY1 . Therefore, the 3 random variables Y0, X1, and AY1 are independent.
Finally, observe that SY1 is independent of (Y0, X1, A

Y
1 ), so that the 4 random variables Y0,

X1, A
Y
1 , and SY1 are all independent. Thus, since Y1 is a function of (Y0, A

Y
1 , S

Y
1 ), it follows

that X1 and Y1 are independent.
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2.4 The Metropolis method

This is a very useful general method for using Markov chains for simulation. The idea is a
famous one due to Metropolis et al. (1953), and is known as the Metropolis method . Suppose
we want to simulate a random draw from some distribution π on a finite set S. By the
Basic Limit Theorem above, one way to do this (approximately) is to find an irreducible,
aperiodic probability transition matrix P satisfying πP = π, and then run a Markov chain
according to P for a sufficiently long time.

Suppose we have chosen some connected graph structure G = (S,E) on our set S. That
is, we think of each element of S as a node, and we imagine a collection E of edges, where
each edge joins some pair of nodes. If nodes i and j are joined by an edge, we say i and j are
neighbors. Let N(i) denote the set of neighbors of node i. [[We’ll assume that i /∈ N(i) for
all i.]] Just to make sure the situation is clear, I want to emphasize that this graph structure
is not imposed on us, and there is not a single, unique, magic choice that will work. The
set of edges E is ours to choose; we have a great deal of freedom here, and different choices
will lead to different matrices P satisfying πP = π.

As a preliminary observation, recall from Example (2.8) that a random walk on G, which
has probability transition matrix

(2.9) Prw(i, j) =

{
1
d(i) if j ∈ N(i)

0 otherwise

has stationary distribution

πrw(i) =
d(i)∑
j∈S

d(j)
,

where d(i) is the degree of node i. To reduce typographical and conceptual clutter, let us
write this as

πrw(i) ∝ d(i),
by omitting the denominator, which is simply a normalization constant [[constant in that it
does not depend on i]] that makes the probabilities add up to 1. The Basic Limit Theorem
tells us that (assuming aperiodicity holds) if we run the random walk for sufficiently long,
then we get arbitrarily close to achieving the distribution πrw.

Thus, simply running a random walk on G would solve our simulation problem if we
happened to want to simulate from πrw. In general, however, we will want to simulate from
some different, arbitrary distribution π, which we will write in the form

(2.10) π(i) ∝ d(i)f(i).

That is, we are interested in modifying the relative probabilities of the natural random
walk stationary distribution by some multiplicative function f . Our goal here is a simple
way to modify the random walk transition probabilities in such a way that the modified
probability transition matrix has stationary distribution π. The Metropolis method solves
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this problem by defining the probability transition matrix

(2.11) P (i, j) =






1
d(i) min{1, f(j)

f(i) } if j ∈ N(i)

1−∑
k∈N(i) P (i, k) if j = i

0 otherwise.

The verification that this method works is simple.

(2.12) Claim. For π defined by (2.10) and (P (i, j)) defined by (2.11), we have πP = π.

Proof: For j ∈ N(i),

π(i)P (i, j) ∝ f(i)min{1, f(j)

f(i)
} = min{f(i), f(j)}

is symmetric in i and j, so we have

(2.13) π(i)P (i, j) = π(j)P (j, i).

In fact, (2.13) holds for all i and j, since it is trivial to verify (2.13) in the cases when i = j
or j /∈ N(i). Summing (2.13) over i gives

∑

i

π(i)P (i, j) = π(j)
∑

i

P (j, i) = π(j),

so that πP = π.

Notice that the last proof showed that the “detailed balance” equations π(i)P (i, j) =
π(j)P (j, i) that characterize time-reversible Markov chains hold.

⊲ As we know from our discussion of the Basic Limit Theorem, the fact that a Markov chain
has stationary distribution π does not in itself guarantee that the Markov chain will converge
in distribution to π. Exercise [2.10] gives conditions under which this convergence holds.

Running the Metropolis chain (using the P from (2.11)) is actually a simple modification
of performing a random walk (using Prw from (2.9)). To run the random walk, at each time,
we choose a random neighbor and go there. We can think of running the Metropolis chain
as follows. Suppose we are currently at state i and we are about to generate our next
random transition. We start out, in the same way as the random walk, by choosing a
random neighbor of i; let’s call our choice j. The difference between the Metropolis chain
and the random walk is that in the Metropolis chain, we might move to j, or we might stay
at i. So let’s think of j as our “candidate” state, and we next make a probabilistic decision
about whether to “accept the candidate” and move to j, or “reject the candidate” and stay
at i. The probability that we accept the candidate is the extra factor

(2.14) min{1, f(j)

f(i)
}
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that appears in (2.11). Thus, having nominated a candidate j, we look at the values f(j) and
f(i). If f(j) ≥ f(i), the minimum in (2.14) is 1, and we definitely move to j. If f(j) < f(i),
the minimum in (2.14) is f(j)/f(i), and we move to j with probability f(j)/f(i). This
makes qualitative sense: for example, if f(j) is much smaller than f(i), this means that,
relative to the random walk stationary distribution πrw, our desired distribution π places
much less probability on j than on i, so that we should make a transition from i to j much
less frequently than the random walk does. This is accomplished in the Metropolis chain
by usually rejecting the candidate j.

(2.15) Example. To illustrate the Metropolis method in a simple way, we’ll discuss an arti-
ficial toy example where we don’t really need the method. Suppose the distribution π on S =
{1, 2, 3, 4, 5} is (4/12, 2/12, 2/12, 2/12, 2/12), and suppose the graph structure we choose on
S is the “house” graph from Example (2.8). Thus, we want to be on the roof of the house
(state 1) with probability 4/12, and at each of the other states with equal probability, 2/12.

rwπ

2

12

3

12

2

12

2

12

3

12

desired π

4

12

2

12

2

12

2

12

2

12

4

2 3

5

1

4

2 3

5

1

Comparing with the distribution πrw that we found in Example (2.8) [[and is re-
produced in the figure above]] we can calculate the f ratios to be f(1) =
(4/12)/(2/12) = 2, and, similarly, f(2) = 2/3 = f(3) and f(4) = 1 = f(5).

(1) 2f =

2
(2)

3
f =

(4) 1f = (5) 1f =

2
(3)

3
f =

4

2 3

5

1

And now the Metropolis formula for P shows that to modify the random walk to have
the desired stationary distribution, we run the process depicted in the figure below.
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These transition probabilities were calculated as follows. For example,

P (1, 2) =
1

2
min

{
1,

2/3

2

}
=

1

6
= P (1, 3),

P (1, 1) = 1− 1

6
− 1

6
=

2

3
,

P (2, 1) =
1

3
min

{
1,

2

2/3

}
=

1

3
,

P (2, 3) =
1

3
min

{
1,

2/3

2/3

}
=

1

3
,

P (2, 4) =
1

3
min

{
1,

1

2/3

}
=

1

3
,

P (2, 2) = 1− 1

3
− 1

3
− 1

3
= 0,

and so on.

The Metropolis method has a nice property: actually we do not even quite have to
be able to write down or compute the probabilities π(i) in order to be able to use the
method to simulate from π! That is, as is clear from (2.11), to run the Metropolis chain,
all we need to know are ratios of the form f(j)/f(i), or, equivalently, ratios of the form
π(j)/π(i) [[these are equivalent by (2.10), and because we assume we know the degrees d(j)
and d(i)]]. That is, we do not have to know any of the π(i)’s explicitly to use the method;
all we have to know are the ratios π(j)/π(i). Now this may not seem like a big deal, but
there are cases in which we would like to simulate from a distribution π for which the
ratios π(j)/π(i) are easy to compute, while the individual probabilities π(j) and π(i) are
extremely difficult to compute. This happens when π is known only up to a complicated
multiplicative normalization constant. One simple example of this you have already seen:
in our problem of simulating a uniformly distributed 4×4 table with given row and column
sums, the desired probability of any given table is the reciprocal of the number of tables
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satisfying the given restrictions—a number that we do not know! (Remember, in fact, a
bonus of being able to generate a nearly uniformly distributed table is that it leads to a
method for approximating the number of such tables.) So in this problem, we do not know
the individual probabilities of the form π(i). But the ratio π(j)/π(i) is simply 1 for a
uniform distribution! Now, simulating from a uniform distribution is admittedly a special
case, and a symmetric probability transition matrix will do the trick. For a more general
class of examples, in the Bayesian approach to statistics, suppose the unknown parameter
of interest is θ ∈ Θ, where Θ is a finite parameter space. Suppose our prior distribution
[[probability mass function]] for θ is µ(θ) and the likelihood is P (x | θ). Both µ(θ) and
P (x | θ) are known to us because we specify them as part of our probability model. The
posterior distribution for θ given x is

P (θ | x) =
µ(θ)P (x | θ)

G
,

where
G =

∑

θ′∈Θ

µ(θ′)P (x | θ′).

The sum G may be very difficult to compute; in statistical mechanics it is the infamous
“partition function.” However, for given x, if we want to simulate from the posterior
distribution P (· | x), we can do so using the Metropolis method; although the distribution
itself may be hard to compute because G is hard to compute, the ratios

P (θ1 | x)
P (θ2 | x)

=
µ(θ1)P (x | θ1)
µ(θ2)P (x | θ2)

are easy to compute.

2.5 Simulated annealing

Simulated annealing is a recent and powerful technique for addressing large, complicated
optimization problems. Although the idea is so simple it may sound naive, the simulated
annealing method has enabled people in some cases to find better answers to bigger problems
than any previously known method.

Suppose we would like to minimize some “cost function” c(·) defined on a set S. For
example, c(·) might be a function of d variables defined on the simplest interesting domain
S, namely, the domain S = {0, 1}d, in which each of the d variables may take on only the
two values 0 and 1. That is, this S is the set of 2d d-tuples i = (i1, . . . , id); we could think
of these as the vertices of the d-dimensional unit cube. So for d = 10 variables, S contains
210 ≈ 1000 points. If we want to solve a problem with d = 20, 30, or 40 variables, the
number of points in S rises to about one million, one billion, and one trillion, respectively.
Have our computers gotten fast enough that we can just about handle a trillion points
now? Well, if we then just add 20 more variables to the problem, all of a sudden our
computers are a million times too slow again. So even though computers are getting faster
all the time, clearly our appetite for solving larger and more complex problems grows much,
much faster. “But come now, who really deals with functions of 60 or 100 variables?” you
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may be wondering. Well, consider, for example, an image processing problem, in which
we want to calculate an optimal guess at an image, given a noisy, corrupted version. If
we are dealing with a black and white image, so that each pixel can be encoded as a 0
or a 1, then our state space is exactly of the form {0, 1}d that we have been discussing.
How big are typical values of d? Very big: d is the number of pixels in the image, so if
we have a (quite crude!) 200 × 200 image, then d = 40, 000. This is much bigger than
60 or 100! I hope this gives you some inkling of the inconceivable vastness of many quite
ordinary combinatorial optimization problems, and a feeling for the utter hopelessness of
ever solving such problems by exhaustive enumerative search of the state space.

Stuart and Donald Geman used simulated annealing in their approach to image restora-
tion. Another famous example of a difficult optimization problem is the traveling salesman
problem in which a salesman is given a set of cities he must visit, and he wants to decide
which city to visit first, second, and so on, in such a way that his total travel distance is
minimized. For us, in addition to its practical importance, simulated annealing provides a
nice illustration of some of the Markov chain ideas we have discussed so far, as well as an
excuse to learn something about time-inhomogeneous Markov chains.

2.5.1 Description of the method

The method is a combination of the familiar idea of using Markov chains for simulation and
a new idea (“annealing”) that provides the connection to optimization. We have already
discussed the very general Metropolis method that allows us to simulate approximately
from any desired distribution on S. But what does simulation have to do with optimization
or “annealing” or whatever?

Our goal is to find an i ∈ S minimizing c(i), where c is a given cost function defined on
the set of nodes S of a graph. As discussed above, an exact solution of this problem may
be an unattainable ideal in practice, but we would like to come as close as possible. For
each T > 0, define a probability distribution αT = {αT (i) : i ∈ S} on S by

(2.16) αT (i) =
d(i)e−c(i)/T

G(T )
,

where again d(i) is the degree of node i and of course

G(T ) =
∑

i∈S

d(i)e−c(i)/T

is just the normalizing constant that makes (2.16) a probability distribution. The letter
“T” stands for “temperature.”

We have defined a family of probability distributions on S; corresponding to each positive
T there is a distribution αT . These distributions have an important property that explains
why we are interested in them. To state this property, let S∗ denote the set of global
minimizers of c(·), that is,

S∗ = {i∗ ∈ S : c(i∗) = min
i∈S

c(i)}.
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Our goal is to find an element of S∗. Define a distribution α∗ on S∗ by

(2.17) α∗(i) =
d(i)∑
j∈S∗ d(j)

if i ∈ S∗, and α∗(i) = 0 otherwise. The important thing to keep in mind about the
distribution α∗ is that it puts positive probability only on globally optimal solutions of our
optimization problem.

(2.18) Fact. As T ↓ 0, we have αT
D−→ α∗, that is, αT (i)→ α∗(i) for all i ∈ S.

The symbol “
D−→” stands for convergence in distribution.

⊲ Exercise [2.16] asks you to prove (2.18).

Thus, we have found that, as T ↓ 0, the distributions αT converge to the special dis-
tribution α∗. If we could somehow simulate from α∗, our optimization problem would be

solved: We would just push the simulate from α∗ button, and out would pop a random
element of S∗, which would make us most happy. Of course, we cannot do that, since we
are assuming that we do not already have the answer to the minimization problem that we
are trying to solve! However, we can do something that seems as if it should be nearly as
good: simulate from αT . If we do this for a value of T that is pretty close to 0, then since
αT is pretty close to α∗ for that T , presumably we would be doing something pretty good.

So, fix a T > 0. How do we simulate from αT ? We can use the Metropolis idea to
create a probability transition matrix AT = (AT (i, j)) such that αTAT = αT , and then run
a Markov chain according to AT .

[[A note on notation: I hope you aren’t bothered by the use here of α and A for stationary
distributions and probability transition matrices related to simulated annealing. The usual
letters π and P have been so overworked that using different notation for the special example
of simulated annealing should be clearer ultimately. Although they don’t look much like π
and P , the letters α and A might be remembered as mnemonic for “simulαted Annealing”
at least.]]

A glance at the definition of αT in (2.16) shows that we are in the situation of the
Metropolis method as described in (2.10) with the choice f(i) = e−c(i)/T . So as prescribed
by (2.11), for j ∈ N(i) we take

AT (i, j) =
1

d(i)
min

{
1,
e−c(j)/T

e−c(i)/T

}

=
1

d(i)

{
1 if c(j) ≤ c(i)
e−(c(j)−c(i))/T if c(j) > c(i).

(2.19)

The specification of AT is completed by the obvious requirements that AT (i, i) = 1 −∑
j∈N(i)AT (i, j) and AT (i, j) = 0 if j /∈ N(i).
For any fixed temperature T1 > 0, if we run a Markov chain {Xn} having probability

transition matrix AT1 for “a long time,” then the distribution of {Xn} will be very close to
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αT1 . If our goal is to get the chain close to the distribution α∗, then continuing to run this
chain will not do much good, since the distribution of Xn will get closer and closer to αT1 ,
not α∗. So the only way we can continue to “make progress” toward the distribution α∗ is
to decrease the temperature to T2, say, where T2 < T1, and continue to run the chain, but
now using the probability transition matrix AT2 rather than AT1 . Then the distribution of
Xn will approach the distribution αT2 . Again, after the distribution gets very close to αT2 ,
continuing to run the chain at temperature T2 will not be an effective way to get closer to
the desired distribution α∗, so it makes sense to lower the temperature again.

It should be quite clear intuitively that, if we lower the temperature slowly enough,
we can get the chain to converge in distribution to α∗. For example, consider “piecewise
constant” schedules as discussed in the last paragraph. Given a decreasing sequence of
positive temperatures T1 > T2 > . . . such that Tn ↓ 0, we could start by running a chain
for a time n1 long enough so that the distribution of the chain at time n1 is within a
distance of 1/2 [[in total variation distance, say]] from αT1 . Then we could continue to run
at temperature T2 until time n2, at which the distribution of the chain is within 1/3 of αT2 .
Then we could run at temperature T3 until we are within 1/4 of of αT3 . And so on. Thus, as
long as we run long enough at each temperature, the chain should converge in distribution
to α∗. We must lower the temperature slowly enough so that the chain can always “catch
up” and remain close to the stationary distribution for the current temperature.

Once we have had this idea, we need not lower the temperature in such a piecewise
constant manner, keeping the temperature constant for many iterations and only then
changing it. Instead, let us allow the temperature to change at each at each step of the
Markov chain. Thus, each time nmay have its own associated temperature Tn, and hence its
own probability transition matrix ATn

. The main theoretical result that has been obtained
for simulated annealing says that for any problem there is a cooling schedule of the form

(2.20) Tn =
a

log(n+ b)

[[where a and b are constants]] such that, starting from any state i ∈ S, the
[[time-inhomogeneous]] Markov chain {Xn} will converge in distribution to α∗, the uniform
distribution on the set of global minima.

Accordingly, a simulated annealing procedure may be specified as follows. Choose a
“cooling schedule” T0, T1, . . .; the schedules we will discuss later will have the property that
Tn ↓ 0 as n → ∞. Choose the inital state X0 according to a distribution ν0. Let the suc-
cession of states X0, X1, X2, . . . form a time-inhomogeneous Markov chain with probability
transition matrices AT0 , AT1 , AT2 , . . ., so that

P{Xn+1 = j | Xn = i} = ATn
(i, j)

and

(2.21) Xn ∼ νn = ν0AT0AT1 · · ·ATn−1 .

By the way, what is all this talk about “temperature,” “cooling schedule,” “annealing,”
and stuff like that? I recommend you consult the article by Kirkpatrick et al., but I’ll try to
say a few words here. Let’s see, I’ll start by looking up the word “anneal” in my dictionary.
It gives the definition
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To free (glass, metals, etc.) from internal stress by heating and gradually cool-
ing.

The idea, as I understand it, is this. Suppose we want to have a metal that is as “stress-free”
as possible. That corresponds to the metal being “relaxed,” in a low energy state. The
metal is happy when it has low energy, and it wants to get to such a state, just as a ball
will roll downhill to decrease its potential energy. In the liquid state, the atoms of a metal
are all sliding around in all sorts of random orientations. If we quickly freeze the metal
into a solid by cooling it quickly, its atoms will freeze into a configuration that has all
sorts of haphazard orientations that give the metal unnecessary excess potential energy. In
contrast, if we start with the metal as a liquid and then cool it extremely slowly, then the
atoms have plenty of time to explore around, find, and work themselves into a nice, happy,
ordered, low-energy configuration. Thus, nature can successfully address an optimization
problem—minimization of the energy of the metal—by slow cooling. I hope that gives the
flavor of the idea at least.

For another image that captures certain aspects of simulated annealing, imagine a
bumpy frying pan containing a marble made of popcorn. At high temperature, the marble
is jumping around quite wildly, ignoring the ups and downs of the pan.

As we lower the temperature, the popcorn begins to settle down into the lower parts of the
pan.
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I’d like to make sure it is clear to you how to run the method, so that you will be able
to implement it yourself and experiment with it if you’d like. So let us pause for a moment
to imagine what it is like to move around according to a Markov chain having probability
transition matrix AT specified by (2.19). Here is one way to describe it. Suppose that we are
now at time n sitting at node i of the graph, and we are trying to decide where to go next.
First we choose at random one of the d neighbors of i, each neighbor being chosen with the
same probability 1/d(i). Say we choose node j. Then j becomes out “candidate” for where
to go at time n+1; in fact, at time n+1 we will either move to j (accept the candidate) or
stay at i. To decide between these two alternatives, we must look at the values of c(i) and
c(j). If c(j) ≤ c(i), we definitely move to j. If c(j) > c(i), we might or might not move to j;
in fact we move to j with probability e−(c(j)−c(i))/T and stay at i with the complementary
probability 1− e−(c(j)−c(i))/T . At high temperature, even when c(j) > c(i), the probability
e−(c(j)−c(i))/T is close to 1, so that we accept all candidates with high probability. Thus, at
high temperature, the process behaves nearly like a random walk on S, choosing candidates
as a random walk would, and almost always accepting them. At lower temperatures, the
process still always accepts “downhill moves” [[those with c(j) ≤ c(i)]], but has a lower
probability of accepting uphill moves. At temperatures very close to zero, the process very
seldom moves uphill.

Note that when c(j) ≤ c(i), moving to j “makes sense”; since we are trying to minimize
c(·), decreasing c looks like progress. However, simulated annealing is not just another
“descent method,” since we allow ourselves positive probability of taking steps that increase
the value of c. This feature of the procedure prevents it from getting stuck in local minima.

You may have asked yourself the question, “If we want to bring the temperature down
to 0, then why don’t we just run the chain at temperature 0?” But now you can see that
at temperature T = 0, the process will never make an uphill move. Thus, running at
temperature 0 is a descent method, which will get stuck in local minima, and therefore will
not approach approach global minima. At temperature 0, the chain all of a sudden loses
the nice properties it has at positive temperatures—it is no longer irreducible, and so the
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basic limit theorem doesn’t apply.

(2.22) Example [Traveling salesman problem]. The figure below shows
the location of 40 cities. A traveling salesman who lives in one of the
cities wants to plan a tour in such a way that he visits all of the cities
and then returns home while traveling the shortest possible total distance.
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To solve this problem by simulated annealing, we start with some legal tour. We’ll start
in a very dumb way, with a tour that is simply a random permutation of the 40 cities.
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As we know, simulated annealing gradually modifies and, we hope, improves the tour by
proposing random modifications of the tour, and accepting or rejecting those modifications
randomly based on the current value of the temperature parameter and the amount of
improvement or deterioration produced by the proposed modification.

Here our state space S is the set of all possible traveling salesman tours. Each such tour
can be specified by a permutation of the cities; for example, if there are 8 cities, the tour
(1, 3, 5, 7, 2, 4, 6, 8) means that we start at city 1, then go to 3, 5, 7, 2, 4, 6, and 8 in that
order, and finally return from 8 back to 1. [[Note that since the tours are closed circuits
because the salesman returns to his starting point, we could consider, for example, the
tour (3, 5, 7, 2, 4, 6, 8, 1) to be the same tour as (1, 3, 5, 7, 2, 4, 6, 8). So in this way different
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permutations can represent the same tour. We could say these two equivalent permutations
are “rotations” of each other.]]

Recall that the Metropolis method, and simulated annealing, require us to choose a
neighborhood structure on S. That is, for each tour i in S, we must say which other tours
are the neighbors of i, and then the simulated annealing method chooses a random candidate
neighbor at each iteration. There are many possible ways to do this. One way that seems
to move around S nicely and is also easy to work with is to choose two cities on the tour
randomly, and then reverse the portion of the tour that lies between them. For example,
if we are currently at the tour (1, 2, 3, 4, 5, 6, 7, 8), we might choose the two cities 4 and
6, and change from the tour (1, 2, 3, 4, 5, 6︸ ︷︷ ︸, 7, 8) to the neighboring tour (1, 2, 3, 6, 5, 4︸ ︷︷ ︸, 7, 8).

Another convenient feature of this definition of neighbors is that it is easy to calculate the
difference in total lengths between neighboring tours; no matter how many cities we are
considering, the difference in tour lengths is calculated using only four intercity distances
— the edges that are broken and created as we break out part of the tour and then reattach
it in the reversed direction.

Using the type of moves just described, it was quite easy to write a computer program,
and fun to watch it run. Here is how it went:
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Time 1000, Temp 0.5, Length 15.5615
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Time 2000, Temp 0.212, Length 10.0135
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Time 5000, Temp 0.089, Length 7.6668 Time 10000, Temp 0.058, Length 5.07881
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If we were watching a movie of this, we would see the path slithering around and gradually
untangling itself. The slithering is violent at high temperatures. It starts to get the gross
features right, removing those silly long crossings from one corner of the picture to another.
And now let’s watch it continue.
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Time 20000, Temp 0.038, Length 4.52239
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Time 30000, Temp 0.0245, Length 4.11739
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Time 40000, Temp 0.0245, Length 4.00033 Time 66423, Temp 0.0104, Length 3.96092
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Our salesman ends up with a very nice tour. I checked to make sure this tour is a local
optimum — no neighboring tour is better. Maybe it’s even the globally optimal tour.

Doesn’t this method of random searching seem extraordinarily dumb? No particular
knowledge or strategic ideas about the particular problem are built in. The Markov property
means that there is no memory; any successes or failures from the past are forgotten. But
then again, evolution is “dumb” in the same way, accumulating random changes, gently
guided by natural selection, which makes favorable changes more likely to persist. And
look at all of the marvelous solutions evolution has produced.

2.5.2 The Main Theorem

First some notation. Define the matrix A(n) by

A(n) =
n−1∏

k=0

ATk
.

Recalling that νn denotes the distribution of Xn, (2.21) says that νn = ν0A
(n). Let A(n)(i, ·)

denote the ith row of the matrix A(n). This row may be interpreted as the distribution of
Xn given that X0 = i. We will continue using the notation ‖µ− ν‖ for the total variation
distance

‖µ− ν‖ = sup
S⊂S

|µ(S)− ν(S)| = 1

2

∑

i∈S

|µi − νi|
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between the distributions µ and ν.
We also need some definitions related to the structure of the graph G and the cost

function c(·). For two nodes i, j ∈ G, define the distance ρ(i, j) to be the length [[i.e.,
number of edges]] of a path from i to j of minimal length. Define the radius r of G by

r = min
i∈Sc

max
j∈S

ρ(i, j),

where
Sc = {i ∈ S : c(j) > c(i) for some j ∈ N(i)},

that is, Sc is the set of all nodes that are not local maxima of the function c. [[Note that r
actually depends on the function c in addition to the graph G, but we won’t indicate this
in the notation.]] Define the number L to be the largest “local fluctuation” of c(·), that is,

L = max
i∈S

max
j∈N(i)

|c(j)− c(i)|.

Finally, recall the definition of α∗ from (2.17).
After only 38 million definitions (counting multiplicity), we are ready to state the main

theorem.

(2.23) Theorem [Main Theorem]. For any cooling schedule T0, T1, . . . satisfying

(i) Tn+1 < Tn for all n ≥ 0

(ii) Tn → 0 as n→∞

(iii)
∑

k exp(−rL/Tkr−1) =∞,

we have
‖A(n)(i, ·)− α∗‖ → 0

as n→∞, for all i ∈ S.

The proof of this theorem is a rather easy application of some theory of
time-inhomogeneous Markov chains. We’ll develop this theory in the next section, and
then come back to simulated annealing to prove Theorem (2.23).

Here is a specific family of cooling schedules that satisfy the conditions of the theorem:
taking γ ≥ rL, let

Tn =
γ

log(n)

for n > 1. [[And let T0 and T1 be arbitrary, subject to the monotonicity condition (i).]] It
is easy to check that the conditions of the theorem hold; (iii) boils down to the statement
that

∑
k k

−p =∞ if p ≤ 1.
Note that the “convergence in distribution” sort of conclusion of the theorem is weaker

than almost sure (“a.s.”) convergence [[i.e., convergence with probability 1]]. There is good
reason for this: a.s. convergence indeed does not hold in general for simulated annealing.
Intuitively, we should not expect to be able to get a.s. convergence—if our procedure has
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the nice property of always escaping eventually from local minima, then we must live with
the fact that it will also eventually “escape” from global minima. That is, the process will
not get “stuck” in [[that is, converge to]] a global minimum. It is true that, along a typical
sample path, the process will spend a larger and larger fraction of its time at or near global
minima as n increases. However, it will also make infinitely many (although increasingly
rare) excursions away from global minima.

⊲ I would say that the theorem is certainly elegant and instructive. But if you come away
thinking it is only a beginning and is not yet answering the “real” question, I would consider
that a good sign. Exercise [2.15] asks for your thoughts on the matter.

2.6 Ergodicity Concepts for Time-Inhomogeneous Markov
chains

In this section we will work in the general setting of a time-inhomogeneous Markov chain
on a countably infinite state space S; we will revert to finite S when we return to the specific
problem of simulated annealing.

(2.24) Notation. For a time-inhomogeneous Markov chain {Xn}, let Pn denote the
probability transition matrix governing the transition from Xn to Xn+1, that is, Pn(i, j) =
P{Xn+1 = j | Xn = i}. Also, for m < n define P (m,n) =

∏n−1
k=m Pk, so that P (m,n)(i, j) =

P{Xn = j | Xm = i}.

(2.25) Definition. {Xn} is strongly ergodic if there exists a probability distribution π∗

on S such that
lim
n→∞

sup
i∈S

‖P (m,n)(i, ·)− π∗‖ = 0 for all m.

For example, we will prove Theorem (2.23) by showing that under the stated conditions,
the simulated annealing chain {Xn} is strongly ergodic, with limiting distribution α∗ as
given in (2.17).

The reason for the modifier “strongly” is to distinguish the last concept from the fol-
lowing weaker one.

(2.26) Definition. {Xn} is weakly ergodic if

lim
n→∞

sup
i,j∈S

‖P (m,n)(i, ·)− P (m,n)(j, ·)‖ = 0 for all m.

To interpret these definitions a bit, notice that weak ergodicity is a sort of “loss of
memory” concept. It says that at a large enough time n, the chain has nearly “forgotten”
its state at time m, in the sense that the distribution at time n would be nearly the
same no matter what the state was at time m. However, there is no requirement that
the distribution be converging to anything as n → ∞. The concept that incorporates
convergence in addition to loss of memory is strong ergodicity.
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What is the role of the “for all m” requirement? Why not just use
limn→∞ supi∈S ‖P (0,n)(i, ·)−π∗‖ = 0 for strong ergodicity and limn→∞ supi,j∈S ‖P (0,n)(i, ·)−
P (0,n)(j, ·)‖ = 0 for weak ergodicity? Here are a couple of examples to show that these would

not be desirable definitions. Let S = {1, 2} and P0 =

(
1/4 3/4
1/4 3/4

)
. Then with these def-

initions, {Xn} would be strongly ergodic even if Pk = I for all k ≥ 1 and {Xn} would be
weakly ergodic for any sequence of probability transition matrices P1, P2, . . .. This seems
silly. We want more “robust” concepts that cannot be determined just by one matrix P0,
but rather depend on the whole sequence of transition matrices.

Incidentally, since our goal with respect to simulated annealing is the main theorem
(2.23) above, we are really interested in proving strong ergodicity. However, we will find
weak ergodicity to be a useful stepping stone on the way toward that goal.

2.6.1 The Ergodic Coefficient

This will be a useful quantity in formulating sufficient conditions for weak and strong
ergodicity. For a probability transition matrix P = (P (i, j)), the ergodic coefficient δ(P ) of
P is defined to be the maximum total variation distance between pairs of rows of P , that
is,

δ(P ) = sup
i,j∈S

‖P (i, ·)− P (j, ·)‖

=
1

2
sup
i,j∈S

∑

k∈S

|P (i, k)− P (j, k)|

= sup
i,j∈S

∑

k∈S

(P (i, k)− P (j, k))+.

The basic idea here is that δ(P ) being small is “good” for ergodicity. For example, the
extreme case is δ(P ) = 0, in which case all of the rows of P are identical, and so P would
cause a Markov chain to lose its memory completely in just one step: ν1 = ν0P does not
depend on ν0.

Here is a useful lemma.

(2.27) Lemma. δ(PQ) ≤ δ(P )δ(Q) for probability transition matrices P , Q.

Proof: By definition, δ(PQ) = supi,j∈S

∑
k∈S

[(PQ)ik−(PQ)jk]
+, where here and through-

out this proof, for readability let us use subscripts to denote matrix entries. Fix a pair of
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states i, j, and let A = {k ∈ S : (PQ)ik > (PQ)jk}. Then

∑

k∈S

[(PQ)ik − (PQ)jk]
+ =

∑

k∈A
[(PQ)ik − (PQ)jk]

=
∑

k∈A

∑

l∈S

[PilQlk − PjlQlk]

=
∑

l∈S

[Pil − Pjl]
∑

k∈A
Qlk

≤
∑

l∈S

(Pil − Pjl)+
[
sup
l

∑

k∈A
Qlk

]
−

∑

l∈S

(Pil − Pjl)−
[
inf
l

∑

k∈A
Qlk

]

=
∑

l∈S

(Pil − Pjl)+
[
sup
l

∑

k∈A
Qlk − inf

l

∑

k∈A
Qlk

]

≤
[ ∑

l∈S

(Pil − Pjl)+
]
δ(Q)

≤ δ(P )δ(Q),

where the last equality uses the fact that
∑

l(Pil − Pjl)+ =
∑

l(Pil − Pjl)−, which holds
because P is a probability transition matrix. Since i and j were arbitrary in S, we are done.

⊲ Exercises [2.17] and [2.18] lead to an alternative proof of Lemma (2.27) using coupling.

2.6.2 Sufficient Conditions for Weak and Strong Ergodicity

Sufficient conditions are given in the next two propositions.

(2.28) Proposition. If there exist n0 < n1 < n2 < · · · such that
∑

k[1− δ(P (nk,nk+1))] =
∞, then {Xn} is weakly ergodic.

(2.29) Proposition. If {Xn} is weakly ergodic and if there exist π0, π1, . . . such that πn is
a stationary distribution for Pn for all n and

∑
n ‖πn − πn+1‖ <∞, then {Xn} is strongly

ergodic. In that case, the distribution π∗ in the definition (2.25) is given by π∗ = limn→∞ πn.
Recall that strong ergodicity is like weak ergodicity [[loss of memory]] together with

convergence. The extra condition
∑

n ‖πn−πn+1‖ <∞ is giving this convergence in (2.29).

Proof of Proposition (2.28). It follows directly from the definitions we have given
that weak ergodicity is equivalent to the condition that limn→∞ δ(P (m,n)) = 0 for all m.
By assumption,

∑
k≥K [1 − δ(P (nk,nk+1))] = ∞ for all K. We will use the following little

fact about real numbers: if 0 ≤ an ≤ 1 for all n and
∑

k ak = ∞, then
∏
k(1 − ak) = 0.

[[Proof: under the assumed conditions, 0 ≤ ∏
(1− ak) ≤

∏
e−ak = e−

P

ak = 0.]] From this
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we obtain
∏
k≥K δ(P

(nk,nk+1)) = 0 for all K. That is, limL→∞
∏L−1
k=K δ(P

(nk,nk+1)) = 0 for
all K. However, from Lemma (2.27),

δ(P (nK ,nL)) ≤
L−1∏

k=K

δ(P (nk,nk+1)).

Therefore, limL→∞ δ(P (nK ,nL)) = 0 for all K. Clearly this implies that limn→∞ δ(P (m,n)) =
0 for all m.

Proof of Proposition (2.29). Suppose that {Xn} is weakly ergodic and
∑ ‖πn −

πn+1‖ < ∞, where each πn is stationary for Pn. Let π∗ = limπn; clearly the limit exists
by the assumption

∑ ‖πn − πn+1‖ <∞. Let k be fixed. Then for any l > k and m > l we
have

‖P (k,m)(i, ·)− π∗‖ ≤ ‖P (k,m)(i, ·)− πlP (l,m)‖
+‖πlP (l,m) − πm‖+ ‖πm − π∗‖.(2.30)

Let ǫ > 0. We will show that the right-hand side can be made less than ǫ if m is large
enough; we’ll do this by making a judicious choice of l. The last term is the simplest; clearly
there exists M3 such that ‖πm− π∗‖ ≤ ǫ/3 for all m ≥M3. For the second term, note that

πlP
(l,m) = πlPlP

(l+1,m) = πlP
(l+1,m)

= πl+1P
(l+1,m) + [πl − πl+1]P

(l+1,m),

so that
πlP

(l,m) − πm = [πl+1P
(l+1,m) − πm] + [πl − πl+1]P

(l+1,m).

Applying this relation recursively gives

πlP
(l,m) − πm =

m−1∑

n=l

[πn − πn+1]P
(n+1,m)

So ‖πlP (l,m) − πm‖ ≤
∑m−1

n=l ‖πn − πn+1‖. [[Why? Exercise.]] Therefore, since
∑ ‖πn −

πn+1‖ < ∞, we can make ‖πlP (l,m) − πm‖ ≤ ǫ/3 by taking m and l large enough, say,
m ≥ l ≥ L2.

Finally, for the first term on the right-hand side of (2.30), note that

‖P (k,m)(i, ·)− πlP (l,m)‖ = ‖[P (k,l)(i, ·)− πl]P (l,m)‖.

However, for any given l, we can make the last expression less than ǫ/3 by taking m
large enough—by weak ergodicity, at a large enough time m, the chain doesn’t “remember”
whether its distribution at time l was P (k,l)(i, ·) or πl! So, for all l, there is anM1(l) such that
ifm ≥M1(l) then ‖P (k,m)(i, ·)−πlP (l,m)‖ < ǫ/3. So we are done: ifm ≥ max{M3,M1(L2)},
then supi ‖P (k,m)(i, ·)− π∗‖ ≤ ǫ.

Notice how the hypotheses of the last result were used to get the terms on the right-hand
side of (2.30) small: weak ergodicity took care of the first term, and

∑ ‖πn − πn+1‖ < ∞
took care of the other two.
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2.7 Proof of the Main Theorem of Simulated Annealing

We will show that if conditions (i)–(iii) of Theorem (2.23) hold, then the
time-inhomogeneous Markov chain {Xn} for simulated annealing satisfies the sufficient
conditions for strong ergodicity.

We have used two sets of parallel notation in the last two sections; one (involving α’s
and A’s) that we introduced specifically to discuss simulated annealing and one (involving
π’s and P ’s) used in the general theory of time-inhomogeneous Markov chains. Let’s relate
them and make sure there is no confusion. The general notation Pn refers to the probability
transition matrix used in going from Xn to Xn+1. In the case of simulated annealing,
since the chain is operating at temperature Tn during that transition, we have Pn = ATn

.
Similarly, πn, the stationary distribution associated with Pn, is αTn

for simulated annealing.
We’ll also continue to use the notation P (m,n) =

∏n−1
k=m Pk =

∏n−1
k=mATk

.
To establish weak ergodicity, we want to show that the sufficient condition

∑
k[1 −

δ(P (nk,nk+1))] =∞ holds for some sequence {nk}. In fact, we will show that the condition
holds for the sequence nk = kr, that is,

(2.31)
∑

k

[1− δ(P (kr−r,kr))] =∞.

We will do this by finding an upper bound for δ(P (kr−r,kr)) that will guarantee that
δ(P (kr−r,kr)) does not get too close to 1.

Recall the definition of the radius r = mini∈Sc
maxj∈Sρ(i, j). Let i0 denote a center of

the graph, that is, a node at which the minimum in the definition of r is assumed. Also
recall the definition L = maxi∈S maxj∈N(i) |c(j)− c(i)|.

(2.32) Claim. For all sufficiently large m we have

P (m−r,m)(i, i0) ≥ D−r exp(−rL/Tm−1) for all i ∈ S,

where D = maxj d(j).

Proof: It follows immediately from the definitions of Pij(n), D, and L that for all n,
i ∈ S, and j ∈ N(i), we have

Pij(n) =
1

d(i)
min{1, e−(c(j)−c(i))/Tn} ≥ D−1e−L/Tn .

Since we did not allow i0 to be a local maximum of c(·), we must have {j ∈ N(i0) : c(j) >
c(i0)} nonempty, so that as n→∞,

Pi0,i0(n) = 1−
∑

j∈N(i0)

Pi0j(n)→ 1−
∑

j∈N(i0)
c(j)≤c(i0)

1

d(i)
=

∑

j∈N(i0)
c(j)>c(i0)

1

d(i)
> 0.

Therefore, Pi0,i0(n) ≥ D−1 exp(−L/Tn) clearly holds for large enough n.
Let i ∈ S, and consider P (m−r,m)(i, i0) = P{Xm = i0 | Xm−r = i}. Clearly this

probability is at least the conditional probability that, starting from i at time m − r, the
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chain takes a specified shortest path from i to i0 [[which is of length at most r, by the
definition of r]], and then holds at i0 for the remaining time until m. However, by the
previous paragraph, if m is large enough, this probability is in turn bounded below by

m−1∏

n=m−r
D−1e−L/Tn ≥ D−re−rL/Tm−1 ,

where we have used the assumption that Tn is decreasing in n here. Thus, P (m−r,m)(i, i0) ≥
D−re−rL/Tm−1 for large enough m.

Taking m = kr in the last claim, we get for all sufficiently large k that

P (kr−r,kr)(i, i0) ≥ D−re−rL/Tkr−1 for all i.

Thus, P (kr−r,kr) is a probability transition matrix having a column [[namely, column i0]]
all of whose entries are at least D−r exp(−rL/Tkr−1). Next we use the general observation
that if a probability transition matrix Q has a column all of whose entries are at least a,
then δ(Q) ≤ 1− a. [[Exercise [2.19] asks you to prove this.]] Therefore, for large enough k,
we have 1 − δ(P (kr−r,kr)) ≥ D−r exp(−rL/Tkr−1), which, by assumption (iii) of the main
theorem, gives (2.31). This completes the proof of weak ergodicity.

Finally, we turn to the proof of strong ergodicity. Recall that the stationary distribution
πn for Pn is given by πn(i) = (G(n))−1d(i) exp[−c(i)/Tn]. By our sufficient conditions for
strong ergodicity, we will be done if we can show that

∑ ‖πn+1 − πn‖ < ∞. This will be
easy to see from the following monotonicity properties of the stationary distributions πn.

(2.33) Lemma. If i ∈ S∗ then πn+1(i) > πn(i) for all n. If i /∈ S∗ then there exists ñi such
that πn+1(i) < πn(i) for all n ≥ ñi.
Thus, as the temperature decreases, the stationary probabilities of the optimal states in-
crease. Also, for each nonoptimal state, as the temperature decreases to 0, the stationary
probability of that state decreases eventually, that is, when the temperature is low enough.
The proof is calculus; just differentiate away. I’ll leave this as an exercise.

From this nice, monotonic behavior, the desired result follows easily. Letting ñ denote
max{ñi : i /∈ S∗},

∞∑

n=ñ

‖πn+1 − πn‖ =
∞∑

n=ñ

∑

i∈S

(πn+1 − πn)+

=
∞∑

n=ñ

∑

i∈S∗

(πn+1 − πn)

=
∑

i∈S∗

∞∑

n=ñ

(πn+1 − πn)

=
∑

i∈S∗

(π∗(i)− πñ(i)) ≤
∑

i∈S∗

π∗(i) = 1,
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so that clearly
∑∞

n=ñ ‖πn+1 − πn‖ <∞. This completes the proof of strong ergodicity.

REFERENCES: This proof came from a paper of Mitra, Romeo, and Sangiovanni-Vincentelli
called “Convergence and finite-time behavior of simulated annealing” [Advances in Applied
Probability, 18, 747–771 (1986)]. The material on time-inhomogeneous Markov chains is
covered very nicely in the book Markov chains: Theory and Applications by Isaacson and
Madsen (1976).

2.8 Card Shuffling: Speed of Convergence to Stationarity

We have seen that for an irreducible, aperiodic Markov chain {Xn} having stationary
distribution π, the distribution πn of Xn converges to π in the total variation distance. For
example, this was used in Example (1.22), which showed how to generate a nearly uniformly
distributed 4× 4 table having given row and column sums by simulating a certain Markov
chain for a long enough time. The inevitable question is: How long is “long enough”?
We could ask how close (in total variation, say) is the Markov chain to being uniformly
distributed after 100 steps? How about 1000? 50 billion?

In certain simple Markov chain examples we have discussed, it is easy to figure out the
rate of convergence of πn to π. For instance, for the Markov frog example (1.2), starting
in the initial distribution π0 = (1, 0, 0), say, we can compute the distributions π1, π2, . . . by
matrix multiplication and compare them to the stationary distribution π = (1/4, 3/8, 3/8),
getting the results shown in Figure (2.34).
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(2.34) Figure. Speed of convergence to stationarity in Markov frog example from Chapter 1.

Notice the smooth geometric rate of decrease: the log distance decreases linearly, which
means that the distance decreases to 0 geometrically. Coupling is a technique that can
sometimes shed some light on questions of this sort. For example, in Exercise ([1.27]) we
showed that ‖πn − π‖ ≤ 2

3

(
11
16

)n
for all n, [[and, in fact, ‖πn − π‖ ≤ 2

3

(
1
4

)n
]] which gives

much more information than just saying that ‖πn − π‖ → 0.
In this section we will concentrate on a simple shuffling example considered by Aldous

and Diaconis in their article “Shuffling cards and stopping times.” Again, the basic question
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is: How close is the deck to being “random” (i.e. uniformly distributed over the 52! possible
permutations) after n shuffles? Or, put another way, how many shuffles does it take to
shuffle well? Of course, the answer depends on the details of the method of shuffling;
Aldous and Diaconis say that for the riffle shuffle model, which is rather realistic, the
answer is “about 7.” In this sort of problem, in contrast to the smooth and steady sort
of decrease depicted in Figure (2.34), we will see that an interesting threshold phenomenon
arises.

2.8.1 “Top-in-at-random” Shuffle

This shuffle, which is the model of shuffling we will analyze in detail, is simpler than the
riffle shuffle for which Aldous and Diaconis gave the answer “about 7 is enough.” The
analysis we will discuss here also comes from their paper.

The top-in-at-random method would be a really silly way to shuffle a deck of cards in
practice, but it is an appealingly simple model for a first example to study. One such shuffle
consists of taking the top card off the deck and then inserting it back into the deck in a
random position. “Random” here means that the top card could end up back on top (in
which case the shuffle didn’t change the deck at all), or it could end up second from top,
third from top, ..., or at the bottom of the deck: altogether 52 equally likely positions.

Repeated performances of this shuffle on a deck of cards produces a sequence of “states”
of the deck. This sequence of states forms a Markov chain {Xn} having state space S52, the
group of permutations of the cards. This Markov chain is irreducible, aperiodic, and has
stationary distribution π = Uniform on S52 (i.e. probability 1/(52!) for each permutation);
therefore, by the Basic Limit Theorem, we may conclude that ‖πn − π‖ → 0 as n→∞.

⊲ Explaining each assertion in the previous sentence is Exercise [2.20].

2.8.2 Threshold Phenomenon

Suppose we are working with a fresh deck of d cards, which we know are in the original
order: card 1 on top, card 2 just below card 1, ..., and card d on the bottom. Then
‖π0 − π‖ = 1 − (1/d!). We also know that ‖πn − π‖ → 0 as n → ∞, by the Basic Limit
Theorem. It is natural to presume that the distance from stationarity ‖πn − π‖ decreases
to 0 in some smooth, uneventful manner. However, the fact of the matter is that ‖πn − π‖
stays close to 1 for a while, then it undergoes a rather abrupt decrease from nearly 1 to
nearly 0, and this abrupt change happens in a relatively small neighborhood of the value
n = d log d. That is, for large d the graph of ‖πn − π‖ versus n looks rather like the next
picture.

Stochastic Processes J. Chang, February 2, 2007



2.8. CARD SHUFFLING Page 75

|| π? −π ||

_�*L}�_� ?

The larger the value of the deck size d, the sharper (relative to d log d) the drop in ‖πn−π‖
near n = d log d.

Well, this is hardly a gradual or uneventful decrease! This interesting behavior of
‖πn−π‖ has been called the threshold phenomenon. The phenomenon is not limited to this
particular shuffle or even to shuffling in general, but rather seems to occur in a wide variety
of interesting Markov chains. Aldous and Diaconis give a number of examples in which
threshold phenomena can be shown to occur, but they point out that the phenomenon
is not yet very well understood, in the sense that general conditions under which the
phenomenon does or does not occur are not known.

_
?

S^7_�!�?`This seems weird, doesn’t it? As a partial an-
tidote to the uneasy feelings of mystery that tend
to accompany a first exposure to the threshold phe-
nomenon idea, let’s think about a simple problem
that is familiar to all of us, in which a threshold of
sorts also occurs. Suppose X1, X2, . . . are iid random
variables with mean 1 and variance 1. In fact, for
simplicity, let’s suppose that they have the Normal
distribution N(1, 1). Thinking of d as a large num-
ber, let Sd = X1+· · ·+Xd, and consider the probability P{Sd > n} as a function of n. Since
Sd ∼ N(d, d), it is easy to see that the graph of P{Sd > n} has a “threshold” near n = d if
d is large. In fact, the length of a neighborhood about n = d in which P{Sd > n} decreases
from nearly 1 to nearly 0 is of order

√
d. However, if d is large, then

√
d is vanishingly

small compared with d. Thus, for large d, the graph of P{Sd > n} versus n (plotted on a
scale in which n = d is at some moderate, fixed distance from n = 0) will indeed appear as
a sharp dropoff near n = d. In particular, note that the existence of a threshold for large d
does not say that the dropoff from near 1 to near 0 takes place over a shorter and shorter
time interval as d increases; it is just that the length (here O(

√
d)) of that dropoff interval

is smaller and smaller in comparison with the location (here around d) of that interval.
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2.8.3 A random time to exact stationarity
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Let’s give a name to each card in the deck: say
“card 1” is 2♥, “card 2” is 3♥, ..., “card 51” is K♠,
“card 52” is A♠. Suppose we start with the deck in
the pristine order shown to the right. Wouldn’t it be
nice if we could say, “After 1000 shuffles the deck will
be exactly random,” or maybe “After 1,000,000 shuf-
fles the deck will be exactly random”? Well, sorry.
We can’t. We know πn gets closer and closer to the
uniform distribution as n increases, but unfortunately
πn will never become exactly random, even if n is 53
bezillion.

However, it is possible to find a random time T at which the deck becomes exactly
uniformly distributed, that is, XT ∼ Unif(S52)! Here is an example of such a random time.
To describe it, let’s agree that “card i” always refers to the same card [[e.g. card 52 = A♠]],
while terms like “top card,” “card in position 2,” and so on just refer to whatever card
happens to be on top, in position 2, and so on at the time under consideration. Also note
that we may describe a sequence of shuffles simply by a sequence of iid random variables
U1, U2, . . . uniformly distributed on {1, 2, . . . , 52}: just say that the ith shuffle moves the
top card to position Ui. Define the following random times:

T1 = inf{n : Un = 52} = 1st time a top card goes below card 52,

T2 = inf{n > T1 : Un ≥ 51} = 2nd time a top card goes below card 52,

T3 = inf{n > T2 : Un ≥ 50} = 3rd time a top card goes below card 52,

...

T51 = inf{n > T50 : Un ≥ 2} = 51st time a top card goes below card 52,

and

(2.35) T = T52 = T51 + 1.

It is not hard to see that T has the desired property and that XT is uniformly distributed.
To understand this, start with T1. At time T1, we know that some card is below card 52;
we don’t know which card, but that will not matter. After time T1 we continue to shuffle
until T2, at which time another card goes below card 52. At time T2, there are 2 cards
below card 52. Again, we do not know which cards they are, but conditional on which 2
cards are below card 52, each of the two possible orderings of those 2 cards is equally likely.
Similarly, we continue to shuffle until time T3, at which time there are some 3 cards below
card 52, and, whatever those 3 cards are, each of their (3!) possible relative positions in the
deck is equally likely. And so on. At time T51, card 52 has risen all the way up to become
the top card, and the other 51 cards are below card 52 (now we do know which cards they
are), and those 51 cards are in random positions (i.e. uniform over 51! possibilities). Now
all we have to do is shuffle one more time to get card 52 in random position, so that at
time T = T52 = T51 + 1, the whole deck is random.
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Let us find ET . Clearly by the definitions above we have T1 ∼ Geom(1/52), (T2 −
T1) ∼ Geom(2/52), ..., (T51 − T50) ∼ Geom(51/52), and (T52 − T51) ∼ Geom(52/52) = 1.
Therefore,

ET = E(T1) + E(T2 − T1) + · · ·+ (T51 − T50) + E(T52 − T51)

= 52 + (52/2) + (52/3) + · · ·+ (52/51) + (52/52)

= 52

(
1 +

1

2
+

1

3
+ · · ·+ 1

51
+

1

52

)
≈ 52 log 52.

Analogously, if the deck had d cards rather than 52, we would have obtained ET ∼ d log d
(for large d), where T is now a random time at which the whole deck of d cards becomes
uniformly distributed on Sd.

2.8.4 Strong Stationary Times

The main new idea in the analysis of the shuffling example is that of a strong stationary
time. As we have observed, the random variable T that we just constructed has the property
that XT ∼ π. T also has two other important properties. First, XT is independent of T .
Second, T is a stopping time , that is, for each n, one can determine whether or not T = n
just by looking at the values of X0, . . . , Xn. In particular, to determine whether or not
T = n it is not necessary to know any “future” values Xn+1, Xn+2, . . ..

A random variable having the three properties just enumerated is called a strong sta-
tionary time.

(2.36) Definition. A random variable T satisfying

(i) T is a stopping time,

(ii) XT is distributed as π, and

(iii) XT is independent of T

is called a strong stationary time.
So what’s so good about strong stationary times? For us, the answer is contained in

the following theorem, which says that strong stationary times satisfy the same inequality
that we derived for coupling times in (1.37).

(2.37) Lemma. If T is a strong stationary time for the Markov chain {Xn}, then ‖πn−π‖ ≤
P{T > n} for all n.

Proof: Letting A ⊆ S, we will begin by showing that

(2.38) P{T ≤ n,Xn ∈ A} = P{T ≤ n}π(A).

To see this, let k ≤ n and write P{T = k,Xn ∈ A} =
∑

i P{T = k,Xk = i,Xn ∈ A} =∑
i P{T = k,Xk = i}P{Xn ∈ A | T = k,Xk = i}. But P{Xn ∈ A | T = k,Xk = i} =

P{Xn ∈ A | Xk = i} =: Pn−k(i, A) by the Markov property and the assumption that T
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is a stopping time. Also, P{T = k,Xk = i} = P{T = k,XT = i} = P{T = k}P{XT =
i} = P{T = k}π(i) by properties (ii) and (iii) of the definition of strong stationary time.
Substituting gives P{T = k,Xn ∈ A} = P{T = k}∑

i π(i)Pn−k(i, A) = P{T = k}π(A) by
the stationarity of π. Summing this over k ≤ n gives (2.38).

Next, similarly to the proof of the coupling inequality, we decompose according to
whether T ≤ n or T > n to show that for A ⊆ S

πn(A)− π(A) = P{Xn ∈ A} − π(A) = P{Xn ∈ A, T ≤ n}+ P{Xn ∈ A, T > n} − π(A)

= π(A)P{T ≤ n}+ P{Xn ∈ A, T > n} − π(A) by (2.38)

= P{Xn ∈ A, T > n} − π(A)P{T > n}.

Since each of the last two quantities lies between 0 and P{T > n}, we conclude that
|πn(A)− π(A)| ≤ P{T > n}, so that ‖πn − π‖ ≤ P{T > n}.

2.8.5 Proof of threshold phenomenon in shuffling

Let ∆(n) denote ‖πn − π‖. The proof that the threshold phenomenon occurs in the
top-in-at-random shuffle consists of two parts: Roughly speaking, the first part shows that
∆(n) is close to 0 for n slightly larger than d log d, and the second part shows that ∆(n) is
close to 1 for n slightly smaller than d log d, where in both cases the meaning of “slightly”
is “small relative to d log d.”

The first part is addressed by the next result.

(2.39) Theorem. For T as defined in (2.35), we have

∆(d log d+ cd) ≤ P{T > d log d+ cd} ≤ e−c for all c ≥ 0.

Note that for each fixed c, cd is small relative to d log d if d is large enough.

Proof: The first inequality in (2.39) is just Lemma (2.37), so our task is to prove the
second inequality. Recall that, as discussed above, T1 ∼ Geom(1/d), T2−T1 ∼ Geom(2/d),
T3−T2 ∼ Geom(3/d), ..., and T −Td−1 = Td−Td−1 ∼ Geom(d/d) = 1. It is also clear that
T1, T2 − T1, T3 − T2, . . . , and T − Td−1 are independent. Thus,

T ∼ Geom

(
1

d

)
⊕Geom

(
2

d

)
⊕ · · · ⊕Geom

(
d− 1

d

)
⊕ 1,

where the symbol “⊕” indicates a sum of independent random variables. However, observe
that the distribution 1 ⊕ Geom[(d − 1)/d] ⊕ · · · ⊕ Geom[1/d] is also the distribution that
arises in the famous coupon collector’s problem. [[To review the coupon collector’s problem:
Suppose that each box of Raisin Bran cereal contains one of d possible coupons numbered
{1, . . . , d}, with the coupons in different boxes being independent and uniformly distributed
on {1, . . . , d}. The number of cereal boxes a collector must buy in order to obtain a complete
set of d coupons has the distribution 1⊕Geom[(d− 1)/d]⊕ · · · ⊕Geom[1/d].]]
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To find a bound on P{T > n}, let us adopt this coupon collecting interpretation of T .
For each i = 1, . . . , d define an event

Bi = {coupon i does not appear among the first n cereal boxes}.

Then the event T > n is just the union
⋃d
i=1Bi, so that

P{T > n} ≤
d∑

i=1

P(Bi) =
d∑

i=1

(
d− 1

d

)n

= d

(
1− 1

d

)n

≤ de−n/d,

where the last inequality uses the fact that 1 − x ≤ e−x for all numbers x. Setting n =
d log d+ cd gives

P{T > n} ≤ de−(log d+c) = e−c,

as desired.

For the second part of the proof, let us temporarily be a bit more fastidious about

notation: Instead of just writing πn and π, let us write π
(d)
n and π(d) to indicate explicitly

the dependence of the various distributions on the deck size d.

(2.40) Theorem. Let k(d) = d log d − cdd, where {cd} is a sequence of numbers that
approaches infinity as d→∞. Then

‖π(d)
k(d) − π

(d)‖ → 1 as d→∞.

Note: The case of interest for establishing the threshold at d log d is when cd = o(log d),
since in that case k(d) ∼ d log d.

Proof: Let’s start with some fumbling around, intended to provide some glimmer of
hope that we might have been able to think of this proof ourselves. The proof proceeds

by bounding ‖π(d)
k(d) − π(d)‖ below by something that is close to 1 for large d. By the

definition of the total variation distance ‖ · ‖, this may be done by finding events Ad such

that ‖π(d)
k(d)(Ad) − π(d)(Ad)‖ is close to 1. OK, now let’s drop those pesky d’s from the

notation, and say that for large d, we want to find events A such that πk(A) is large (close
to 1) while π(A) is small (close to 0). Fumbling time. . .

• How about A = {card d is still on the bottom}?

– Is π(A) small? Yes: π(A) = 1/d.

– Is πk(A) large? No: since k ≫ d, clearly P{T1 > k} = P{Geom(1/d) > k} is not
large, so that P{card d is still on the bottom at time k} is not large.

• How about A = {cards d− 1 and d are still in their original positions}?

– Is π(A) small? Yes: π(A) = 1/[d(d− 1)].

– Is πk(A) large? No: in fact, it is smaller than the previous πk(A) we just
considered. You should be ashamed of yourself for that suggestion!
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• How about just requiring cards d − 1 and d still be in their original order , that is,
A = {card d− 1 still above card d in the deck}?

– Is πk(A) large? Maybe; this doesn’t seem very obvious.

– Is π(A) small? No: π(A) = 1/2.

• Well, that may look discouraging. But with a little more thought we can at least
extend the previous idea to get π(A) small while keeping a “maybe” for πk(A) being
large, as follows. How about

A = Ad,a = {cards d− a+ 1, d− a+ 2, . . . , d still in their original order}?

– Is πk(A) large? Still maybe.

– Is π(A) small? π(A) = 1/(a!), so yes if a increases with d.

Let’s review what we are doing. We are given a sequence of numbers {cd} such that
cd →∞ as d→∞. [[As noted, we are interested in the case where we also have cd = o(log d),
but the proof will not require this.]] For each d, we have also defined a number k = k(d) =
d log d − cdd. For each d and each a ≤ d we have identified an event A = Ad,a. What we
want to show is that there is a sequence {ad} of values of a such that, as d→∞, we have

πk(A)→ 1 and π(A)→ 0. [[Actually we should write these statements as π
(d)
k(d)(Ad,ad

)→ 1

and π(d)(Ad,ad
)→ 0, but I doubt any of us really wants that.]]

As for getting the second statement, since π(A) = 1/(a!), any sequence {ad} that tends
to infinity as d→∞ will suffice.

To get the first statement to hold we need a little more analysis. Suppose that in k
shuffles, card d− a+ 1 has not yet “risen to the top of the deck.” In this case, clearly the
event A occurs. Letting U denote the number of shuffles required for card d− a+ 1 to rise
to the top of the deck, we thus have

πk(A) ≥ P{U > k}.

Note that

U ∼ Geom
(a
d

)
⊕Geom

(
a+ 1

d

)
⊕ · · · ⊕Geom

(
d− 1

d

)
.

The plan now is to use Chebyshev’s inequality to show that we can cause P{U > k} → 1
to hold by choosing ad appropriately. This will show that πk(A)→ 1, and hence prove the
theorem.

The ingredients needed to use Chebyshev are E(U) and Var(U). Since E[Geom(p)] =
1/p, we have

E(U) = d

(
1

a
+

1

a+ 1
+ · · ·+ 1

d− 1

)
= d

(
log d− log a+ o(1)

)

where the second equality assumes only that ad → ∞. Next, since Var[Geom(p)] = (1 −
p)/p2 ≤ 1/p2, using independence gives

Var(U) ≤ d2

(
1

a2
+

1

(a+ 1)2
+ · · ·

)
=: ǫ(a)d2,
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where ǫ(a)→ 0 as a→∞ (or d→∞ ).
So here it is in a nutshell. Since Var(U) = o(d2), so that U has standard deviation

SD(U) = o(d), all we have to do is choose ad so that the difference

E(U)− k = d(log d− log ad + o(1))− d(log d− cd) ∼ d(cd − log ad)

is large compared with SD(U), that is, at least the order of magnitude of d. But that’s easy;
for example, if we choose ad = ecd/2, then E(U) − k ∼ d(cd/2), whose order of magnitude
is larger than d.

To say this in a bit more detail, choose ad = ecd/2, say. [[Many other choices would also
do.]] Then of course ad →∞. So we have

P{U > k(d)} = P{U > d(log d− cd)}
= P{U − E(U) > d(log d− cd)− d(log d− log ad + o(1))}
= P{U − E(U) > −d(cd − log ad + o(1))}.

Substituting ad = ecd/2, this becomes

P{U > k(d)} = P{U − E(U) > −d(cd/2 + o(1))}
≥ P{|U − E(U)| < d(cd/2 + o(1))}

≥ 1− Var(U)

d2(cd/2 + o(1))2

≥ 1− ǫ(ad)

(cd/2 + o(1))2
.

Since the last expression approaches 1 as d→∞, we are done.

This completes our analysis of the top-in-at-random shuffle. There are lots of other
interesting things to look at in the Aldous and Diaconis paper as well as some of the other
references. For example, a book of P. Diaconis applies group representation theory to this
sort of problem. The paper of Brad Mann is a readable treatment of the riffle shuffle.

2.9 Exercises

[2.1] For a branching process {Gt} with G0 = 1, define the probability generating function of Gt
to be ψt, that is,

ψt(z) = E(zGt) =

∞∑

k=0

zkP{Gt = k}.

With ψ defined as in (2.1), show that ψ1(z) = ψ(z), ψ2(z) = ψ(ψ(z)), ψ3(z) = ψ(ψ(ψ(z))),
and so on.

[2.2] With ψt defined as in Exercise [2.1], show that P{Gt = 1} = ψ′
t(0).
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[2.3] Consider a branching process with offspring distribution Poisson(2), that is, Poisson with
mean 2. Calculate the extinction probability ρ to four decimal places.

[2.4] As in the previous exercise, consider again a branching process with offspring distribution
Poisson(2). We know that the process will either go extinct or diverge to infinity, and the
probability that it is any fixed finite value should converge to 0 as t→∞. In this exercise
you will investigate how fast such probabilities converge to 0. In particular, consider the
probability P{Gt = 1}, and find the limiting ratio

lim
t→∞

P{Gt+1 = 1}
P{Gt = 1} .

This may be interpreted as a rate of geometric decrease of P{Gt = 1}.

[[Hint: use the result of Exercise [2.2].]]

[2.5] Consider a branching process {Gt} with G0 = 1 and offspring distribution f(k) = qkp for
k = 0, 1, . . ., where q = 1 − p. So f is the probability mass function of X − 1, where
X ∼ Geom(p).

(a) Show that
ψ(z)− (p/q)

ψ(z)− 1
=
p

q

(
z − (p/q)

z − 1

)
.

(b) Derive the expressions

ψt(z) =

{
p[(qt−pt)−qz(qt−1−pt−1)]
qt+1−pt+1−qz(qt−pt)

if p 6= 1/2
t−(t−1)z
t+1−tz if p = 1/2.

[[Hint: The first part of the problem makes this part quite easy. If you are finding
yourself in a depressing, messy calculation, you are missing the easy way. For p 6= 1/2,
consider the fraction [ψt(z)− (p/q)]/[ψt(z)− 1].]]

(c) What is the probability of ultimate extinction, as a function of p?

[[Hint: Observe that P{Gt = 0} = ψt(0).]]

[2.6] Let {Gt} be a supercritical (i.e. µ = E(X) > 1) branching process with extinction proba-
bility ρ ∈ (0, 1). Let B =

⋃{Gt = 0} denote the event of eventual extinction.

(a) Show that E(zGt | B) = (1/ρ)ψt(ρz).

(b) Consider again the example of Exercise [2.5], with p < 1/2. Let {G̃t} be a branching
process of the same form as {Gt}, except with the probabilities p and q interchanged.
So {G̃t} is subcritical, and goes extinct with probability 1. Show that the G process,
conditional on the event B, behaves like the G̃ process, in the sense that E(zGt | B) =

E(zG̃t).

(c) Isn’t that interesting?
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[2.7] Consider an irreducible, time-reversible Markov chain {Xt} with Xt ∼ π, where the distri-
bution π is stationary. Let A be a subset of the state space. Let 0 < α < 1, and define on
the same state space a Markov chain {Yt} having probability transition matrix Q satisfying,
for i 6= j,

Q(i, j) =

{
αP (i, j) if i ∈ A and j /∈ A
P (i, j) otherwise.

Define the diagonal elements Q(i, i) so that the rows of Q sum to 1.

(a) What is the stationary distribution of {Yt}, in terms of π and α?

(b) Show that the chain {Yt} is also time-reversible.

(c) Show by example that the simple relationship of part (1) need not hold if we drop the
assumption that X is reversible.

[2.8] Let {Xt} have probability transition matrix P and initial distribution π0. Imagine observing
the process until time n, seeing X0, X1, . . . , Xn−1, Xn. The time reversal of this sequence of
random variables is Xn, Xn−1, . . . , X1, X0, which we can think of as another random process
X̃. That is, given the Markov chain X, define the reversed process {X̃t} by X̃t = Xn−t.

(a) Show that

P{Xt = j | Xt+1 = i,Xt+2 = xt+2, . . . , Xt+n = xt+n} =
πt(j)P (j, i)

πt+1(i)

(b) Use part (a) to show that the process {X̃t} is a Markov chain, although it is not time
homogeneous in general.

(c) Suppose {Xt} has stationary distribution π, and suppose X0 is distributed according
to π. Show that the reversed process {X̃t} is a time-homogeneous Markov chain.

[2.9] Let p = (p1, . . . , pd) be a probability mass function on {1, . . . , d}. Consider the residual
lifetime chain, discussed in Exercise [1.14], which has probability transition matrix

P =





0 1 2 · · · d− 2 d− 1

0 p1 p2 p3 · · · pd−1 pd
1 1 0 0 · · · 0 0
2 0 1 0 · · · 0 0
...

d− 1 0 0 0 · · · 1 0





and stationary distribution π(i) = P{X > i}/E(X), where X denotes a random variable
distributed according to p.

(a) Find P̃ , the probability transition matrix for the reversed chain.
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(b) In renewal theory, the time since the most recent renewal is called the age, and the
process {At}, whose state At is the age at time t, is called the age process. Show that
the matrix P̃ that you have just found is the probability transition matrix of the age
process. That is, the time-reversed residual lifetime chain is the age chain.

[2.10] Let’s think about the irreducibility and aperiodicity conditions of the Basic Limit Theorem
as applied to the Metropolis method. Suppose that the graph structure on S is a connected
graph. Let π be any distribution other than πrw, the stationary distribution of a random
walk on the graph. Show that the Basic Limit Theorem implies that the Metropolis chain
converges in distribution to π.

[2.11] Why was the condition π 6= πrw needed in Exercise [2.10]?

[2.12] [[Metropolis-Hastings method]] For simplicity, let us assume that π is positive, so that
we won’t have to worry about dividing by 0. Choose any probability transition matrix
Q = (Q(i, j)) [[again, suppose it is positive]], and define P (i, j) for i 6= j by

P (i, j) = Q(i, j)min

(
1,
π(j)Q(j, i)

π(i)Q(i, j)

)
,

and of course define P (i, i) = 1−∑
j 6=i P (i, j). Show that the probability transition matrix

P has stationary distribution π. Show how the Metropolis method we have discussed is a
special case of this Metropolis-Hastings method.

[2.13] [[Computing project: traveling salesman problem]] Make up an example of the traveling
salesman problem; it could look similar to the first figure in Example (2.22) if you’d like.
Write a program to implement simulated annealing and produce a sequence of figures
showing various improving traveling salesman tours. You could even produce a slithering
snake movie if you are so inspired.

[2.14] For simulated annealing, temperature schedules of the form (2.20) decrease excruciatingly
slowly. It is reasonable to ask whether we could decrease the temperature faster and
still retain a guarantee of convergence in distribution to global optima. Let c be a positive
number, and consider performing simulated annealing with the cooling schedule Tn = bn−c.
Of course, this schedule decreases faster than (2.20), no matter how small c is. Can you
give an example that shows that such a schedule decreases too fast, in the sense that the
process has positive probability of getting stuck in a local minimum forever? Thus, even
Tn = n−.0001 cools “too fast”!

[2.15] [[A creative writing, essay-type question]] Do you care about convergence in distribution to
a global minimum? Does this property of simulated annealing make you happy?

[2.16] Prove (2.18).
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[2.17] Here is yet another interpretation of total variation distance. Let µ and ν be distributions
on a finite set S. Show that

‖µ− ν‖ = min P{X 6= Y },

where the minimum is taken over all P, X, and Y such that X has distribution µ and Y
has distribution ν.

[2.18] Prove Lemma (2.27) using coupling.

Hint: Defining R = PQ, we want to show that for all i and j,

‖Ri· −Rj·‖ ≤ sup
k,l
‖Pk· − Pl·‖ sup

k,l
‖Qk· −Ql·‖.

Construct Markov chainsX0
P−→X1

Q−→X2 and Y0
P−→Y1

Q−→Y2 withX0 = i and Y0 = j. Take
(X1, Y1) to be a coupling achieving the total variation distance ‖Pi·−Pj·‖. Then, conditional
on (X1, Y1), take X2 and Y2 to achieve the total variation distance ‖QX1· −QY1·‖.

[2.19] Show that if a probability transition matrix Q has a column all of whose entries are at least
a, then δ(Q) ≤ 1− a.

[2.20] Repeated performances of the top-in-at-random shuffle on a deck of cards produces a
Markov chain {Xn} having state space S52, the group of permutations of the cards.
Show that this Markov chain is irreducible, aperiodic, and has stationary distribution
π = Uniform on S52 (i.e. probability 1/(52!) for each permutation), so that, by the Basic
Limit Theorem, we may conclude that ‖πn − π‖ → 0 as n→∞.

[2.21] Why do we require the “strong” in strong stationary times? That is, in Definition (2.36),
although I’m not so inclined to question the requirement XT ∼ π, why do we require XT

to be independent of T? It is easy to see where this is used in the proof of the fundamental
inequality ‖πn − π‖ ≤ P{T > n}, but that is only a partial answer. The real question
is whether the fundamental inequality could fail to hold if we do not require XT to be
independent of T . Can you find an example?
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Things to do
• Add a section introducing optimal stopping, dynamic programming, and Markov

decision problems.
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3. Markov Random Fields and
Hidden Markov Models

Section 1. MRF’s on graphs and HMM’s.
Section 2. Bayesian framework
Section 3. The Hammersley-Clifford Theorem and Gibbs Distri-
butions
Section 4. Phase transitions in the Ising model.
Section 5. Likelihood and data analysis in hidden Markov
chains.
Section 6. Simulating MRF’s, the Gibbs’ sampler.

In this chapter we will look at some aspects of Markov random fields (MRF’s), hidden
Markov models (HMM’s), and their applications. These models have been successfully used
in an impressive variety of applications. For example, state of the art speech recognition
systems are based on hidden Markov models. Other examples of application areas include
image processing, evolutionary tree reconstruction, DNA sequence alignment, cryptography,
modeling ion channels of neurons, and spatial statistics.

3.1 MRF’s on Graphs and HMM’s

A stochastic process is a collection of random variables {Xt : t ∈ T} indexed by some
subset T of the real line R. The elements of T are often interpreted as times, in which
case Xt represents the state at time t of the random process under consideration. The
term random field refers to a generalization of the notion of a stochastic process: a random
field {Xs : s ∈ G} is still a collection of random variables, but now the index set G need
not be a subset of R. For example, G could be a subset of the plane R2; such random
fields are naturally of interest in certain image processing problems, in which an observed
image might be modeled as an unknown “true” image plus some random “noise”. In this
chapter, we will be considering G to be the set of nodes of a graph. (This set of nodes will
be finite, or countably infinite at most.) Important aspects of the dependence among the
random variables will be determined by the edges of the graph through a generalization of
the Markov property.

(3.1) Notation. Given a graph G, we say two nodes s and t are neighbors, denoted
s ∼ t, if s and t are joined by an edge of the graph. We do not consider a node to be
a neighbor of itself. For a node t ∈ G, let N(t) denote the set of neighbors of t, that is,
N(t) = {s ∈ G : s ∼ t}.
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(3.2) Definition. Suppose we are given a graph G having set of nodes {1, . . . , n} and
a given neighborhood structure N(t) = {neighbors of node t}. The collection of random
variables (X1, . . . , Xn) is a Markov random field on G if

(3.3) P{Xt = xt | Xs = xs for s 6= t} = P{Xt = xt | Xs = xs for s ∈ N(t)}

for all nodes t ∈ {1, . . . , n}.
Some compact notation will be convenient, even though, strictly speaking, much of it

is sloppy and an abuse of notation. For a subset of nodes A ⊂ G, let xA denote the vector
(xs : s ∈ A). We will lazily write p(xt | xN(t)) in place of the more long-winded expression
P{Xt = xt | Xs = xs for s ∈ N(t)}. Also, we will write (xs : s 6= t) as x6=t. Thus, the
Markov property (3.3) may be written as

(3.4) p(xt | x6=t) = p(xt | xN(t)).

At times we may also use loose language like “the graph G = {1, . . . , n}” and “for all nodes
s ∈ G,” even though the graph G is more than just its set of nodes.

We allow different random variables to take values in different state spaces; say the set
of possible values for Xt is St = {0, 1, . . . ,mt}. The state space for the whole random field
(X1, . . . , Xn) is the product S = S1 × · · · × Sn.

Warning: in the Markov business, one sees two different kinds of graphs in common use,
and it is easy to get confused.

[! [P[; [?���������

The issue is that some graphs depict the index set (or “time” set) of the Markov random
field, while others depict the state space of the Markov random field. The graph G referred
to in the definition of MRF above is of the first type; an example of such a graph might
be the graph on the left above. The graphs that we had in mind earlier when we were
discussing Markov chains (e.g. random walks on graphs and simulated annealing) were of
the second type: the state space of a Markov chain. For example, for optimizing a function
defined on a cube, the graph might look like the graph on the right above, since our Markov
chain is then searching among the vertices of the cube. However, the corresponding graph
of the index set would still look like the graph on the left. This has nothing to do with
the particular Markov chain we have in mind; the “time set graph” of every MC has this
appearance. This graph tells us, for example, that P (x2 | x6=2) = P (x2 | x1, x3).

A subtopic of Markov random fields is the study of hidden Markov models (HMM’s). A
HMM is a Markov random field in which some of the random variables are observable and
others are not (that is, they are “hidden”). For example, in speech recognition HMM’s of
interest might resemble
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[! [P[; [?
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(3.5) Figure. The hidden Markov chain model.

The graph above models noisy observation of a Markov chain; the “hidden” Markov chain
{Xt} runs along the top, and the observed process is {Yt}. We will adopt the convention of
using the letter X for hidden random variables and Y for observed random variables. Sim-
ilarly, the graph below represents noisy observation of a two-dimensional Markov random
field.

[|

\|

In image processing, the hidden Markov random field {Xt} along the top might represent
the true, unknown image, and we observe the random field {Yt}, which has been corrupted
by noise. A simple model of noise in a black and white image, say, might be that a demon
goes through the image, pixel by pixel, and flips pixel t (from black to white or white to
black) independently with some probability p. In this case,

P{Yt = yt | X = x, Y6=t = y 6=t} = P{Yt = yt | Xt = xt} = p if yt 6= xt.

We could also model blurring by having each Yt depend not only on the Xt directly above
it, but rather on several nearby X’s. Such a Markov random field model would have more
connections from the top layer to the bottom one (and also possibly more within the top
layer).

3.2 Bayesian Framework

What do we get out of these models? How can we use them? One approach is Bayesian:
HMM’s fit nicely in the Bayesian framework. Here X is the object of interest; it is un-
known. For example, in modeling a noisy image, X could be the true image. We consider
the unknown X to be random, and we assume it has a certain prior distribution. This
distribution, our probabilistic model for X, is assumed to be a Markov random field. We
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also postulate a certain probabilistic model for Y conditional on X. This conditional distri-
bution of Y given X reflects our ideas about the noise or blurring or whatever transforms
the hidden true image X into the image Y that we observe. Given our assumed prior dis-
tribution of X and conditional distribution of (Y | X), Bayes’ formula gives the posterior
distribution of (X | Y ). Thus, given an observed value Y = y, in principle at least we get
a posterior distribution P{X = · | Y = y} over all possible true images, so that (again in
principle at least) we could make a variety of reasonable choices of our estimator of X. For
example, we could choose the x that maximizes P{X = x | Y = y}. This is called “MAP
estimation,” where MAP stands for “maximum a posteriori .”

3.3 The Hammersley-Clifford Theorem and Gibbs Distribu-
tions

We started our discussion of Markov chains in Chapter 1 by saying how to specify a Markov
chain, which requires specifying a state space, initial distribution, and a probability tran-
sition structure. How do we specify a Markov random field? A look at (3.4) suggests that
a specification be done in terms of conditional distributions of the form p(xt | xN(t)). Let’s
think about an example that suggests what goes wrong with this approach.

(3.6) Example. An attractive feature of Markov random field models for images is that,
despite their simplicity (which may be their most attractive feature), they can capture the
idea that images tend to have a degree of “cohesiveness” — pixels located near to each other
tend to have the same or similar colors. Suppose we were designing a Markov random field
model (perhaps a prior distribution to use in a Bayesian analysis) for images on the three
by three lattice shown below.

[! [P[;

[� [<[ 

[� [d[9

(3.7) Figure. A three-by-three lattice graph as a toy “image” model.

A configuration of just 9 pixels hardly deserves to be called an “image,” but we should start
small to get the idea. Here is an example of how we might contemplate an appropriate joint
distribution for (X1, . . . , X9). For each pixel, let us specify the conditional distribution of
its color given the colors of its neighbors. Suppose there are two colors: 0 and 1. For the
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center pixel, a specification like

(3.8) P{X5 = 1|X2, X4, X6, X8} =






.1 if X2 +X4 +X6 +X8 = 0

.3 if X2 +X4 +X6 +X8 = 1

.5 if X2 +X4 +X6 +X8 = 2

.7 if X2 +X4 +X6 +X8 = 3

.9 if X2 +X4 +X6 +X8 = 4,

for example, might appeal to us. We might feel that such a specification captures our idea
that if a pixel has neighbors that are mostly of one color, then that pixel is likely to be of
the same color. There are four pixels on the edges that have three neighbors. We might
like these pixels to have the conditional distribution

(3.9) P{Xk = 1|neighbors} =






.2 if sum of neighbors=0

.4 if sum of neighbors=1

.6 if sum of neighbors=2

.8 if sum of neighbors=3,

where k is 2, 4, 6, or 8. Finally, for the four corner pixels k = 1, 3, 7, and 9 that have two
neighbors each, we might choose

P{Xk = 1|neighbors} =






.25 if sum of neighbors=0

.5 if sum of neighbors=1

.75 if sum of neighbors=2.

Again, let’s just suppose we felt like specifying these distributions, say because they seemed
to have about the right amount of “cohesiveness” or whatever to reflect our opinions about
the true image.

There’s a problem, folks — we have specified this distribution out of existence! These
conditional distributions are not consistent with each other; that is, there is no joint distri-
bution of X1, . . . , X9 having the given distributions as its conditional distributions. So our
careful introspection has literally led to nothing.

We can see the incompatibility of the specified conditional distributions by assuming
that they hold and then deriving conclusions that contradict each other. We could start
with the three ratios of probabilities

P




0 0 0
0 1 0
0 0 0





P




0 0 0
0 0 0
0 0 0





=
0.1

0.9
,

P




0 0 0
1 1 0
0 0 0





P




0 0 0
0 1 0
0 0 0





=
0.4

0.6
, and

P




0 0 0
1 0 0
0 0 0





P




0 0 0
1 1 0
0 0 0





=
0.7

0.3
,
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which follow from (3.8), (3.9), and (3.8), respectively. Multiplying the last three equations
gives another ratio

P




0 0 0
1 0 0
0 0 0





P




0 0 0
0 0 0
0 0 0





=
(0.1)(0.4)(0.7)

(0.9)(0.6)(0.3)
= 0.1728,

whereas (3.9) implies that the last ratio should be (0.2)/(0.8) = 0.25. How sad.

In general, we cannot hope to specify a full set of conditional distributions as we tried to
do above, where by a “full set of conditional distributions” for (X1, . . . , Xn), say, we mean
the n conditional distributions of the form p(xt | x6=t) for t = 1, . . . , n. A quick way to
see that there should be some kind of problem here is to “count equations and unknowns.”

Let’s do this for the simplest nontrivial example of a Markov random field:
;� ;�

That is, we are just looking at the joint distribution of two random variables X1 and X2; the
Markov property doesn’t really say anything here. Again for simplicity, we’ll suppose X1

and X2 can take on only the values 0 and 1. In this case, specifying a joint distribution of
X1 and X2 involves choosing 3 numbers: we have to specify 3 of the 4 values p(x1, x2), and
the fourth is then determined since the sum must be one. On the other hand, a specification
of a full set of conditional distributions involves choosing 4 numbers; for example, we might
choose the conditional distribution of X1 given X2 to be

(3.10) P{X1 = 1|X2} =

{
.3 if X2 = 0

.6 if X2 = 1

and the conditional distribution of X2 given X1 to be

(3.11) P{X2 = 1|X1} =

{
.2 if X1 = 0

.8 if X1 = 1.

That clearly looks like trouble; we have only 3 numbers that we can play with in the
joint distribution to try to fulfill 4 specified conditions. Just as we cannot generally solve
a system of 4 equations in 3 unknowns, in general we cannot find a joint distribution of
(X1, X2) that is consistent with the specified conditional distributions.

⊲ Exercise [3.1] asks you to prove that the trouble here is real.

Thus, innocently writing down some seemingly reasonable conditional distributions gen-
erally produces contradictions. These considerations make conditional distributions look
unfriendly and difficult to work with. One might worry that MRF’s also do not look so
promising at this point, since the Markov property is defined in terms of the unfriendly
conditional distributions. Also, it is embarrassing to be caught analyzing things that do
not exist.
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Fortunately, the Hammersley-Clifford Theorem says that a random field’s having
the Markov property is equivalent to its having a Gibbs distribution , which is a friendly
sort of distribution. Thus, instead of worrying about specifying our MRF’s in terms of
consistent conditional distributions, we can just consider Gibbs distributions, which are
simple to write down and work with.

To state the H-C theorem, we need a definition from graph theory.

(3.12) Definition. A set of notes C is complete if all distinct nodes in C are neighbors
of each other. That is, C is not complete if it contains two nodes that are not neighbors. A
clique is a maximal complete set of nodes, that is, C is a clique if C is complete and there
is no complete set of nodes D that strictly contains C.

(3.13) Definition. Let G be a finite graph. A Gibbs distribution with respect to G is
a probability mass function that can be expressed in the form

(3.14) p(x) =
∏

C complete

VC(x),

where each VC is a function that depends only on the values xC = (xs : s ∈ C) of x at the
nodes in the clique C. That is, the function VC satisfies VC(x) = VC(y) if xC = yC .

By combining functions VC for sets C that are subsets of the same clique, we see that
we can further reduce the product in the definition of Gibbs distribution to

p(x) =
∏

C a clique

VC(x),

(3.15) Theorem [Hammersley-Clifford]. Suppose that X = (X1, . . . , Xn) has positive
joint probability mass function. X is a Markov random field on G if and only if X has a
Gibbs distribution with respect to G.

The history of this result is interesting. Hammersley and Clifford discovered the theo-
rem in 1968, but kept delaying publication because they kept thinking they should be able
to remove or relax the unattractive positivity assumption. For some years, through less for-
mal means of communication, the world became familiar with this important, unpublished
theorem, and in the meantime, a number of proofs appeared by others. Clifford published
a proof in 1990.

Proof: First a note on the notation we will use. Each random variable Xt takes its values
in some finite set St, and the whole Markov random field X = (X1, . . . , Xn) takes values
in the state space S = S1 × · · · × Sn. Because the names of the elements of the sets St

are irrelevant, and because it will be convenient in the proof below, let St = {0, 1, . . . ,mt}.
With this convention, note in particular that from each set St, we have arbitrarily chosen
one element to call “0.”

One direction of the proof is easy. Suppose that X has a Gibbs distribution. It is
sufficient to show that the ratio

P{Xt = xt | X 6=t = x6=t}
P{Xt = 0 | X 6=t = x6=t}

△

=
p(xt | x6=t)
p(0t | x6=t)

=
p(xt, x6=t)
p(0t, x6=t)
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depend only on xN(t). This ratio is

p(xt, x6=t)
p(0t, x6=t)

=

∏
t∈C VC(xt, x6=t)∏
t∈C VC(0t, x6=t)

[∏
t/∈C VC(xt, x6=t)∏
t/∈C VC(0t, x6=t)

]
.

But the fraction in square brackets is 1, since changing xt to 0t does not change VC if node
t is not in C. So the ratio involves only functions VC , where node t is in the complete set
C, so that every other node in C is a neighbor of t. Thus, such functions VC depend only
on xN(t).

For the converse, suppose X is a Markov random field. We want to show that we may
write the distribution p of X in the form

(3.16) p(x) =
∏

A

VA(x),

where VA ≡ 1 whenever A is not complete. In fact, we will define the functions VA in such
a way that

(3.17) p(xD, 0Dc) =
∏

A⊆D
VA(x),

holds for all D ⊆ {1, . . . , n}, with VA ≡ 1 when A is not complete, and (3.16) will follow
from (3.17) by taking D = {1, . . . , n}. We find functions VD satisfying (3.17) recursively,
starting with D = ∅, then singleton sets D, and so on for larger sets D. For D = ∅, (3.17)
says that p(0) = V∅(x). [[Note V∅ is the constant function taking just the value p(0), which
is good, since V∅ is not allowed to depend on any variables xt!]] For singleton D = {t},
(3.17) says

p(xt, 06=t) = V∅(x)V{t}(x) = p(0)V{t}(x),

so that

V{t}(x) =
p(xt, 06=t)
p(0)

.

This pattern may be continued to express each function VD in terms of previously deter-
mined functions, with the general recursion

(3.18) VD(x) =
p(xD, 0Dc)∏
A⊂D VA(x)

.

[[A notational reminder: “A ⊂ D” means “A is a proper subset of D,” so that A is strictly
contained in D. When A is allowed to equal D, we will write A ⊆ D.]] These definitions
guarantee that (3.17) holds for all D.

To finish the proof of the theorem, we will show that ifD is not complete, then VD(x) = 1
for all x. This statement will be proved by induction on the number of nodes in D, denoted
#(D). The statement is vacuously true for #(D) ≤ 1, since all such sets D are complete.
Supposing the desired statement is true for D with #(D) ≤ k, we will show that it is also
true for #(D) = k + 1. Suppose #(D) = k + 1 and D is not complete, so that D contains
two nodes t and u that are not neighbors. Write D = {t, u}∪B, where #(B) = k− 1. [[For
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example, for the case k = 1, B is the empty set, and you should make sure for yourself that
the following argument works fine in that case.]] By (3.18), our remaining task is to show
that

(3.19) p(xD, 0Dc) =
∏

A⊂D
VA(x).

Start with

p(xD, 0Dc) = p(xt, xu, xB, 0Dc) =

[
p(xt, xu, xB, 0Dc)

p(0t, xu, xB, 0Dc)

]
p(0t, xu, xB, 0Dc).

Since t and u are not neighbors, by the Markov property we obtain

p(xt, xu, xB, 0Dc)

p(0t, xu, xB, 0Dc)
=
p(xt | xu, xB, 0Dc)

p(0t | xu, xB, 0Dc)
=
p(xt | 0u, xB, 0Dc)

p(0t | 0u, xB, 0Dc)
=
p(xt, 0u, xB, 0Dc)

p(0t, 0u, xB, 0Dc)
.

Thus,

p(xD, 0Dc) =

[
p(xt, 0u, xB, 0Dc)

p(0t, 0u, xB, 0Dc)

]
p(0t, xu, xB, 0Dc)

=

(∏
A⊆B∪{t} VA(x)

) (∏
A⊆B∪{u} VA(x)

)

∏
A⊆B VA(x)

=
∏

A⊂D
{t,u}6⊆A

VA(x).

However, by the induction hypothesis, VA ≡ 1 if {t, u} ⊆ A ⊂ D. Therefore,

p(xD, 0Dc) =
∏

A⊂D
{t,u}6⊆A

VA(x) =
( ∏

A⊂D
{t,u}6⊆A

VA(x)
)( ∏

A⊂D
{t,u}⊆A

VA(x)
)

=
∏

A⊂D
VA(x),

which proves (3.19).

(3.20) Example. A Markov chain X0, X1, . . . , Xn has joint distribution of the form

p(x0, x1, . . . , xn) = π0(x0)P1(x0, x1)P2(x1, x2) · · ·Pn(xn−1, xn).

By defining V{0,1}(x0, x1) = π0(x0)P1(x0, x1) and V{k−1,k}(xk−1, xk) = Pk(xk−1, xk) for
k > 0, we see that this product is a Gibbs distribution on the graph

X1 X2X0 Xn.   .   .

(3.21) Example. Remember how the 3-by-3 lattice in Figure (3.7) gave us such trouble in
Example (3.6)? There we had difficulty constructing a legitimate Markov random field by
specifying conditional distributions at nodes given information about the neighbors. But it
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is easy to specify Gibbs distributions. Here the cliques are simply pairs of neighbors that
are joined by an edge. We may freely specify a Gibbs distribution on this graph simply by
choosing, for each edge {i, j} in the graph, four numbers Vi,j(0, 0), Vi,j(0, 1), Vi,j(1, 0), and
Vi,j(1, 1).

⊲ Exercises [3.3] and [3.4] ask you to think some more about this small example.

(3.22) Example. Consider a hidden Markov model (X,Y ). The Hammersley-Clifford
Theorem helps us see some nice properties. For example, if X has a Markov random field
prior with a certain neighborhood structure, then the posterior distribution of (X | Y ) will
also be a Markov random field, with the same neighborhoods as those in the prior.

It is also interesting to ask what kind of process Y is. That is, what is the marginal
distribution of Y ? For example, in the “hidden Markov chain” picture (3.5), one might
wonder if Y is in fact also a Markov chain. If it is, then instead of bothering with the
extra complication of a hidden Markov chain model, why not just model Y directly as a
Markov chain? In other words, if the class of phenomena we could model as realizations
of the “Y ” part of a hidden Markov chain model were themselves limited to being Markov
chains, that would seem a bit disappointing. As it turns out, Y need not be a Markov
chain; in fact, in the hidden Markov chain diagram above, in general the smallest graph
on which the Y process can be considered a Markov random field is fully connected. To
understand this heuristically, we ask ourselves, “If we wanted to guess the value of Y3, say,
and somebody offered to tell us the values of all of the other Y ’s, would we want to know
all of that information, or would we be willing to throw away any of it?” The answer is
that in general we should not be willing to give up any of that information. The random
variable most relevant to the value of Y3 is X3. If we knew X3 then we would not care
about knowing any other random variables. But we do not know X3. So, for example, we
would be eager to know X2, since it could shed light on X3, which in turn is informative for
guessing Y3. But we do not know X2, so we would like to know X1. But we cannot know
X1, so we would be eager to know Y1, which in fact we can observe. So, for example, we
have argued that the conditional distribution of Y3 given the values of the other Y random
variables, depends on Y1, which violates the Markov property.

The general result of which this is a special case is the following. As usual, we assume
our probability mass functions are positive, not merely nonnegative.

(3.23) Proposition. Suppose (X,Y ) is a Markov random field on the graph G with the
neighborhood structure N. Write G = GX ∪ GY , where GX and GY are the sets of nodes
in G corresponding to the X and Y random variables, respectively. Then the marginal
distribution of Y is a Markov random field on GY , where two nodes y1, y2 ∈ GY are neighbors
if either

1. They were neighbors in the original graph; that is, y1 ∼ y2, or

2. There are nodes x1, x2, . . . , xk ∈ GX such that y1 ∼ x1 ∼ x2 ∼ · · · ∼ xk ∼ y2.
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The conditional distribution of X given Y is a Markov random field on the graph GX , where
nodes x1 and x2 are neighbors if x1 ∼ x2, that is, if x1 and x2 were neighbors in the original
graph.

⊲ The proof is left to you, as Exercise [3.5].

3.4 Long range dependence in the Ising model

We will work in the integer lattice in d dimensions, denoted Zd. So Z1 is simply the set
of integers, Z2 is the set of points in the plane with both coordinates being integers, and
so on. For each t ∈ Zd there is a binary random variable Xt taking values in {−1, 1},
say. The Ising model gives a joint probability distribution for these random variables. We
will consider a special case of the Ising model that may be written as follows. For x a
configuration of +1’s and −1’s at the nodes of a finite subset of Zd, let b(x) denote the
number of “odd bonds” in x, that is, the number of edges {t, u} such that xt 6= xu. Then,
under the Ising model, a configuration x has probability proportional to αb(x), where α is a
positive parameter of the distribution. Typically α < 1. The choice α = 1 corresponds to
the uniform distribution, giving equal probability to all configurations. Distributions with
small α strongly discourage odd bonds, placing large probability on configurations with few
odd bonds.

For the case d = 1, the model corresponds to a stationary Markov chain with probability
transition matrix

Pα =

(
1/(1 + α) α/(1 + α)
α/(1 + α) 1/(1 + α)

)
.

The basic limit theorem (or an explicit computation) tells us that

Pnα →
(

1/2 1/2
1/2 1/2

)
as n→∞.

So, for example,

lim
n→∞

P{X0 = +1 | X−n = +1} = lim
n→∞

Pnα (+1,+1) = 1/2

= lim
n→∞

Pnα (−1,+1) = lim
n→∞

P{X0 = +1 | X−n = −1}

Thus, in the limit, the state of X0 is unaffected by information about states in the remote
past. For a similar statement that is more symmetrical in time, observe that

lim
n→∞

P{X0 = +1 | X−n = +1, Xn = +1} = lim
n→∞

P{X0 = +1, Xn = +1 | X−n = +1}
P{Xn = +1 | X−n = +1}

= lim
n→∞

Pnα (+1,+1)Pnα (+1,+1)

P 2n
α (+1,+1)

=
1

2

= lim
n→∞

Pnα (−1,+1)Pnα (+1,−1)

P 2n
α (−1,−1)

= lim
n→∞

P{X0 = +1 | X−n = −1, Xn = −1}
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Thus, the state X0 is asymptotically independent of information at nodes far away from 0.
In the remainder of this section we will prove that the situation in d = 2 (and higher d) is

qualitatively different, in that the effect of states at remote nodes does not disappear in two
dimensions. To state the result, let’s introduce a bit of notation. Imagine a “cube” Kn of
side length 2n centered at 0 in Zd; that is, Kn is the set {t ∈ Zd : |ti| ≤ n for all i = 1, . . . , d}
consisting of lattice points whose d coordinates all lie between −n and n. Let Bn denote the
“boundary” points of the cube Kn, that is, the points of Z2 having at least one coordinate

equal to n. Let P
(n)
+ {X = x} denote the Ising probability of X = x, conditional on Xt = +1

for all t ∈ Bn. Similarly, P
(n)
− (x) will denote probabilities conditional on having −1’s on

the boundary. Both of these probability measures are functions of α; for convenience, this
dependence is just not indicated in the notation.

The figure below indicates the sort of picture you should have in your mind for the

probability P
(2)
+ {X0 = +1}, for example.
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(3.24) Theorem. For the Ising model on Z2, the effect of the boundary does not disappear.

In particular, for example, there exists α such that P
(n)
+ {X0 = −1} remains below 0.4 for

all n, no matter how large.

Proof: For any configuration X, imagine drawing little line segments of length 1 cutting
through each of the odd bonds in X, as pictured in the left portion of the following figure.
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f φ0([)

Note that
P

(n)
+ (X) ∝ αtotal length of all segments drawn.

If X0 = −1, that is, the configuration X has a negative spin at the origin, then the line
segments we have drawn will form a circuit around the origin; let us denote this circuit by
γ0 = γ0(X). So

P
(n)
+ {X0 = −1} =

∑

circuits γ about 0

P
(n)
+ {x : γ0(x) = γ}
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For any given x with γ0(x) = γ, let φ0(x) denote the configuration obtained by φlipping the
−1’s inside the circuit γ to +1’s, as shown in the right part of the previous figure. Let ℓ(γ)
denote the length of γ. Noting that the picture for x has ℓ(γ0(x)) more segments drawn
than the picture for φ0(x), we see that

P
(n)
+ (x) = αℓ(γ0(x))P

(n)
+ (φ0(x))

for each x with x0 = −1. So

P
(n)
+ {X0 = −1} =

∑

γ

P
(n)
+ {x : γ0(x) = γ}

=
∑

γ

∑

x:γ0(x)=γ

P
(n)
+ (x)

=
∑

γ

αℓ(γ)
∑

x:γ0(x)=γ

P
(n)
+ (φ0(x))

≤
∑

γ

αℓ(γ),

where in the last inequality we have used the crude upper bound
∑

x:γ0(x)=γ

P
(n)
+ (φ0(x)) ≤ 1,

which holds because if x and y are distinct configurations with γ0(x) = γ = γ0(y), then
φ0(x) and φ0(y) are also distinct. Let ν(ℓ) denote the νumber of circuits about 0 of length
ℓ. Thus,

P
(n)
+ {X0 = −1} ≤

∑

γ

αℓ(γ) =

∞∑

ℓ=4

ν(ℓ)αℓ.

But it is easy to give a crude upper bound ν(ℓ) ≤ ℓ3ℓ. To see this, first observe that each
circuit of length ℓ must at least cut through the positive horizontal axis at some point
(k+1/2, 0) for k less than ℓ. Then note that having chosen the first j segments in a circuit,
we have at most 3 choices for the (j + 1)st segment, since we cannot backtrack to the
previous point. So we have obtained

P
(n)
+ {X0 = −1} ≤

∞∑

ℓ=4

ℓ3ℓαℓ =
∞∑

ℓ=4

ℓ(3α)ℓ,

a bound that does not depend on n, and which clearly may be made smaller than 0.4 by
choosing α sufficiently small.

3.5 Hidden Markov chains

The hidden Markov chain model is the most successfully applied HMM model structure.
For example, it is the model that current speech recognition systems use, and the basis of
important techniques in bioinformatics.
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3.5.1 Description of the model

Like all hidden Markov models, the hidden Markov chain is a MRF in which some of the
random variables are observed and others are not — they are hidden. In the graph structure
for the hidden Markov chain

[; [![2 [?

\; \!\2 \?

����������D D D

E E E E

ξ

the hidden Markov chain isX0, X1, . . . , Xn and the observed process is Y0, Y1, . . . , Yn. Edges
join Xt to both Yt and Xt+1. The model is parametrized by a marginal distribution ξ of X0

and, if we assume time-homogeneity of the transition matrices, by two transition matrices
A and B, where A(i, j) = P{Xt+1 = j | Xt = i} and B(i, j) = P{Yt = j | Xt = i} Let us
write θ for the vector of all parameters: θ = (ξ, A,B). If there are u states possible for
each of the hidden X random variables and v outcomes possible for the observed Y random
variables, then ξ is a vector of u probabilities, A is a u × u probability transition matrix,
and B is a u× v matrix, each of whose rows is a probability mass function.

Compared to the Markov chain model we have studied, the hidden Markov chain is
more general — it includes Markov chains as a special case. To get a feeling for this let’s
look at a few examples. For example, consider the case u = 1, that is, there is just one
hidden state possible for each X. Then A is simply the 1× 1 probability transition matrix
A = (1), B is a 1 × v matrix, so that it has just one row, and the Y process is simply an
iid sequence, where each Yt has probability mass function given by B. So iid sequences are
a special case of the hidden Markov chain model. If u = v and B is the identity matrix,
then Yt = Xt for all t, so that we are observing the Markov chain X with no random error,
and the process Y is also a Markov chain. So Markov chains are indeed a special case of
the hidden Markov chain.

What kind of more general processes can we get from the model? For example, we
could model a process where there are two people tossing coins, and we are observing the
outcomes of the tosses, a sequence of H’s and T ’s. Suppose person 1 has a fair coin having
P (H) = 1/2 = P (T ), and person 2 has a biased coin, with P (H) = 0.2 = 1− P (T ). Who
tosses his coin at time t may be decided in a random manner, with person 1 starting at time
0 and going for a random length of time, then switching to person 2, who tosses for another
random length of time, then switching back to person 1, and so on. For example, a referee
could roll a pair of dice at each time, and the coin tosser could be switched just at the times
when the referee gets a pair of 6’s. In this case, we would tend to see a rather long sequence
of fair tosses (average length 36 tosses), followed by another long sequence of tosses most
of which are T ’s, followed by another stretch of fair tosses, and so on. Imagining that we
only observe the sequence of H and T outcomes, but we do not know whether person 1 or
person 2 is tossing the coin at any given moment, our sequence of observations is a Hidden

Stochastic Processes J. Chang, February 2, 2007



3.5. HIDDEN MARKOV CHAINS Page 101

Markov chain, with parameters

(3.25) ξ = (1, 0), A =

( 1 2

1 35/36 1/36
2 1/36 35/36

)
, and B =

( H T

1 0.5 0.5
2 0.2 0.8

)

You can probably imagine what such a sequence might look like. But just for fun, I’ll
simulate one and show it to you. Here is the sequence of observations (the Y process) that
I got:

THTHTHTTHTHHTHHTHTHHTHTHHTHHTTTHTTHTTTTHTTTHTHTTHT
TTTTTHTHTTTTTTTTTTHTTHTHTTHTTTTTTTTTTHTHHTTTTTTHTT
TTHHHHHHHTTHTTTTHTHHTHHHHHTTTHHHTTHHTHTHHTTTHTHHHH
TTHHHTHTTTHHTTTHHTHTTHHTHHHTTHTHTHTHTTHHHTTTTTTHHH
THTHTTHHHTHTHTTTTTTTTTTTTHHTTTTTHTTTHTTTTTTTHTTHTT
HHHHTTTTHTTTHHTHHHHTHHTTTHTHTTHTHHHHTHTTTTTTTHTTTT
TTTTTTTTTTHTTTHTTHTTHHTTHHTTTTTTHTTTTTTHHTHTHTHHTH
THTTTTTHTTTTHTTTTTTTHHTTTHTHTTTTTTHTHTTTTTHTTHTHHT

(3.26) The observed sequence from a simulated hidden Markov chain.

The above sequence is Y , the data we get to see. We do not get to see the X sequence
of hidden states. In this example, all we know is that X0 = 1 (we know this because
ξ = (1, 0)); if we know only the Y sequence, we cannot say for sure what any of the other
Xt values are. On the other hand, I simulated this sequence myself, and of course I needed
to generate the X sequence as part of the simulation. I imagine you are curious what
those hidden states are. I wouldn’t show this to just anybody, but, for you, I’ll make an
exception. The sequence below is again the Y sequence, except Yt is written in lower case
if Xt = 1, and Yt is in upper case if Xt = 2.

t h t h t h t t h t h h t h h t h t h h t h t h h t h h t t t hTTHTTTTHTTTHTHTTHT
TTTTTh t hTTTTTTTTTTHTTHTHTTHTTTTTTTT t t h t h h t t TTTTHTT
TTh h h h h h h t t h t t t t h t h h t h h h h h t t t h h h t t h h t h t h h t t t h t h h h h
t t h h h t h t t t h h t t t h h t h t t h h t h h h t t h t h t h t h t t h h h t t t t t t h h h
t h t h t t h h h t h t hTTTTTTTTTTTTHHTTTTTHTTTHTTTTTTTHT t h t t
h h h h t t t t h t t t h h t h h h h t h h t t t h t h t t h t h h h h t hTTTTTTTHTTTT
TTTTTTTTTTHTTTHTTHTTHHTTHHTTT t t t h t t t t t t h h t h t h t h h t h
THTTTTTHTTTTHTTTTTT t h h t t t hTHTTTT t t h t h t t t t t h t t h t h h t

This should all seem somewhat reasonable. The sequence alternates between regions in
lower case, in which Heads and Tails are relatively balanced, and regions in upper case, in
which there are substantially fewer Heads than Tails.

Having understood the basic structure of the Hidden Markov chain model, you can
probably easily imagine a variety of contexts in which the model could be applied and
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appreciate how the model has been so useful. In speech recognition, the hidden state
might be the phoneme or the word currently being spoken. Each time the same word is
spoken, the received signal will be somewhat different, and the model captures this random
variation. In modeling the stock market, we might imagine a hidden state having values
“bull market” or “bear market.” Investors would be interested in estimating the current
hidden state of the market. Biological sequences, such as DNA and proteins, have been
modeled with hidden Markov chains, where the hidden states have names like “match,”
“insert,” and “delete.” The idea is that if we look at analogous proteins in different species
such as human and mouse, for example, the amino acid sequences will be similar but not
identical, since in evolving from a common ancestor, the sequences have experienced various
substitutions of one amino acid for another, insertions of new material, and deletions.

3.5.2 How to calculate likelihoods

The likelihood function L = L(θ) is the probability of the observed data, as a function of
the parameters of the model. The tricky aspect here is that we observe only the Y ’s, so
that

L(θ) = pθ(y0, y1, . . . , yn) =
∑

x0

∑

x1

· · ·
∑

xn

pθ(x0, x1, . . . , xn, y0, y1, . . . , yn) =:
∑

x

pθ(x, y)

This is an intimidating looking sum! For example, if the size of the state space of the
hidden variables is just u = 2, the sum still has 2n+1 terms. That looks like trouble —
computational complexity that is exponential in terms of the amount of data. Without a
way around this computational issue, the hidden Markov chain model would be of little
practical use. Fortunately, by organizing these calculations intelligently in a recursive form,
this problem that looks to be of exponential complexity at first glance may actually be
done in time that is linear in n. For now, we’ll simply derive the recursions and be done
with it, but the idea may be viewed from other angles, for example, as an example of
dynamic programming, or, alternatively, simply as a conversion of the calculations to matrix
multiplications.

Let us denote the state space for the hidden variables Xt by X; that is, X is a finite set
of possible hidden states. We are thinking of the observed Y values as fixed here — we
know them, and we’ll denote them by y0, y1, . . . , yn. For each t = 0, 1, . . . , n and for each
xt ∈ X, define

(3.27) αt(xt) = pθ(y0, . . . , yt, xt).

[[We are using our usual lazy shorthand; written out in full, this would be

αt(xt) = Pθ{Y0 = y0, . . . , Yt = yt, Xt = xt}.]]

We can calculate the function α0 right away:

(3.28) α0(x0) = pθ(y0, x0) = ξ(x0)B(x0, y0).
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Also, there is a simple recursion that expresses αt+1 in terms of αt:

(3.29)

αt+1(xt+1) = pθ(y0, . . . , yt+1, xt+1)

=
∑

xt∈X

pθ(y0, . . . , yt, xt, xt+1, yt+1)

(a)
=

∑

xt∈X

pθ(y0, . . . , yt, xt)pθ(xt+1 | xt)pθ(yt+1 | xt+1)

=
∑

xt∈X

αt(xt)A(xt, xt+1)B(xt+1, yt+1).

We have simplified the conditional probabilities in (a) above by using the Markov property
of the MRF (X0, Y0, . . . , Xn, Yn) to say that

pθ(xt+1 | y0, . . . , yt, xt) = pθ(xt+1 | xt)

and
pθ(yt+1 | y0, . . . , yt, xt, xt+1) = pθ(yt+1 | xt+1).

Note that the sum in the recursion

αt+1(xt+1) =
∑

xt∈X

αt(xt)A(xt, xt+1)B(xt+1, yt+1)

is very modest; for example, if X = {0, 1}, so that our model has just two states possible
at the hidden nodes, then this is just the sum of two terms. In this case calculating the
function αt+1 entails just calculating two numbers αt+1(0) and αt+1(1), each of which is
just the sum of two products of three known numbers. That is, using the recursion to
calculate the function αt+1 from the function αt involves just a fixed amount of work —
the task gets no harder as t increases. Thus, the amount of work to calculate all of the
probabilites αt(xt) for t = 0, . . . , n and xt ∈ X is linear in n.

Having completed the recursion to calculate the function αn, the likelihood is simply

(3.30) L(θ) = pθ(y0, . . . , yn) =
∑

xn

pθ(y0, . . . , yn, xn) =
∑

xn

αn(xn).

The above probabilities are called “forward” probabilities. In a similar manner, we can
calculate the “backward probabilities”

(3.31) βt(xt) = pθ(yt+1, . . . , yn | xt) = Pθ{Yt+1 = yt+1, . . . , Yn = yn | Xt = xt)

by using the recursion

(3.32) βt−1(xt−1) =
∑

xt

A(xt−1, xt)B(xt, yt)βt(xt).

⊲ Justifying this recursion is left to you; see Exercise [3.9].
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3.5.3 Maximum Likelihood and the EM algorithm

Now that we know how to calculate the likelihood of the observed data at any given θ =
(ξ, A,B), we can, in principle, use this to search for the θ that maximizes the likelihood.
We could simply search by trial and error, trying various settings for the parameters and
evaluating the likelihood for each. However, without an organized method for changing θ,
this search would be a daunting task. Even with just 2 hidden states and 2 output states,
there are 2+4+4 = 10 parameters in θ, in which there are 1+2+2 = 5 degrees of freedom
— a 5 dimensional search. We do not want to be blindly fiddling with 5 free parameters.

The EM algorithm is a method for finding maximum likelihood estimates that is ap-
plicable to many statistical problems, including hidden Markov chains. The algorithm
gives a simple way to increase the likelihood. It is an iterative method; starting from
any parameter settings θ0, the algorithm gives a sequence of parameters θ1, θ2, . . . with
L(θ0) < L(θ1) < L(θ2) < · · · . So we are not blindly guessing new values of θ to try; we
are systematically climbing the likelihood function, and the method converges to a local
optimum of the likelihood function.

The method is based on knowing how to solve a simple optimization problem, and doing
it over and over again. To illustrate that simple problem, here is an example.

(3.33) Example. For q = (q1, q2, q3) a probability mass function, so that qi ≥ 0 and
q1 + q2 + q3 = 1, define

f(q) = 0.3 log(q1) + 0.5 log(q2) + 0.2 log(q2).

Find the vector q that maximizes f(q).

Solution: First let’s think for a moment. For example, if we take q = (1/3, 1/3, 1/3), we
get f(q) = log(1/3). Clearly this is not optimal; since log(q2) has the largest coefficient, we
should be able to increase f by increasing q2 at the expense of q1 and q3. But we do not
want to increase q2 too much; for example, as q2 → 1 (and q1 → 0 and q3 → 0), we get
f(q) → −∞. It turns out that the problem has a beautiful answer: to maximize f , take
q = (0.3, 0.5, 0.2), the coefficients of the logs in f . A more general formulation and proof
are provided by the next proposition.

(3.34) Proposition. For p = (p1, . . . , pk) and q = (q1, . . . , qk) two probability mass func-
tions on {1, . . . , k}, we have

(3.35)
∑

i

pi log pi ≥
∑

i

pi log qi.

Proof: First note that both sums in (3.35) are unchanged if we restrict the sums to
{i : pi > 0}, and (3.35) is automatically true if there is some i such that pi > 0 and
qi = 0. So we may assume that p and q are both strictly positive, and we want to show that
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∑
i pi log(qi/pi) ≤ 0. But note that the log function satisfies the inequality log x ≤ x − 1

for all x > 0; see the picture and note that the slope of log x is 1 at x = 1.
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So ∑

i

pi log
qi
pi
≤

∑

i

pi

(
qi
pi
− 1

)
=

∑

i

(qi − pi) = 1− 1 = 0.

This proposition is fundamental in the field of Statistics, and also in Information Theory.
It leads to a definition of the “Kullback-Leibler distance” D(p‖q) from one probability mass
function p = (p1, . . . , pk) to another probability mass function q = (q1, . . . , qk):

D(p‖q) =
∑

i

pi log

(
pi
qi

)
.

The proposition shows that this “distance” is always nonnegative, and you can show that
D(p‖q) = 0 if and only if p = q.

To see how the optimization problem we have just solved relates to maximum likelihood,
consider the following example.

(3.36) Example. Let Y1, . . . , Y10 be iid with values in {1, 2, 3} and probability mass func-
tion P{Y1 = i} = θi for i = 1, 2, 3. Suppose, for example, we observe

(Y1, . . . , Y10) = (2, 3, 2, 3, 2, 2, 1, 3, 2, 1).

The likelihood function is

L(θ) = θ2θ3θ2θ3θ2θ2θ1θ3θ2θ1 = (θ1)
2(θ2)

5(θ3)
3,

so the log likelihood is

l(θ) = 2 log θ1 + 5 log θ2 + 3 log θ3

= 10[0.2 log(θ1) + 0.5 log θ2 + 0.3 log θ3].

Example (3.33) shows that l(θ) is maximized by the choice θ̂1 = 0.2, θ̂2 = 0.5, and θ̂3 = 0.3;
this gives the maximum likelihood estimators of θ.

Here is a brief description of the EM algorithm in the abstract. We’ll assume for sim-
plicity that X and Y are discrete random variables or vectors, as they are in our particular
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application. So probabilities are given by sums rather than integrals. Recall the problem:
we want to find the θ maximizing logL(θ) where L(θ) = pθ(y) =

∑
x pθ(x, y). The EM

algorithm repeats the following update that is guaranteed to increase the likelihood at each
iteration. Let θ0 denote the current value of θ. Replace θ0 by θ1, the value of θ that
maximizes Eθ0 [log pθ(X, y) | Y = y].

Incidentally, “EM” stands for “expectation maximization”: note that at each iteration,
we maximize an expected log likelihood.

Why does it work? For a given θ0, define g(θ) = Eθ0 [log pθ(X, y) | Y = y]. We will see
that, in order to have pθ1(y) > pθ0(y), in fact we do not really need to find θ1 maximizing
g, but rather it is enough to find a θ1 such that g(θ1) > g(θ0).

(3.37) Proposition. If Eθ0 [log pθ1(X, y) | Y = y] > Eθ0 [log pθ0(X, y) | Y = y], then
pθ1(y) > pθ0(y).

Proof: We have

0
(a)

< Eθ0

[
log

pθ1(X, y)

pθ0(X, y)

∣∣∣∣Y = y

]

=
∑

x

pθ0(x | y) log
pθ1(x, y)

pθ0(x, y)

=
∑

x

pθ0(x | y) log
pθ1(y)

pθ0(y)
−

∑

x

pθ0(x | y) log
pθ0(x | y)
pθ1(x | y)

(b)
= log

pθ1(y)

pθ0(y)
−

∑

x

pθ0(x | y) log
pθ0(x | y)
pθ1(x | y)

(c)

≤ log
pθ1(y)

pθ0(y)
,

where (a) holds by assumption, (b) holds because
∑

x pθ0(x | y) = 1, and (c) follows from
Proposition (3.34).

This simple little inequality, proved in 5 lines, is considered to be a major discovery.

3.5.4 Applying the EM algorithm to a hidden Markov chain

Here, as summarized above, we are considering a hidden Markov chain model for (X,Y ) =
(X0, . . . , Xn, Y0, . . . , Yn), where the random variables Yt are observed and the random vari-
ables Xt are hidden. The model is parametrized by θ = (ξ, A,B), where ξ is the distribution
of X0, A is the probability transition matrix of the hidden X chain, and Y is the matrix
that describes the transitions from Xt to Yt. To describe one iteration of the EM method,
we will imagine that our current guess for θ is θ0 = (ξ0, A0, B0), and we want a new guess
θ1 = (ξ1, A1, B1) that has higher likelihood, that is, such that pθ1(y) > pθ0(y).

Consider Eθ0 [log pθ(X, y) | Y = y] where θ = (ξ, A,B). We know that

pθ(x, y) = ξ(x0)
n−1∏

t=0

A(xt, xt+1)
n∏

t=0

B(xt, yt),
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so

log pθ(X, y) = log ξ(X0) +
n−1∑

t=0

logA(Xt, Xt+1) +
n∑

t=0

logB(Xt, yt),

and

Eθ0 [ log pθ(X, y) | Y = y]

=
∑

i

Pθ0{X0 = i | y} log ξ(i) ← (term 1)

+
n−1∑

t=0

∑

i,j

Pθ0{Xt = i,Xt+1 = j | y} logA(i, j) ← (term 2)

+
n∑

t=0

∑

i

Pθ0{Xt = i | y} logB(i, yt). ← (term 3)

We want to maximize the sum of these 3 terms over the variables (ξ, A,B). However, of
these variables, term 1 involves only ξ, term 2 involves only A, and term 3 involves only B.
So the sum is maximized by maximizing the 3 terms separately. By Proposition (3.34), we
maximize term 1 by the choice

(3.38) ξ1(i) = Pθ0{X0 = i | y}.

Similarly,

term 2 =
∑

i

[∑

j

(n−1∑

t=0

Pθ0{Xt = i,Xt+1 = j | y}
)

logA(i, j)

]
,

and the ith summand (in large square brackets) involves only the ith row A(i, ·), so that
we may maximize these summands separately, and again by Proposition (3.34) we are led
to choose

(3.39)

A1(i, j) =

∑n−1
t=0 Pθ0{Xt = i,Xt+1 = j | y}

∑
j∈X

∑n−1
t=0 Pθ0{Xt = i,Xt+1 = j | y}

=

∑n−1
t=0 Pθ0{Xt = i,Xt+1 = j | y}

∑n−1
t=0 Pθ0{Xt = i | y}

Finally,

term 3 =
∑

i

n∑

t=0

Pθ0{Xt = i | y} logB(i, yt)

=
∑

i

∑

j

[ ∑

{t:yt=j}
Pθ0{Xt = i | y}

]
logB(i, j)

is maximized by

(3.40) B1(i, j) =

∑
{t:yt=j} Pθ0{Xt = i | y}

∑
j

∑
{t:yt=j} Pθ0{Xt = i | y} =

∑
{t:yt=j} Pθ0{Xt = i | y}
∑n

t=0 Pθ0{Xt = i | y} .
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The solutions for ξ1, A1, and B1 given in (3.38), (3.39), and (3.40) have natural interpre-
tations. For example, ξ1(i) is the probability, under the current guess θ0 for the parameters,
that X0 = i, conditional on the observed data y. This seems natural as a guess for ξ(i),
the probability that X0 = i.

To interpret A1(i, j), first think: we are trying to estimate the probability of Xt+1 = j
given Xt = i. If we knew the states X0, . . . , Xn [[which we do not—they are hidden]] a
natural estimator for A(i, j) would be a simple fraction. The numerator would be the
number of i → j transitions among the Xt’s, that is, the number of occurrences of the
event {Xt = i,Xt+1 = j} among times t = 0, 1, . . . , n − 1. The denominator would be
the number of visits of the X chain to the state i, that is, the number of occurrences of
{Xt = i} among t = 0, 1, . . . , n− 1. That is, if we knew the Xt’s, we would like to use the
estimator

Â(i, j) =

∑n−1
t=0 I{Xt = i,Xt+1 = j}

∑n−1
t=0 I{Xt = i}

But, as noted, we do not get to observe the Xt’s. The EM updated guess A1(i, j) does the
next best thing, replacing the numerator and denominator of the desired but unattainable
estimator Â(i, j) by their expected values, conditional on what we know—the observed data
y.

An analogous interpretation applies to estimating B(i, j), the probability that Yt = j
given Xt = i. If we knew the Xt’s, a natural estimator for B(i, j) would be

B̂(i, j) =

∑n
t=0 I{Xt = i, Yt = j}∑n

t=0 I{Xt = i} ,

and the formula (3.40) is obtained from this by taking Eθ0(· · · | Y = y) of the numerator
and denominator.

OK, enough interpreting. How does one calculate these quantities? Notice that it is
enough to be able to calculate probabilities of the form

γt(i, j) := Pθ0{Xt = i,Xt+1 = j | y},

since probabilities of precisely this form appear in the numerator of A1(i, j), and simpler
probabilities appear in the expressions for ξ1 and B1. [[For example, the probabilities in B1

are of the form
Pθ0{Xt = i | y} =

∑

j

γt(i, j).]]

And of course, to calculate γt(xt, xt+1) = pθ0(xt, xt+1 | y) [[sliding into our lazy concise
notation here]] it is enough to be able to calculate probabilities of the form pθ0(xt, xt+1, y).
But probabilities of this last form may be calculated simply in terms of the “forward”
probabilities αt [[see (3.27)]] and “backward” probabilities βt [[see (3.31)]] discussed above,
as follows. Imagine that we have calculated all of the αt’s and βt’s at θ = θ0. Letting ysr
denote (yr, yr+1, . . . , ys),

pθ0(xt, xt+1, y) = pθ0(y
t
0, xt, xt+1, y

n
t+1)

= pθ0(y
t
0, xt)pθ0(xt+1 | xt)pθ0(ynt+1 | xt+1)

= αt(xt)A0(xt, xt+1)pθ0(y
n
t+1 | xt+1).
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But

pθ0(y
n
t+1 | xt+1) = pθ0(yt+1, y

n
t+2 | xt+1)

= pθ0(yt+1 | xt+1)pθ0(y
n
t+2 | yt+1, xt+1)

(a)
= pθ0(yt+1 | xt+1)pθ0(y

n
t+2 | xt+1)

= B0(xt+1, yt+1)βt+1(xt+1),

again using the Markov property at (a) [[Exercise: justify this in detail]]. Thus,

(3.41) pθ0(xt, xt+1, y) = αt(xt)A0(xt, xt+1)B0(xt+1, yt+1)βt+1(xt+1).

Normalizing this by using the definition of conditional probability, we get the required
ingredients to perform the EM iteration:

(3.42) γt(i, j) =
αt(i)A0(i, j)B0(j, yt+1)βt+1(j)∑

k,l∈X
αt(k)A0(k, l)B0(l, yt+1)βt+1(l)

.

In summary, and in case you’d like to be told how to do this in a structured way, here
is the EM recipe for ascending the likelihood function in our hidden Markov chain model:

• Start with some choice of parameter values θ0 = (ξ0, A0, B0).

• Calculate forward and backward probabilities αt(i) and βt(i) for t = 0, 1, . . . , n and
i ∈ X using recursions (3.29) and (3.32) with initial conditions (3.28) and (??) [[all
with (ξ, A,B) taken to be (ξ0, A0, B0)]]. If the number of hidden states in X is u, you
can store α and β as two u× (n+ 1) arrays.

• Calculate the quantities γt(i, j) for t ∈ {0, . . . , n− 1}, i ∈ X and j ∈ X using formula
(3.42). These could all be stored in a u× u× n array.

• Define

ξ1(i) =
∑

j

γ0(i, j)

A1(i, j) =

∑n−1
t=0 γt(i, j)∑

l

∑n−1
t=0 γt(i, l)

B1(i, j) =

∑n−1
t=0

∑
l γt(i, l)I{yt = j}+

∑
m γn−1(m, i)I{yn = j}

∑n−1
t=0

∑
l γt(i, l) +

∑
m γn−1(m, i)

.

• Replace θ0 by θ1 = (ξ1, A1, B1) and repeat, taking the new θ0 to be the θ1 we just
calculated.

We could calculate and print out the likelihood at each stage [[see (3.30)]] to make sure
that it is increasing, as it is supposed to be, and to decide when to stop the iterations,
presumably when the increase becomes sufficiently small. Since we may have converged to
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a local but not global maximum of the likelihood function, we might want to try the whole
thing from several different starting locations.

(3.43) Example. Back to our sequence from (3.26). Let’s pretend that somebody gave us
this sequence and told us only that it was generated from a hidden Markov chain model,
without giving any of the details. That is, just try to forget that I already told you the
information and parameter values in (3.25). So, for example, we don’t know that the state
space of the hidden X chain has v = 2 states. Let’s consider the possibility that v might
be 1, 2, or 3, and see whether our methods could suggest to us that in fact v = 2. And we
want to give our best guess for the unknown parameters; in particular, the u×u probability
transition matrix A and the u× v emission matrix B.

It is a modest programming task to write Mathematica programs to implement the
recursions that calculate the likelihood and run the EM algorithm. For the simplest case
v = 1, the estimates came out to be B = (.37, .63), that is, we estimate that the Y ’s are

iid from the distribution (.37, .63). The log likelihood of the data Y under these optimized
parameters comes out to be ℓ1 = −263.582. Moving on to consider v = 2, the case of two
hidden states, gave an optimized log likelihood of ℓ2 = −258.137, with parameter estimates

(3.44) ξ = (1, 0), A =

( 1 2

1 .976 .024
2 .018 .982

)
, and B =

( H T

1 .515 .485
2 .243 .757

)

For v = 3, the algorithm gave a maximized log likelihood of ℓ3 = −257.427, with parameter
estimates

ξ = (0, 0, 1), A =





1 2 3

1 .345 .645 .010
2 .630 .345 .025
3 .015 .008 .977



, and B =





H T

1 .473 .527
2 .003 .997
3 .515 .485





How do we give our best guess for the number of hidden states, v? This is an interesting
question of statistical inference, and we can just give a brief indication here. It is a logical
necessity that, if we did our optimization correctly, we must have ℓ3 ≥ ℓ2 ≥ ℓ1 — more
complicated models with more parameters to fit will give higher likelihood. Our decision
should be based on how much improvement there is in the log likelihood as we increase
from v = 1 to v = 2 and then to v = 3. The increase in going from v = 1 to v = 2 is
ℓ2 − ℓ1 = 5.445. How impressed we are with an improvement of this size depends on how
many extra free parameters are added as we go from v = 1 to v = 2, that is, the increase
in “degrees of freedom.” The model with v = 1 has just 1 degree of freedom, while the
model with v = 2 has 5, so the difference is 4 degrees of freedom. So, in deciding between
v = 1 and v = 2, we have added 4 degrees of freedom to the model and increased the log
likelihood by 5.445. Standard statistical practice would suggest looking at the quantile of
2× 5.445 = 10.89 in a chi-square distribution with 4 degrees of freedom, and this suggests
believing that the model with v = 2 is preferable. Similarly, in considering v = 2 versus
v = 3, we have a log likelihood increase of only ℓ3− ℓ2 = 0.71. Since the number of degrees
of freedom in the model with v = 3 is 11, we have increased the degrees of freedom by
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11 − 5 = 6. So the model with v = 3 does not look better than the model with v = 2.
On the basis of this, let’s guess the model (3.44) with v = 2. Sneaking a peek back at the
answer (3.25), we see that we’ve done rather well!

⊲ I had already let the cat out of the bag for this example, since I already revealed the answer
before we started. Exercise [3.10] gives you a new bag, with a cat still inside.

3.6 Simulating a Markov random field: the Gibbs Sampler

Terms like “Markov chain Monte Carlo” and “Markov sampling” refer to methods for
generating random samples from given distributions by running Markov chains. Although
such methods have quite a long history, they have become the subject of renewed interest
in the last decade, particularly with the introduction of the “Gibbs sampler” by Geman
and Geman (1984), who used the method in a Bayesian approach to image reconstruction.
The Gibbs sampler itself has enjoyed a recent surge of intense interest within statistics
community, spurred by Gelfand and Smith (1990), who applied the Gibbs sampler to a
wide variety of inference problems.

Recall that a distribution π being “stationary” for a Markov chain X0, X1, . . . means
that, if X0 ∼ π, then Xn ∼ π for all n. The basic phenomenon underlying all Markov
sampling methods is the convergence in distribution of a Markov chain to its stationary
distribution: If a Markov chain X0, X1, . . . has stationary distribution π, then under the
conditions of the Basic Limit Theorem, the distribution of Xn for large n is close to π.
Thus, in order to generate an observation from a desired distribution π, we find a Markov
chain X0, X1, . . . that has π as its stationary distribution. The Basic Limit Theorem then
suggests that running or simulating the chain until a large time n will produce a random
variable Xn whose distribution is close to the desired π. By taking n large enough, in
principle we obtain a value that may for practical purposes be considered a random draw
from the distribution π.

The Gibbs sampler is a way of constructing a Markov chain having a desired stationary
distribution. A simple setting that illustrates the idea involves a probability mass function
π of the form π(x, y). Suppose we want to generate a random vector (X,Y ) ∼ π. Denote
the conditional probability distributions by π(· | X = ·) and π(· | Y = ·). To perform a
Gibbs sampler, start with any initial point (X0, Y0). Then generate X1 from the conditional
distribution π(· | Y = Y0), and generate Y1 from the conditional distribution π(· | X = X1).
Continue on in this way, generating X2 from the conditional distribution π(· | Y = Y1) and
Y2 from the conditional distribution π(· | X = X2), and so on. Then the distribution π is
stationary for the Markov chain {(Xn, Yn) : n = 0, 1, . . .}. To see this, suppose (X0, Y0) ∼ π.
In particular, Y0 is distributed according to the Y -marginal of π, so that, since X1 is drawn
from the conditional distribution of X given Y = Y0, we have (X1, Y0) ∼ π. Now we use
the same reasoning again: X1 is distributed according to the X-marginal of π, so that
(X1, Y1) ∼ π. Thus, the Gibbs sampler Markov chain {(Xn, Yn) : n ≥ 0} has the property
that if (X0, Y0) ∼ π then (X1, Y1) ∼ π—that is, the distribution π is stationary.
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Simulating a Markov chain is technically and conceptually simple. We just generate
the random variables in the chain, in order, and we are done. However, the index set of
a Markov random field has no natural ordering in general. This is what causes iterative
methods such as the Gibbs sampler to be necessary.

To use the Gibbs sampler to generate a Markov random field, we can start with an arbi-
trary starting state. For instance, in the example pictured below, the starting state was just
iid Bernoulli(1/2) random variables—pure noise. One iteration of the Gibbs sampler then
consists of visiting each of the 16× 16 = 256 sites, and making a draw from the conditional
distribution of that site given the current values for all of the rest of the sites. The Gibbs
sampler is well suited to Markov random fields, since it works by repeatedly sampling from
the conditional distribution at one node given the values at the remaining nodes, and the
Markov property is precisely the statement that these conditional distributions are simple,
depending only on the neighbors of the node.

3.7 Exercises

[3.1] Show that the conditional distributions in (3.10) and (3.11) are indeed inconsistent with
each other. Also argue that, in general, if we have specified one conditional distribution
L(X1 | X2), say, then we are free to choose only one more distribution of the form L(X2 |
X1 = a), where a is just a single, fixed possible value of X1.

[3.2] For D ⊆ {1, . . . , n} define VD as in (3.18). Show that if xt = 0 for some t ∈ D, then
VD(x) = 1.

[3.3] In Example (3.21), suppose we define V{i,j}(0, 0) = 1 = V{i,j}(1, 1) and V{i,j}(0, 1) = 0.5 =
V{i,j}(1, 0) for all neighboring nodes i and j. Calculate the following conditional probabili-
ties:

(a) P{X5 = 1 | X2 = X4 = X6 = X8 = 0}.
(b) P{X9 = 1 | X6 = X8 = 0}.

⊲ The next exercise asks you to count dimensions, and it requires some thought... If you
cannot find the precise dimension, then just do your best to give whatever upper and lower
bounds you can find. This is supposed to be a fun puzzle, mainly! Also, such dimension
counting is needed for various practical statistical reasons, such as doing a likelihood ratio
hypothesis test.

[3.4] Consider the set of all Gibbs distributions on the 3 × 3 lattice graph pictured in Figure
(3.7). What is the dimension of this set? That is, how many degrees of freedom are there
in this set of distributions?

[[Hint: Recall we observed that we could specify a Gibbs distribution by freely choosing 4
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numbers for each edge. Do all such choices lead to different Gibbs distributions? The result
of Exercise [3.2] may also be useful.]]

[3.5] Use the Hammersley-Clifford Theorem to verify Proposition (3.23).

[3.6] The simplicity of the Hammersley-Clifford Theorem makes nontrivial use of the assump-
tion that the joint probability mass function is strictly positive. To see how things can
go wrong without this assumption, consider a joint distribution on a vector of four binary
random variables X = (X1, X2, X3, X4). Of the 24 = 16 possible values for X, suppose
the 8 values (0, 0, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 1)
and (1, 1, 1, 1) each have probability 1/8, with the remaining 8 patterns having probabil-
ity 0 each. Show that the joint distribution of X satisfies the Markov property on the graph

[![;

[P[ 

but the probability mass function does not factorize into Gibbs form.

[3.7] Imagine trying to use the method in Theorem (3.24) to prove the false statement that the
effect of the boundary does not disappear in Z1. Where does the above method of proof
fail?

[3.8] [[Ising model on binary tree]] Imagine an infinite bifurcating tree, as pictured below. On the
top of the tree there is a root of degree 2. All other nodes have degree 3. Consider an Ising
model on the tree: the probability of a configuration x of +’s and −’s on a finite subtree is
proportional to αν(x), where α is a parameter of the distribution (a number between 0 and
1, say), and ν(x) is the number of “odd bonds” in x. Let’s use the notation Ln for the 2n

nodes on “level n,” and let r denote the root of the tree. We’ll write “XLn
= +” to mean

“Xs = + for all s ∈ Ln,” and “XLn
= −” to mean “Xs = − for all s ∈ Ln.” Define

un = P{XLn
= + | Xr = +}

and
vn = P{XLn

= − | Xr = +} = P{XLn
= + | Xr = −}.

(a) Write a recursion for un and vn. That is, write un+1 as a function of un and vn, and
write vn+1 as a function of un and vn. (These functions will also involve α, of course.)

(b) Defining ρn = vn/un, write a recursion for ρn; that is, write ρn+1 as a function of ρn
(and α).
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(c) We say that the model has a phase transition if, as n → ∞, the limit of P{Xr = + |
XLn

= +} is different from the limit of P{Xr = + | XLn
= −}. Show that there is a

phase transition when ρn does not approach 1 as n→∞.

(d) Observe that ρ0 = 0. Use your recursion (and a computer, if you want!) to investigate
the limiting behavior of ρn for several different values of α. Determine for which values
of α there is a phase transition, and for which values of α there is no phase transition.

URRW
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[3.9] Derive the recursion (3.32) for the “backward” probabilities. Show that it is appropriate

to start the calculations by setting

βn(xn) = 1 for all xn ∈ X.
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[3.10] [[A computing project]] Here are three sequences, each of length 500.

Sequence 1:
133113131111112111313121133332313323233213232332223331221222313133222113
233333222112323311332322333121322213233313123131113223112133113311332331
233323233111323313333333111233331311133133113131213112321111222221222212
221123112213211121112212222231213222312222313311133112223221121131133113
323133213332213213233112313223333332132222333113113311112111131131231333
332232121321322322131121123311113111311221222222212212232112123321112321
12132211312112122312112312122332223223112233122232312331322221331113

Sequence 2:
231311333111321131312132313231333333312331222331233232133313323131122222
132311211312112113133231322121111233311131123311113331332331232331211211
313113323111132211111331121132131111332332112331112113121111123211113131
211112331132133133331133213313313332213232133123133113111113331112322222
133111313122111212113332213113131331133331231231323122211221133111133321
113123131232133112321311322122111123312233313323321323321323123113112321
32221223331131131113322311113221331113113211133333321111123133331132

Sequence 3:
113331311333323333231331332123313312231333331233323333313333233333132323
122331231333332333322122113111211211132211312111211211113221121321111332
332331332331233313332332232321323313333323311211112211313332211111123331
313332332312222112111111321132121131313131111113232332333333311333333213
333313333233331133112311111111111321333311333111113131321111313211111311
112221111122113333222133331123123113333321233321331333233131333333333333
32131333331133111311111121123332111111111111113212113311111133111211

Your mission is to guess how I generated them. I’ll give you some hints. Each sequence is the
observed sequence “Y ” simulated from a hidden Markov chain model. The corresponding
hidden “X” chains have state spaces of different sizes: one sequence has just one hidden
state, another has 2 states, and the remaining sequence has 3 hidden states. That is, one
of the sequences is iid from some distribution on Y = {1, 2, 3}, another sequence alternates
between two distributions on Y, and the remaining sequence switches among three different
distributions on Y. Which sequence is which? For each sequence, what is your best guess
for the transition matrix A of the hidden chain and the symbol emission matrix B that I
used to simulate the sequence?

[[You don’t need to type these sequences; they are on the web at
http://www.stat.yale.edu/∼jtc5/251/hmmData.txt ]]
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⊲ To prepare your mind for the next three exercises, first consider the question of how to
simulate a binary Markov chain X1, . . . , Xn such that P{Xt+1 6= Xt} = 0.2 for t = 1, . . . , n−
1. That’s easy: simply generate the random variables sequentially, flipping between the
values 0 and 1 with probability 0.2. Next, let’s change the question by requiring not only
P{Xt+1 6= Xt} = 0.2 for t = 1, . . . , n − 1, but also P{Xn 6= X1} = 0.2. Now the simple
sequential generation of a Markov chain we just described will not work; for example, if n
is large, then clearly P{Xn 6= X1} will be close to 0.5, not to 0.1. So how do we do it?

[3.11] Consider an Ising model on the “cycle” graph with n nodes {1, 2, . . . , n} and edges {1, 2},
{2, 3}, ..., {n− 1, n}, and {n, 1}. The Ising model with parameter α gives gives probability
p(x) ∝ αb(x) to configuration x, where b(x) is the number of “odd bonds” in x. Show how
to use the Gibbs sampler to simulate such a model. For n = 50 and α = 0.9, generate 5
independent realizations (approximately, using the Gibbs sampler).

[3.12] For an Ising model with parameter α on the cycle on {1, 2, . . . , n}, let δ denote the probabil-
ity that any pair of neighboring random variables differ, that is, δ = P{X1 6= X2}. Express
δ in terms of α and n. For n = 10, use the relationship you just found to calculate the α
corresponding to δ = 0.2. Having found the appropriate α to use, simulate 5 realizations
of the corresponding Ising model.

[Answer: Find the relationship by expressing the expected number of odd bonds, nδ, as a
sum (over even k) of k times the probability of having k odd bonds, and then dividing by
n to obtain

δ =

∑
k even, k≤n k

(
n
k

)
αk

n
∑

k even, k≤n
(
n
k

)
αk

= α
(1 + α)n−1 − (1− α)n−1

(1 + α)n + (1− α)n

[3.13] For the Ising model on a cycle graph as discussed in the previous two problems, prove that
the process X1, . . . , Xn is not a Markov chain in general.
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4. Martingales

Section 1. Where did the name come from?
Section 2. Definition and examples.
Section 3. Optional sampling.
Section 4. Stochastic integrals and option pricing in discrete
time.
Section 5. Martingale convergence.
Section 6. Stochastic approximation.

Imagine spending the day in a mythical “fair” casino, placing bets on various games as
the day progresses, and watching your total wealth rise and fall randomly as you win and
lose various amounts of money. The casino is “fair” in the sense that, whenever you play a
game there, the expected change in your total wealth is always 0, no matter what the history
of the process has been. A martingale is a stochastic process that models the time evolution
of your total wealth. The theory of martingales and their relatives—submartingales and
supermartingales—is one of the pillars of modern probability theory, and a basic tool in
applications.

4.1 Why “martingale”?

There are a number of stories about this interesting name, some of which seem somewhat
implausible. Here are two definitions the dictionary gives:

1. A device for steadying a horse’s head or checking its upward movement that consists
essentially of a strap...

2. Any of several systems of betting in which a player increases his stake usually by
doubling each time he loses a bet.

Some say that the reason for the name is actually the first definition above; it turns out
that roughly speaking, martingales cannot oscillate around too much [[cf., for example,
the “upcrossing unequality”]], so it is almost as if they are being restrained somehow. In
fact, there is a type of stochastic process called the “harness,” which gives support to
the equestrian interpretation. As for the second definition, the term “martingale” does
have a long history in gambling circles, referring to a seductive sort of strategy in which
the gambler continues to double his bet as long as he keeps losing, until he ends up on
the winning side. A pitfall, of course, is that eventually the gambler will experience huge
losses, using up his initial fortune. He’ll try to say, “But I’m not done with my martingale
yet; let me keep playing until I get my dollar!” and he will be told “Sorry; no money, no
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more playing.” Apparently the origin of that term is the name of the French community
Martigues. Or perhaps the martingale was named in honor of the famous nurse Florence.

4.2 Definitions

Let us adopt some notation for convenience.

(4.1) Notation. Given a process W = {Wk}, let Wm,n denote the portion
Wm,Wm+1, . . . ,Wn of the process from time m up to time n.

(4.2) Definition. A process M0,M1, . . . is a martingale if

E[Mn+1 |M0,n] = Mn for each n ≥ 0.

Sometimes we will also use the following generalization of the last definition.

(4.3) Definition. A process M0,M1, . . . is a martingale with respect to another process
W0,W1, . . . if

E[Mn+1 |W0,n] = Mn for each n ≥ 0.

Definition (4.2) is a special case of Definition (4.3), obtained by taking W to be the same
as M . That is, M is a martingale in the sense of Definition (4.2) if M is a martingale with
respect to itself in the sense of Definition (4.3). Sometimes, however, it will be convenient
to allow M and W to be different processes.

The crux of the definition is the condition E[Mn+1 |W0,n] = Mn, which is a “fair game”
sort of requirement. If we are playing a fair game, then we expect neither to win nor to
lose money on the average. Given the history of our fortunes up to time n, our expected
fortune Mn+1 at the future time n+ 1 should just be the fortune Mn that we have at time
n.

In addition to the main idea of fairness just described, there is also a more minor
technical condition that is implicitly assumed: We also require E|Mn| <∞ for all n so that
the conditional expectations in the definition are guaranteed to be well-defined.

⊲ To solidify your grasp of the definition try Exercise [4.1].

How about those submartingales and supermartingales? These are processes that are
“better than fair” and “worse than fair,” respectively.

(4.4) Definition. A process X0, X1, . . . is a submartingale with respect to a process
W0,W1, . . . if E[Xn+1 | W0,n] ≥ Xn for each n ≥ 0. We say {Xn} is a supermartingale
with respect to {Wn} if E[Xn+1 |W0,n] ≤ Xn for each n ≥ 0.

Let’s discuss these names for a moment to help them stick. Which would you rather
bet on: a submartingale or a supermartingale? Doesn’t the term “supermartingale” sound
more attractive? But look at the definition: if you like to make money, you would rather
bet on a submartingale. So people encountering these terms usually think the names sound
backward, and they end up using the following sort of algorithm to decide which to say on
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any given occasion: first think to yourself which word you would like to say, then switch
and say the other one. This works satisfactorily, but why did these processes get these
names anyway? Of course, there are two ways to view the inequalities in the definition. If
you want to like the names, you’ll remember the inequalities this way:

submartingale: Xn ≤ E[Xn+1 |W0,n]

supermartingale: Xn ≥ E[Xn+1 |W0,n].

At each time, a submartingale is below its future expected value, whereas a supermartingale
is above its future expected value. So the question is: how do you feel now? With a
submartingale, you are below what you can expect if you continue playing, and with a
supermartingale, you feel that things are best right now, and you should take your money
and run.

⊲ Exercise [4.2] may shed more light on the mystery of sub versus super.

4.3 Examples

(4.5) Example [Random walks]. Suppose X1, X2, . . . are iid and define Sn =
∑n

k=1Xk

for k = 0, 1, . . ., with S0 = 0. If the random variables Xt have mean 0, then {Sn : n ≥ 0}
is a martingale with respect to itself:

E(Sn+1 | S0,n) = E(Sn +Xn+1 | S0,n) = Sn + E(Xn+1 | S0,n) = Sn + E(Xn+1) = Sn.

Similarly, if Xn has positive mean, {Sn} is a submartingale, and if Xn has negative mean,
{Sn} is a supermartingale.

(4.6) Example [Branching processes]. LetX0, X1, . . . be a branching process: Xn+1 =∑Xn

i=1 Zni, where the offspring numbers {Zni} are iid with mean µ, say.

E(Xn+1 | X0,n = x0,n) = E(

Xn∑

i=1

Zni | X0,n = x0,n)

= E(

xn∑

i=1

Zni | X0,n = x0,n)

= E(

xn∑

i=1

Zni) = xnµ,

that is, E(Xn+1 | X0,n) = Xnµ. Thus, defining Mn = µ−nXn, we see that

E(Mn+1 | X0,n) = µ−(n+1)(Xnµ) = Mn,

so that the process {Mn} is a martingale.
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(4.7) Example [Polya’s urn]. Suppose we start out at time 2 with one black ball and
one white ball in an urn. Then at each time we draw a ball at random from the urn, and
replace it together with a new ball of the same color. Let Xn denote the number of white
balls at time n. Thus, given that Xn = k, with probability k/n we draw a white ball so
that Xn+1 = k + 1, and with the remaining probability 1− (k/n) we draw a black ball so
that Xn+1 = k. Letting Mn = Xn/n, the fraction of white balls at time n, we have

E(Mn+1 | X2,n) = E

(
Xn+1

n+ 1
| Xn

)
=

1

n+ 1

[
(Xn + 1)

Xn

n
+Xn

(
1− Xn

n

)]

= Xn/n = Mn.

(4.8) Example [Conditional expectations of a fixed random variable given
increasing amounts of information]. Let X0, X1, . . . be any sequence of random
variables, and let Y be another random variable. Define Mn = E(Y | X0,n). Then {Mn} is
a martingale with respect to the process {Xn}.

This has a simple interpretation. Imagine that you are to receive some future reward Y .
Also imagine that you are going to observe the random variables X0, X1, . . . sequentially
— at time n you observe the value of the random variable Xn. You do not know the value
of the random variable Y . But we assume that from the beginning you know the joint
distribution of the random variables, so that you can calculate expectations and so on. At
time n, if you had to guess the value of Y , then your best guess (in the sense of minimizing
your expected squared error) would be the conditional expectation of Y given all of the
information at your disposal so far, that is, E(Y | X0, . . . , Xn). The claim is that your
sequence of guesses forms a martingale. This makes some intuitive sense. For example, you
do not expect tomorrow’s guess to be systematically higher than today’s; if you did expect
this, that would mean that you think today’s guess is too low, and it would not be your
best guess!

The mathematical verification that {Mn} is a martingale is an immediate application of
one of the properties (currently (A.8??)) of conditional expectation given in the appendix.
Just write it out and you see it:

E(Mn+1 | X0,n) = E(E(Y | X0,n+1) | X0,n)

= E(E(Y | X0,n, Xn+1) | X0,n)
(∗)
= E(Y | X0,n) = Mn.

Property (A.8??) was used for equality (∗).
[[Draw a tree picture with rewards (numbers) assigned to the terminal

nodes, and show the conditional expectations at the internal nodes...]]

(4.9) Example [Likelihood ratios]. Suppose random variables X1, X2, . . . are inde-
pendent with probability density function f . Imagine we are considering the alternative
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hypothesis that these random variables are independent with a different probability density
function g (but they are really distributed according to the density f). For simplicity (to
eliminate worries related to dividing by 0) suppose that {x : f(x) > 0} = {x : g(x) > 0}.
Define the likelihood ratio process {Mt} by M0 = 1 and

Mt =
g(X1) · · · g(Xt)

f(X1) · · · f(Xt)
.

Then since Mt+1 = Mtg(Xt+1)/f(Xt+1), we have

E(Mt+1 | X1, . . . , Xt)
(a)
= MtE

(
g(Xt+1)/f(Xt+1) | X1, . . . , Xt

)

(b)
= MtE

(
g(Xt+1)/f(Xt+1)

)

(c)
= Mt

∫ (
g(x)/f(x)

)
f(x) dx

= Mt

∫
g(x) dx = Mt,

where (a) holds because Mt is a function of X1, . . . , Xt, (b) follows from the independence
assumption, and (c) uses the assumption that the Xt+1 has probability density f .

4.4 Optional sampling

Probably the most important property of martingales is a “conservation of fairness” prop-
erty, or “you can’t beat the system” property, technically known as optional sampling.
Let M be a martingale with respect to W . By the “fair game” property, E{Mn+1} =
E{E[Mn+1 |W0,n]} = E{Mn} for all n. This implies that

EMn = EM0 for all times n ≥ 0.

That is, I can say “stop” at any predetermined time t, like t = 8, say, and my winnings will
be “fair”: EM8 = EM0.

Fairness is also conserved in many cases—but not in all cases—if I say “stop” at a
time that is not a predetermined number, but random, that is, depending on the observed
sample path of the game. The issue of optional sampling is this:

If T is a random time, that is, T is a nonnegative random
variable, does the equality EMT = EM0 still hold?

It would be too much to hope for such a simple result also to hold for all random times
T ≥ 0. There are two sorts of things I should not be allowed to do if we want fairness to
be conserved.

1. I should not be allowed to take an indefinitely long time to say “stop.” If I am able
just to keep waiting until I see something I like, that seems clearly unfair, doesn’t it?
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You would get impatient: “Come on—do something!” Here is an obvious example:
consider the simple symmetric random walk Mn = X1 + · · · + Xn where X1, X2, . . .
are iid with P{Xi = ±1} = 1/2. If I say “stop” at time T1 = inf{n : Mn = 1}, then
clearly EMT1 = 1 > 0 = EM0.

2. Another obvious loophole that violates fairness in games is when a player is allowed
“take back” moves, changing his mind about something he did in the past. In our
context, that would amount to my using the information available up to time t,
say, and going back to some past time s < t and claiming, “I meant to say ‘stop’
then!” That violates the spirit of the game: I am supposed to say “stop” using only
the information available up to that time, without peeking ahead into the future.
For example, again letting the martingale M be the simple symmetric random walk,
consider the random time Tmax ∈ [0, 3] at which M takes on its maximum value
max{Mn : 0 ≤ n ≤ 3} (we could take the last such time if M takes its maximum value
more than once). Then clearly MTmax > 0 with positive probability; indeed, since
M1 = 1 with probability 1/2, clearly P{MTmax ≥ 1} ≥ 1/2. Therefore, E[MTmax ] >
0 = EM0. Notice that this sort of failure is indeed conceptually distinct from the
previous type. In our example, I am not potentially taking too long to say stop, since
Tmax is nicely bounded by 3.

Ruling out these two sorts of unfair behavior leaves a class of random times T at which
we can be assured that the optional sampling statement EMT = EM0 holds. Disallowing
arbitrarily long times is done by assuming T to be bounded , that is, there is a finite number
b such that T ≤ b holds with probability 1. Random times that disallow the gambler from
peeking ahead into the future are called stopping times.

(4.10) Definition. A random variable T taking values in the set {0, 1, 2, . . . ,∞} is a
stopping time with respect to the process W0,W1, . . . if for each integer k, the indicator
random variable I{T = k} is a function of W0,k.

Just in case you’re wondering: Do we ever really want to let a stopping time take the
value “∞”? Yes, it is more convenient and less abstract than it might appear at first.
For example, consider a random walk S0, S1, . . . on the integers, starting at S0 = 0, with
Sn = X1 + · · · + Xn and X1, X2, . . . iid with P{Xi = 1} = p < 1/2 and P{Xi = −1} =
1 − p > 1/2. The random walk {Sn} drifts downward (since p < 1/2), and it approaches
−∞ as n→∞. If we were interested in the first time that the random walk hits the value
3, we would be led to consider a definition like T = inf{n : Sn = 3}. This random variable
is clearly defined for those sample paths that hit the state 3 eventually, but what about the
sample paths that never hit the state 3? This is not just idle speculation; there is positive
probability that the process never hits the state 3 on its way down toward −∞. In that
case, the set {n : Sn = 3} is empty, so our definition reduces to the infimum of the empty
set, which is ∞!

⊲ You might have a look at Exercises [4.3] and [4.4] at this point.
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(4.11) Example. As discussed above, let {Mn} be the simple, symmetric random walk
starting at 0, and consider the random variable T1 = inf{n : Mn = 1}. Show that T1 is a
stopping time.

Solution: Let n > 0. Clearly T1 = n if and only if M1 < 1, . . . ,Mn−1 < 1, and Mn = 1,
so that I{T1 = n} may be expressed as I{M1 < 1, . . . ,Mn−1 < 1,Mn = 1}, which is a
function of M0,n.

(4.12) Example. Show that the random variable Tmax = sup{n ≤ 3 : Mn = max0≤k≤3Mk}
from above is not a stopping time.

Solution: We want to show that we do not necessarily know by time k whether or not
T = k. For example, if 1 = X1 = X2 = X3 then I{T = 1} = 0 (since in fact T = 3),
whereas if X1 = 1 and X2 = X3 = −1 then I{T = 1} = 1. However, in both cases M0 = 0
and M1 = 1. Thus, the value of the indicator I{T = 1} is not determined by M0,1.

The next theorem is the main optional sampling result.

(4.13) Theorem. Let M0,M1, . . . be a martingale with respect to W0,W1, . . ., and let T be
a bounded stopping time. Then EMT = EM0.

Proof: Suppose that T is bounded by n, that is, T (ω) ≤ n holds for all ω. We can write
MT as M0 plus the sum of increments of M as

MT = M0 +
T∑

k=1

[
Mk −Mk−1

]

= M0 +
n∑

k=1

[
Mk −Mk−1

]
I{k ≤ T}.

From this, by taking expectations of both sides,

(4.14) EMT = EM0 +
n∑

k=1

E
([
Mk −Mk−1

]
I{T ≥ k}

)
,

where we have simply used the fact that the expected value of a finite sum of random
variables is the sum of the expected values. [[Remember, this interchange of sum and
expectation is not necessarily valid for an infinite sum of random variables! So here we
have used the assumption that T is bounded.]] However, note that since I{T ≥ k} =
1− I{T ≤ k − 1} is a function of W0,k−1,

E
[
MkI{T ≥ k}

]
(a)
= E

[
E

(
MkI{T ≥ k}

∣∣∣W0,k−1

)]

(b)
= E

[
E

(
Mk |W0,k−1

)
I{T ≥ k}

]

(c)
= E

[
Mk−1I{T ≥ k}

]
,
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where we have used some of the rules of conditional expectation from Section A.2: (a)
uses the iterated expectation rule 3, (b) uses rule 2, and (c) uses the definition of M as a
martingale. Thus,

E
([
Mk −Mk−1

]
I{T ≥ k}

)
= 0,

so that EMT = EM0, by (4.14).

(4.15) Example. The game “Say Red” is played with a shuffled deck of 52 cards, 26 of
which are red and 26 of which are black. You start with the cards in a pile, face down. At
times 1, 2, . . . , 52 you turn over a new card and look at it. You must choose one and only
one time τ ∈ {0, 1, . . . , 51} to say “The next card will be red,” and you win the game if the
next card is indeed red. Your choice τ is to be a stopping time, so that it may depend in
any way on the information you have available up to that time.

Although one might think that it would be possible to play the game strategically and
achieve a probability of winning that is greater than 1/2, we claim that in fact this is
impossible: the probability of winning is 1/2 for all stopping times τ ∈ {0, 1, . . . , 51}. To
see this, let Rn denote the number of red cards remaining in the pile after n cards have been
turned over. DefiningMn = Rn/(52−n), a simple calculation shows thatM0,M1, . . . ,M51 is
a martingale. LettingG denote the event that you win, clearly P (G | τ,Rτ ) = Rτ/(52−τ) =
Mτ , so that P (G) = EMτ . Thus, by Theorem (4.13), P (G) = EM0 = 26/52 = 1/2.

The same ideas are used to prove the next theorem, which generalizes the previous
result by

• applying to general supermartingales rather than just martingales, and

• by replacing the two times 0 and T by two stopping times S and T satisfying S ≤ T .

For a supermartingale X evaluated at nonrandom times s ≤ t, we have EXt ≤ EXs. The
following optional sampling results generalizes this to stopping times.

(4.16) Theorem. Let X0, X1, . . . be a supermartingale with respect to W0,W1, . . ., and let
S and T be a bounded stopping times with S ≤ T . Then EXT ≤ EXS.

Proof: Suppose that T is bounded by n, so that S(ω) ≤ T (ω) ≤ n holds for all ω. Write

XT = XS +
T∑

k=S+1

[
Mk −Mk−1

]

= XS +
n∑

k=1

[
Xk −Xk−1

]
I{k > S}I{k ≤ T}.

Taking expectations of both sides, we see that it is sufficient to show that

(4.17) E
([
Xk −Xk−1

]
I{k > S}I{k ≤ T}

)
≤ 0.
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However, note that since

I{k > S}I{k ≤ T} = I{S ≤ k − 1}(1− I{T ≤ k − 1})

is a function of W0,k−1, applying the rules as above gives

E
[
XkI{k > S}I{k ≤ T}

]
= E

[
E

(
XkI{k > S}I{k ≤ T}

∣∣∣W0,k−1

)]

= E
[
E

(
Xk |W0,k−1

)
I{k > S}I{k ≤ T}

]

≤ E
[
Xk−1I{k > S}I{k ≤ T}

]
,

which is equivalent to (4.17).

The optional sampling theorems stated above apply only to bounded stopping times. It
would be disappointing if our analysis were really restricted in this way—the boundedness
assumption is not satisfied in many natural problems. The next example is a simple case
in which the stopping time of interest is not bounded. Its analysis illustrates a standard
trick that allows Theorem (4.13) to be applied.

a

b

0

}

} b-0

0-a

} b-a

(4.18) Example. Let S0, S1, . . . be a simple, symmetric random walk on the integers
starting from S0 = 0. Let a and b be integers with a < 0 < b, and define T = inf{n : Sn =
a or Sn = b}. T is a stopping time, the first time that the random walk hits either a or
b. However, T is not bounded; T has positive probability of exceeding any given number.
The trick that enables us to apply the Theorem (4.13) is to define a new stopping time

(4.19) Tm = min{T,m} = T ∧m

for each m. Then Tm is a bounded stopping time [[it is bounded by m, and part (a) of
Exercise ([4.5]) shows that it is a stopping time]], so that our theorem gives ESTm

= 0 for all
m. However, T <∞ with probability 1 [[remember the random walk is recurrent!]]. For each
ω such that T (ω) <∞, we have Tm(ω) = T (ω) for sufficiently large m [[“sufficiently large”
here means that m ≥ T (ω), which depends on ω, but that doesn’t matter]]. Therefore,
for each ω satisfying T (ω) < ∞, we have STm

= ST for sufficiently large m. This clearly
implies that STm

→ ST with probability 1. This together with the Bounded Convergence
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Theorem [[see Appendix A]] implies that ESTm
→ EST . Thus, since ESTm

= 0 for all m,
we must have EST = 0. From here the rest is easy. The random variable ST takes on two
values: a with probability P{ST = a} and b with probability P{ST = b}. So we get the
equation

0 = EST = aP{ST = a}+ bP{ST = b} = a[1− P{ST = b}] + bP{ST = b},

which gives

P{ST = b} =
0− a
b− a .

(4.20) Example. Retain the definitions of the random walk process {Sn} and the stopping
time T from the previous example. Now we will find the expected value E(T ). To do this,
we will use another martingale associated with the same random walk: define Mn = S2

n−n.
Writing Sn+1 = Sn +Xn+1,

E{S2
n+1 | S0,n} = E{S2

n + 2SnXn+1 +X2
n+1 | S0,n}

= S2
n + 2SnE{Xn+1 | S0,n}+ E(X2

n+1 | S0,n)

= S2
n + 2SnE{Xn+1}+ E(X2

n+1) = S2
n + 1,

so that E{S2
n+1−(n+1) | S0,n} = S2

n−n; that is, {Mn} is a martingale. Define Tm = T ∧m
as in (4.19). Then since Tm is a bounded stopping time,

E{S2
Tm
− Tm} = E{MTm

} = EM0 = 0,

or E{S2
Tm
} = E(Tm) for all m. However, P{T <∞} = 1, so that Tm → T with probability

1 as m → ∞. By the Bounded Convergence Theorem, E{S2
Tm
} → E(S2

T ) as m → ∞,
and, by Monotone Convergence, E(Tm) → E(T ). Thus, E(T ) = E(S2

T ). However, we
just found the distribution of ST in the previous example: P{ST = a} = b/(b − a) and
P{ST = b} = −a/(b− a). Therefore,

ES2
T = a2 b

b− a + b2
−a
b− a = −ab.

That is, E(T ) = |a|b. This is a handy result to remember. For example, the expected time
until a random walk wanders 100 units in either direction away from its starting position
is 100× 100 = 10000.

4.5 Stochastic integrals and option pricing in discrete time

Among the most voracious consumers of martingale theory in recent years have been math-
ematical economists and the “rocket scientist” types on Wall Street. In this section we’ll
get a glimpse into what the attraction is.
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Everyone has heard of common financial assets such as stocks and bonds. Probability
theory enters naturally in the study of the unpredictable price changes of such securities.
For fun and profit, people have invented many types of derivative securities, including
“put” and “call” options, for example. A derivative security based on an underlying stock
would pay off various amounts at various times depending on the behavior of the price of
the stock.

In this section we will discuss the major theory that predicts and explains the prices
of such derivative securities. Here we will consider discrete time models; an analogous
development in the context of Brownian motion models in continuous time leads to the
famous Black-Scholes formula, to be presented in Chapter ???.

Denote the stock price at time t by St; the stock price process is S0, S1, S2, . . .. We
assume that at an agreed-upon future time n, say, the derivative security pays an amount X
that is some function X = g(S0,n) of the stock price history up to that time. The derivative
security is specified by giving the underlying security, the time n, and the function g.

(4.21) Example. A call option on a given underlying stock is the right to buy a share
of the stock at a certain fixed price c (the “strike price”) at a certain fixed time n in the
future (the “maturity date”). If I buy a call option from you, I am paying you some money
in return for the right to force you to sell me a share of the stock, if I want it, at the strike
price on the maturity date. If Sn > c, then the buyer of the option will exercise his right
at time n, buying the stock for c and selling it for Sn, gaining a net Sn− c. If Sn ≤ c, then
it is not profitable to buy the stock at price c, so the option is not exercised, and the gain
at time n is 0. In summary, for the call option, g(S0,n) = (Sn − c)+, where the subscript
“+” denotes the “positive part” function.

A key concept behind the development in this section is arbitrage. An arbitrage is a
transaction that makes money without risk, that is, with no chance of losing money. Such
free lunches are not supposed to exist, or at least should be rare and short-lived. The
basic reason for believing this is that many people are looking for such opportunities to
make money. If the price of commodity A were so low, for example, that some clever
set of transactions involving buying commodity A and perhaps selling some others were
guaranteed to make a riskless profit, then many eager arbitrage seekers would try to perform
the transaction many times. The resulting increased demand for commodity A would cause
its price to increase, thereby destroying the arbitrage opportunity.

Accordingly, we will assume that arbitrage opportunities do not exist . A simple conse-
quence of this assumption is the following principle.

If there are two portfolios that give the same sets of payoffs at the same times
(for example, two different combinations of securities that produce the same
rewards under all circumstances), then those portfolios must have the same
price.

The trick that allows the no-arbitrage assumption to identify the “right” price of a
derivative security X based on a stock is this. We will show that the derivative security
is actually redundant , in the sense that there is a portfolio involving just the stock and a
“bond” that produces exactly the same payoffs as X does. Supposing we have done this,
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since we are given the prices of the stock and the bond, then we can calculate the price of
the reproducing portfolio, which (by the principle above) must be the same as the price of
the derivative security.

Let’s start simple: a problem involving just one period. We will consider a stock and
just two states of nature, which correspond to the stock price rising or falling. Suppose
that at time 0 the stock price is 1, and at time 1 the stock price must be either s⊕ or
s⊖, say, where s⊖ < 1 < s⊕. The other security we may use in our portfolio is called a
“bond.” In fact, for simplicity—the ultimate goal here—let us assume the interest rate
is zero. [[In case this assumption bothers you, note that simply by redefining the unit of
money in different periods, it turns out to be easy to convert a problem with a nonzero
interest rate into an equivalent problem with interest rate zero.]] In this case, the bond is
really a dull investment: investing $1 at time 0 returns exactly $1 at time 1. We can think
of it this way: “buying b shares of the bond” (where b is a real number) corresponds to
lending out $b for one period: we lose $b at time 0 but then gain back $b at time 1. If b < 0
this corresponds to borrowing $b for one period. In other words, assuming an interest rate
of zero means that we can lend or borrow money with no cost.

Like the stock, the redundant security X will have payoffs that are a function of the
state of nature. So let’s say that X pays x⊕ if the stock price goes up to s⊕ and x⊖ if the
stock price goes down to s⊖. The three financial instruments we may work with are shown
below: the stock, the boring bond, and the option whose no-arbitrage price we wish to
determine.
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Finding such a “reproducing portfolio” is easy. We assume the stock and bond can be
traded in continuous amounts, so that one can buy 2.718 shares of stock or sell 3.14 bonds,
for example. Letting a and b denote the number of stock and bond shares in the portfolio,
we want to solve for a and b. Since the payoffs at time 1 from such a portfolio are as⊕ + b
if the stock goes up and as⊖ + b if the stock goes down, the requirement that the portfolio
reproduce the payoffs of the redundant security consists of the two equations as⊕ + b = x⊕

and as⊖ + b = x⊖, or, in other words, the vector equation a
(
s⊕
s⊖

)
+ b

(
1
1

)
=

(
x⊕
x⊖

)
. We are

assured that there is a solution for any given x⊕ and x⊖, because the vectors
(
s⊕
s⊖

)
and

(
1
1

)

are linearly independent, and therefore span R2. Solving, we obtain

a =
x⊕ − x⊖

s⊕ − s⊖
, b =

x⊖s⊕ − x⊕s⊖
s⊕ − s⊖

;
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in particular, the price π that we pay for this portfolio at time 0 is

π = a+ b = x⊕

(
1− s⊖
s⊕ − s⊖

)
+ x⊖

(
s⊕ − 1

s⊕ − s⊖

)
.

Finally, the familiar arbitrage reasoning: If the price of the redundant security were any-
thing other than π, we would have two investments (the redundant security and the re-
producing portfolio) that have different prices but exactly the same payoffs, which would
provide a clear recipe for arbitrage. Thus, the price for the redundant security implied by
a no-arbitrage assumption is π.

There is a nice interpretation of π that makes it easy to remember and points toward
the connection with martingales. Letting

p =
1− s⊖
s⊕ − s⊖

,

we have found that

(4.22) π = x⊕p+ x⊖(1− p).

Thus, if, for some reason, we assumed that the the stock price had a probability p of rising,
then the price π would simply be the expected value of the payoff of the redundant security.
Notice that the arbitrage argument goes through to give the same price π no matter what
the true probabilities for the states of nature might be,∗ hence the magic and mystery
of option pricing: the “probability” p has nothing to do with any true probabilities. It
does, however, have an interesting and useful interpretation: p is the probability that makes
the stock price a martingale. Indeed, we could solve for p by this specification—if the
probability of the stock’s rising is p, then the expected value of the stock price at time 1 is
ps⊕+(1−p)s⊖. For the stock price to be a martingale, this last expression must be the same
as the stock price at 0, which is 1. This happens precisely when p = (1−s⊖)/(s⊕−s⊖). The
equality (4.22) says that the price of the redundant security is its expected payoff, where the
expectation is taken under the “equivalent martingale measure.”

It may seem that bringing in martingales to explain a couple of simple bookkeeping
calculations involving only simple arithmetic is underilluminating overkill. But the mar-
tingale story will continue to summarize the situation when we deal with Brownian motion
and diffusions later on, where the arithmetic bookkeeping becomes tenuous. Even in sim-
ple discrete-time problems, martingales provide a slick approach, in multiperiod problems
summarizing in one pithy statement what might otherwise seem to be a mass of mindless
calculations.

Turning to multiperiod problems, we continue to assume a simple, stylized model for
the stock price. Imagine that the stock price process can be described as a bifurcating tree,
where for each possible history of the stock price up to time t, there are just two possible
values for the price at time t + 1. We describe a path, or history, in the stock price tree

∗Well, except for something funny that happens if either state has probability 0. However, in fact such a
situation is ruled out by the no-arbitrage assumption. For example, if the probability of the stock rising is 1,
then the two portolios “buy 1/s⊕ shares of stock” and “buy 1 bond” have the same payoffs with probability
1 at time 1, but have different prices.
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up to time t by a sequence of binary variables W1,W2, . . . ,Wt, where Wk = ⊕ means that
the price took the larger of the two possible values at time k, and Wk = ⊖ means that the
price took the smaller of the two possible values at time k, Let’s assume the initial stock
price s0 is known, and W1,W2, . . . is a random sequence. So the stock price St at time t is
determined by the history W1,t = (W1, . . . ,Wt); let’s write it as a function St = St(W1,t).

(4.23) Example. As a simple illustration, we might assume that in each period the stock
price must either double or half. If, for example, the stock starts out at s0 = 8 and it goes
up in the first 3 periods, then at time 3 the price is S3(⊕,⊕,⊕) = 64. The price after
3 “down” periods would be S3(⊖,⊖,⊖) = 1. In general, St(W1,t) = s02

W1+...+Wt . The
possible paths of the stock price for the first few periods are as follows:
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This model looks very artificial—one would not expect a stock to either double or half each
period. But the same sort of model becomes more realistic looking when there are many
very short periods and the stock price can gain or lose some very small percentage each
period.

We have not yet specified probabilities of various stock price paths. In the simple
model of the stock price, the probabilities in question would be the probabilities of the 8
paths (⊖,⊖,⊖), (⊖,⊖,⊕), (⊖,⊕,⊖), . . . , (⊕,⊕,⊕). For example, we might assume that all
8 paths are equally likely, which is equivalent to assuming a probability measure P under
which the random variables W1, W2, and W3 are independent with P{Wi = ⊕} = P{Wi =
⊖} = 1/2, as depicted below.
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The probability P.

For the sake of discussion, let us suppose from now on that P gives the true probabilities
in this example. But as hinted above and as we will soon see again, a major surprise of the
theory is that the probabilities basically don’t matter .

Given the price St = St(W1, . . . ,Wt) at time t, the price St+1 has the two possible values
St+1(W1, . . . ,Wt,⊕) and St+1(W1, . . . ,Wt,⊖). Let us assume that the current stock price
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is always strictly between the two possible prices at the next period, that is,

(4.24) St+1(W1, . . . ,Wt,⊖) < St(W1, . . . ,Wt) < St+1(W1, . . . ,Wt,⊕).

We want to price a derivative security X whose value at time n is a function of W1,n.
For example, for the stock price process of Example (4.23), a call option with strike price
10 at time 3 would have the payoffs shown below.
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Again the key is to show that the derivative security is redundant—its payoffs can be
duplicated using the stock and a bond. A trading strategy consists of a specification of the
number of stock shares that we hold at each time period. Let Ht denote the number of
shares held at time t. Think of it this way: at time t we buy Ht shares to hold over the
interval from t to t + 1. This choice is based on the history of the stock price process up
to time t, and it cannot depend on future information. This is a reasonable model of a
non-clairvoyant investor. For example, if we allowed Ht to depend on Wt+1, the investor
could look into the future to see if the stock goes up or down in the next period and hold
1,000,000 shares if Wt+1 = ⊕ and hold −1, 000, 000 shares (that is, sell a million shares) if
Wt+1 = ⊖.

The payoff of the strategy H in the first period is H0(S1 − S0), that is, the number of
shares bought at time 0 times the amount the stock price rises. Accumulating such gains
over the first n periods, we see that the gain at time n from the strategy H0, H1, . . . is

(4.25) (H • S)n = H0(S1 − S0) +H1(S2 − S1) + · · ·+Hn−1(Sn − Sn−1).

It might be helpful to think about this in more detail. At time 0, we buy H0 shares of
stock, which costs H0S0. To make things very clean, let’s imagine that we borrow H0S0

at time 0 to finance the stock purchase. So in fact we neither gain nor lose money at time
0, since we gain H0S0 by borrowing it and then spend that same amount of money to buy
the stock. At time 1, we sell our H0 shares of stock (remember that H0 is the number of
shares of stock we hold just for the first period), gaining H0S1, and we pay off the money
we borrowed, namely H0S0. So the strategy H • S produces payoffs H0(S1−S0) at time 1,
and the strategy costs nothing to perform. For practice, you should tell yourself a detailed
story of how to implement the strategy (H • S)3, producing the payoffs H0(S1 − S0) +
H1(S2 − S1) +H2(S3 − S2) at time 3, with no expenditures along the way.

The process H • S is a discrete-time stochastic integral . Generally speaking, an integral
is a sum of products, or a limit of sums of products. For example, the “Riemann-Stieltjes”
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integral
∫ b
a f dg can be defined to be a limit of sums of the form

∑k−1
i=0 f(xi)[g(xi+1)−g(xi)]

as k →∞, where a = x0 < x1 < . . . < xk = b and maxi<k(xi+1 − xi)→ 0 as k →∞. [[The

ordinary Riemann integral
∫ b
a f(x) dx is a special case of this where g is simply the identity

function g(x) = x.]] That is,
∫
f dg is a sum of products of values of f with changes in values

of g. Analogously, (4.25) is a sensible way to define an integral
∫
H dS for discrete-time

processes.
We will see that in the type of bifurcating tree models of stock prices that we are

considering, the payoffs given by any derivative security X with maturity date n may be
reproduced precisely by the sum of a constant and some trading strategy; that is,

(4.26) X = x0 + (H • S)n

for some number x0 and trading strategy H. This is not so obvious, but for now let us
assume it is true and see what we can do with it.

(4.27) Claim. In addition to assuming (4.24), suppose that each path w1,t has positive
probability. Suppose X satisfies (4.26). Then the no-arbitrage price of X is x0.

Proof: The assumptions imply the existence of a martingale measure Q. [[Why?]] We want
to show that for each price other than x0, there is an arbitrage opportunity. For example,
suppose X has price y < x0 (a similar argument may be constructed if y > x0). Then buy
X for y, perform trading strategy −H, and borrow x0 until period n. Then at time 0 you
get x0 − y > 0, whereas no money changes hands in any future periods — in particular, in
period n your gains and losses of x0 + (H • S)n cancel out.

To show there is no arbitrage at price x0, suppose, to the contrary, that there is a
trading strategy J such that buying X for x0 and performing strategy J give a riskless
profit, with

−x0 +X + (J • S)n

{
≥ 0 for all w1,n

> 0 for some w1,n.

But
EQ(−x0 +X + (J • S)n) = 0,

which gives a contradiction, as desired.

The claim reduces the problem of pricing X to that of finding x0 in the representation
(4.26).

A stochastic process, such as the price process for the stock, takes various possible paths
with various probabilities. Different probability measures will allocate probability among
paths differently. For discrete processes of the type we have been discussing, some paths
will have positive probability and some will have zero probability.

(4.28) Definition. Two probability measures P and Q for a process are called equivalent
if they agree on which sets of paths have zero probability and which sets of paths have positive
probability.
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This is a weak notion of equivalence—two probability measures can be very different but still
equivalent. So maybe it’s not such a good name. But it’s firmly entrenched in probability
and measure theory, so let’s not fight it.

(4.29) Example. For the example considered in (4.23) with the probability measure P

pictured above, any equivalent measure Q will simply reassign probabilities among the set
of paths already taken by P. An equivalent measure Q will not go off and blaze new trails,
but just reallocates probability among the old paths.

(4.30) Definition. Given a process and a probability measure P, a probability measure
Q is an equivalent martingale measure if Q is equivalent to P and the process is a
martingale under the measure Q.

A martingale measure Q makes the identification of the desired price x0 in (4.26) easy.
Since the martingale property gives EQ(St+1 − St |W1,t) = 0, we have

EQ

(
Ht(St+1 − St)

)
= EQ

[
EQ

(
Ht(St+1 − St)

∣∣∣ W1,t

)]

= EQ

[
HtEQ

(
St+1 − St

∣∣∣ W1,t

)]
= 0,

so that
EQ(H • S)n = EQ[H0(S1 − S0)] + · · ·+ EQ[Hn−1(Sn − Sn−1)] = 0.

Thus, taking the expectation under Q of both sides of (4.26), the EQ knocks out the
stochastic integral part of the right-hand side, just leaving the desired price x0:

(4.31) EQ(X) = x0.

In summary : We suppose the stock price is governed by a probability measure P on
the paths in a bifurcating tree. Letting Q be a probability measure equivalent to P under
which the stock price is a martingale, the no-arbitrage price of the derivative security X is
EQX, that is, the expectation of X, taken under the measure Q.

(4.32) Example. For the setting of Example (4.23), P is not a martingale measure. For
example, if the current price is 4, under P the price at the next period will be either 2 or
8 with equal probability, giving an expected value of 5. The martingale measure Q has
Q{Wk = ⊕} = 1/3 and Q{Wk = ⊖} = 2/3.
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The no-arbitrage price of the call option with strike price 10 is

54[(1/3)3] + 6[3(1/3)2(2/3)] = 10/3

Finally, why is it that we can reproduce the payoffs of X by trading the stock? That
is, under the assumed conditions, how do we know that there is a trading strategy H such
that (4.26) holds? The development rests on a simple martingale representation result.

(4.33) Theorem [Martingale representation]. Assuming {St} is a martingale with
respect to Q, for any other martingale {Mt} with respect to Q there is a trading strategy
{Ht} such that Mt = M0 + (H • S)t.

Why? We want to show that there is a process {Ht} such that

Mt+1 −Mt = Ht(St+1 − St).

The content of this statement is that increments of the M process are scaled-up or
scaled-down increments of the S process. For example, if a particular branch of the S

tree looks like , then the corresponding branch of the M tree might look like

[[scaling factor Ht = 0.5]] or [[scaling factor Ht = 1.5]], but not

[[not a scaling]]. But this is clearly true if M and S are both martingales with

respect to the same probability measure!

Proof: The martingale property assumed of S may be written as

Q{Wt+1 = ⊕ |W1,t}St+1(W1,t,⊕) + Q{Wt+1 = ⊖ |W1,t}St+1(W1,t,⊖) = St(W1,t),

or

Q{Wt+1 = ⊕ |W1,t}
(
St+1(W1,t,⊕)− St(W1,t)

)
(4.34)

= −Q{Wt+1 = ⊖ |W1,t}
(
St+1(W1,t,⊖)− St(W1,t)

)
.

The assumption (4.24) implies that both sides of (4.34) are positive. Since {Mt} is also a
martingale under Q, it satisfies the same type of equality as {St} does:

Q{Wt+1 = ⊕ |W1,t}
(
Mt+1(W1,t,⊕)−Mt(W1,t)

)
(4.35)

= −Q{Wt+1 = ⊖ |W1,t}
(
Mt+1(W1,t,⊖)−Mt(W1,t)

)
.
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Dividing (4.35) by (4.34) gives

(4.36)
Mt+1(W1,t,⊕)−Mt(W1,t)

St+1(W1,t,⊕)− St(W1,t)
=
Mt+1(W1,t,⊖)−Mt(W1,t)

St+1(W1,t,⊖)− St(W1,t)
=: Ht(W1,t),

that is, we have defined Ht(W1,t) to be either of the two fractions in (4.36). Thus,
no matter whether Wt+1 = ⊕ or Wt+1 = ⊖, we have Mt+1(W1,t+1) − Mt(W1,t) =

Ht(W1,t)
(
St+1(W1,t+1)−St(W1,t)

)
. So this definition of H satisfies our desired conditions:

Ht depends only on W1,t, and Mt+1 −Mt = Ht(St+1 − St).

Now we want to apply the theorem to establish the representation (4.26). The trick is
to define a martingale {Mt} such that Mn = X. But this is easy: define

Mt = EQ(X |W1,t).

Note that Mn = X, since we have assumed that X is a function of W1,n, and M0 = EQX.
Thus, applying the martingale representation theorem to M , there is a trading strategy H
such that

X = M0 +
n−1∑

t=0

(Mt+1 −Mt) = EQX +
n−1∑

t=0

Ht(St+1 − St).

This is what we wanted to show.

4.6 Martingale convergence

Martingales and their relatives tend to be rather tame and well-behaved. In particular, they
often converge. Of course, not all martingales converge. For example our old friend, the
simple symmetric random walk on the integers, is a martingale, and we know that it does
not converge to anything. In fact, no matter where the random walk is at any given time,
we can be sure it will visit each integer some time thereafter. But convergence does occur
under a number of reasonable conditions. For example, we will show that a nonnegative
supermartingale converges with probability 1. This makes a bit of intuitive sense: it is a
stochastic analog of the well-known and intuitively obvious statement that a nonnegative,
nonincreasing sequence of numbers must converge.

The basic tool in proving these results are optional sampling results as discussed in the
previous section. Here is what we will use.

(4.37) Proposition. Let X0, X1, . . . be a nonnegative supermartingale, and let X0 ≤ a,
where a is a nonnegative number. Then for b > a, defining Tb = inf{t : Xt ≥ b}, we have
P{Tb <∞} ≤ a/b.

Why? Suppose we are playing a supermartingale, starting with an initial fortune X0 ≤ a.
Suppose we adopt the strategy of stopping as soon as our fortune exceeds b, if that ever
happens. Our expected reward from playing this strategy is at least bP{Tb <∞}, since we
stop having won at least b with probability P{Tb < ∞}. But we expect to lose money on
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a supermartingale, so this expected reward should be no larger than our initial fortune, so
that bP{Tb <∞} ≤ a.

Proof: For typographical convenience, let’s drop the subscript b on Tb, so that T =
Tb. By optional sampling, for each finite t, E(XT∧t) ≤ E(X0) ≤ a. Note that XT∧t is
at least b if T ≤ t, and of course XT∧t is nonnegative by the assumption that X is a
nonnegative supermartingale. We can express those last two statements together in one
concise inequality: XT∧t ≥ bI{T ≤ t}. Taking expected values gives a ≥ EXT∧t ≥ bP{T ≤
t}, so that P{T ≤ t} ≤ a/b. Since t was arbitrary we get P{T <∞} ≤ a/b, as desired.

And now for the basic (super)martingale convergence theorem.

(4.38) Theorem. A nonnegative supermartingale converges with probability 1.

Why? A sequence of nonnegative numbers x0, x1, . . . has only 3 possible behaviors: (1)
it can converge to a finite number, (2) it can converge to ∞, or (3) it can “oscillate,”
with lim inf xt < lim supxt. We want to see that with probability 1, our sample path
X0(ω), X1(ω), . . . will not exhibit either behavior (2) or behavior (3). Convergence to ∞ is
ruled out by the supermartingale property. That is, if Xt →∞ on a set of positive proba-
bility, we would have E(Xt)→∞. (Note that since the random variables are nonnegative,
we cannot have Xt → −∞ on some other set of positive probability to compensate and keep
the expectation bounded). But since E(Xt) ≤ E(X0) for all t, it cannot be the case that
E(Xt) → ∞. So (2) is ruled out. For (3), let a and b be arbitrary nonnegative numbers,
with a < b, say. We want to see that the path cannot oscillate infinitely many times, being
below a infinitely many times and also above b infinitely many times. But we know that
whenever the process gets below a, the probability that it ever goes above b after that is
only a/b at most. So each time the process gets below a, there is a probability at least
1 − a/b that it will never again attain the level b. So with probability 1, eventually the
process must stop making “upcrossings” from below a to above b, so that with probability
1, the process does not oscillate as in case (3).

Proof: Let 0 ≤ a < b. Define stopping times

T0 = 0

S1 = inf{t ≥ T0 : Xt ≤ a}
T1 = inf{t ≥ S1 : Xt ≥ b}

...

Sk = inf{t ≥ Tk−1 : Xt ≤ a}
Tk = inf{t ≥ Sk : Xt ≥ b}

...

Since Sk ∧ n and Tk ∧ n are bounded stopping times with Sk ∧ n ≤ Tk ∧ n, the Optional
Sampling Theorem (4.16) gives E(XTk∧n) ≤ E(XSk∧n), or

(4.39) E(XTk∧n −XSk∧n) ≤ 0.
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Observe that

• if Tk ≤ n, then XTk∧n ≥ b, and

• if Tk > n, then Tk ∧ n = n, so that XTk∧n = Xn.

This observation implies the following more concise statement phrased in terms of indicator
random variables:

XTk∧n ≥ bI{Tk ≤ n}+XnI{Tk > n}.
The same kind of reasoning gives

XSk∧n ≤ aI{Sk ≤ n}+XnI{Sk > n},

so that

XTk∧n −XSk∧n ≥ bI{Tk ≤ n} − aI{Sk ≤ n}+Xn(I{Tk > n} − I{Sk > n})
≥ bI{Tk ≤ n} − aI{Sk ≤ n},

where the last inequality uses the nonnegativity of Xn and the fact that Tk ≥ Sk. Taking
expectations and using (4.39) gives

0 ≥ bP{Tk ≤ n} − aP{Sk ≤ n},

from which, letting n→∞, it follows that

P{Tk <∞} ≤
(a
b

)
P{Sk <∞}.

Thus, since {Sk <∞} ⊆ {Tk−1 <∞} clearly holds for all k ≥ 1, we obtain

(4.40) P{Tk <∞} ≤
(a
b

)
P{Tk−1 <∞},

and iterating this relationship gives

P{Tk <∞} ≤
(a
b

)k
P{T0 <∞} =

(a
b

)k
.

Defining K = sup{k : Tk <∞}, we have shown that P{K ≥ k} ≤ (a/b)k, and taking limits
as k →∞, we see that P{K =∞} = 0. That is, with probability 1, the process eventually
stops crossing the interval (a, b). As explained above, since this holds for arbitrary a < b,
with probability 1 the path must converge.

Stochastic Processes J. Chang, February 2, 2007



Page 138 4. MARTINGALES

4.7 Stochastic approximation

Stochastic approximation is a method of addressing two very fundamental problems: solving
equations and optimizing functions. Here let us think about solving equations; evidently
the problem of maximizing functions is closely related (for example, in calculus we learn to
maximize a function g by solving the equation g′(x) = 0). So, here’s a problem: solve the
equation f(x) = 0. Hmm. . . , you say, that shouldn’t be so hard; after all, there are lots of
techniques for solving equations, right? Oh, sorry — I forgot to mention that you have to
solve the equation without knowing what f is! You are limited to gathering some partial,
noisy information about f : you will see only observations of the unknown function f that
have been corrupted by random noise. So here is the game: you get to choose a value X0,
say, and ask me the question, “What is f(X0)?” However, in response, I will not give you
the true answer, but rather the true answer plus some “noise” random variable η0 having
mean 0. That is, what I tell you is not f(X0), but rather the sum Y0 = f(X0) + η0. For
example, η0 might be a N(0, 1)–distributed random variable. Having been given the noisy
observation Y0, you get to choose another value X1, and I will generate a new, independent
noise random variable η1 and tell you the value of the sum Y1, defined by Y1 = f(X1) + η1.
And so on: at each stage n you get to choose a value Xn based on the noisy observations
you have been given so far.

Thus, the stochastic twist to the problem we will consider here is that we hope to
solve the equation f(x) = 0 without knowing what the function f is, but rather given only
randomly perturbed, noisy observations of f .

Let us suppose that we know certain qualitative information about f . For example,
we assume that f has a unique but unknown zero x∗. Let us also assume that f(x) < 0
for x < x∗ and f(x) > 0 for x > x∗; for example, f might be monotone increasing, but
need not be so to satisfy this assumption. There will also be some other assumptions to be
specified later. Recall we want to find x∗, and we have to do this somehow by choosing a
sequence of values X0, X1, . . . and asking the sequence of questions “What is f(Xt)?” for
t = 0, 1, . . .. It would be wonderful if we had a method for choosing the values Xt in such
a way that we could be sure that Xt → x∗ as t→∞. That such a method should exist at
all does not seem immediately apparent.

In this section we will discuss a beautifully simple method proposed by Robbins and
Monro. This stochastic approximation method has become the basis of a number of inter-
esting algorithms in a variety of applications, such as clustering data and training neural
networks. This sort of algorithm is likely to be useful in cases where we expect to observe
a large amount of data over time and we want to refine our estimate of some parameter,
“learning from experience” in a reasonable way. It captures a familiar sort of idea. In
the beginning of the learning process, having observed little data, we adjust our opinions
quickly. Later on, having already observed a great deal of data, we become less willing to
change our opinions hastily, and each new piece of information receives less weight. Over
time, the algorithm gradually responds less to each noisy piece of information. [[In fact, the
recursive formula for the sample mean is a simple example of this idea:

X̄n+1 = X̄n +
1

n+ 1
(Xn+1 − X̄n).
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Notice how the sample mean moves from its old value X̄n toward the new observation Xn+1,
but only by the fraction 1/(n+ 1).]]

Here is our model in general. We observe the random variables

(4.41) Yn = f(Xn) + ηn,

where the random variables X1, X2, . . . are subject to our choice and η1, η2, . . . are assumed
to be iid “noise” random variables with mean 0 and variance 1. The function f is unknown,
and we do not know or observe the noise random variables, only the Y ’s.

The Robbins-Monro iteration gives a simple way of choosing Xn+1 given the previously
observed Y values. Suppose for now that we are given a suitable sequence of positive
numbers a0, a1, . . .; we will shortly discuss criteria for a suitable choice. Then, given X0,
we define X1, X2, . . . according to the recursion

(4.42) Xn+1 = Xn − anYn.

The iteration (4.42) is qualitatively reasonable, in the sense that it pushes us in a
reasonable direction. For example, if Yn is positive, since E(Yn) = f(Xn), we would tend
to believe that f(Xn) is more likely to be positive than negative. By our assumptions
about f , then, we would guess (just on the basis of this bit of information) that Xn > x∗.
This would cause us to favor making our next guess Xn+1 less than Xn, which is what the
iteration (4.42) does: if Yn > 0 then Xn+1 < Xn. Similarly, if Yn < 0, then (4.42) makes
Xn+1 > Xn, which is in accordance with a suspicion that f(Xn) < 0, which corresponds to
Xn < x∗.

How should we choose the sequence a0, a1, . . .? Since we want Xn to converge to some-
thing (in particular, x∗) as n → ∞, we must have an → 0 as n → ∞. Is that clear?
Obviously, no matter what values the Xn’s take, the sequence of Yn’s is a randomly varying
sequence that does not approach 0. At best, even if Xn were x∗ for all n, so that each
f(Xn) = 0, we would have Yn = ηn, so that {Yn} is an independent sequence of random
variables having variance 1. So if an does not approach 0, the variability of the {Yn} se-
quence does not approach 0, and so the increments anYn in the {Xn} sequence do not
converge to 0, and the sequence of Xn’s cannot converge to anything. So, we know at least
we will want our sequence an to converge to 0. On the other hand, if an converges to 0
too rapidly, then clearly we will not achieve our goal of having Xn converge to x∗ starting
from an arbitrary X0. For example, if an were in fact 0 for each n, then the {Xn} sequence
would be constant, with Xn = X0 for all n; the {Xn} sequence gets stuck. If an is positive
but an → 0 too rapidly, we have similar difficulty.

So, conceptually, we want to choose a sequence {an} that converges to 0 rapidly enough
to damp out the randomness in the noise so that the resulting sequence of Xn’s will con-
verge, but slowly enough so that the sequence of Xn’s is capable of moving the potentially
arbitrarily large distance from X0 to x∗.

(4.43) Theorem. Let f : R → R and let E[(X0)
2] < ∞. Consider the sequence {Xn}

generated by the recursion

Yn = f(Xn) + ηn

Xn+1 = Xn − anYn,
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where we assume the following conditions:

(i) The random variables X0, η0, η1, . . . are independent, with η0, η1, . . . iid having mean
0 and variance 1.

(ii) For some 1 < c < ∞, we have |f(x)| ≤ c|x| for all x. [[Note in particular that this
incorporates the assumption f(0) = 0.]]

(iii) For all δ > 0, inf |x|>δ(xf(x)) > 0.

(iv) Each an is a nonnegative number, and
∑
an =∞.

(v)
∑
a2
n <∞.

Then Xn → 0 with probability 1 as n→∞.

Condition (ii) is a growth condition on f . It is easy to imagine that if f grows extremely
fast, we could have Xn making wilder and wilder oscillations over time. Also, note that
just for notational convenience, we have assumed that x∗ = 0, without loss of generality.
The Robbins-Monro iteration makes no use of the knowledge that x∗ = 0, and we can
legitimately pretend we do not know that x∗ = 0 and be happy without pretense when we
show that Xn → 0 with probability 1. Condition (iii) implies that f(x) < 0 for x < x∗ and
f(x) > 0 for x > x∗, but otherwise allows quite a wide range of behavior. Conditions (iv)
and (v) are a formulation of the idea, previously discussed, that the sequence {an} needs
to converge to 0 fast enough but not too fast.

Proof: We start with some conditional expectation calculations.

E(X2
n+1 | X0,n) = E

{
(Xn − an[f(Xn) + ηn])

2 | X0,n

}

= X2
n − 2anE{Xn[f(Xn) + ηn] | X0,n}+ a2

nE{[f(Xn) + ηn]
2 | X0,n}.

However,

(4.44) E{Xn[f(Xn) + ηn] | X0,n} = Xnf(Xn) +XnE{ηn | X0,n} = Xnf(Xn)

since E{ηn | X0,n} = E{ηn} = 0 by the independence of ηn and X0,n. Also,

E{[f(Xn) + ηn]
2 | X0,n} = E{f(Xn)

2 + 2f(Xn)ηn + η2
n | X0,n}

= f(Xn)
2 + 2f(Xn)E{ηn | X0,n}+ E{η2

n | X0,n}
= f(Xn)

2 + 1,

since E{η2
n | X0,n} = E{η2

n} = 1. Thus,

E(X2
n+1 | X0,n) = X2

n − 2anXnf(Xn) + a2
n

(
f(Xn)

2 + 1
)
.

By assumption, |f(x)| ≤ c|x|, so that

a2
n

(
f(Xn)

2 + 1
)
≤ a2

n

(
c2X2

n + 1
)
≤ a2

nc
2(X2

n + 1),
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which gives

(4.45) E(X2
n+1 | X0,n) ≤ X2

n(1 + a2
nc

2)− 2anXnf(Xn) + a2
nc

2.

What now? This is a job for supermartingale! We want a supermartingale, but I don’t
feel like driving all the way to the supermartingale supermarket. The process {X2

n} is not
a supermartingale, but in a sense it is “almost” a supermartingale. Let’s fiddle with it to
manufacture a supermartingale.

Here’s a way to fiddle.

Define Wn = bn(X
2
n + 1), where bn = 1/

∏n−1
k=1(1 + a2

kc
2).

Then {Wn} is a supermartingale.

The verification is simple: From (4.45), by dropping the term 2anXnf(Xn), which is non-
negative by the assumption that xf(x) ≥ 0 for all x, we obtain

E(X2
n+1 | X0,n) ≤ X2

n(1 + a2
nc

2) + a2
nc

2,

so that

E(Wn+1 | X0,n) = bn+1E(X2
n+1 | X0,n) + bn+1

≤ bn+1{X2
n(1 + a2

nc
2) + a2

nc
2}+ bn+1

= bn+1(1 + a2
nc

2)(X2
n + 1) = bn(X

2
n + 1) = Wn.

This is useful: since {Wn} is a nonnegative supermartingale, it converges with prob-
ability 1. Thus, since the assumption that

∑
a2
n < ∞ implies that the infinite product∏∞

1 (1 + a2
nc

2) converges [[that is, the limit of
∏n−1
k=1(1 + a2

kc
2) as n → ∞ is finite]], we see

that bn → b, say, as n→∞, where 0 < b < 1. So since Wn converges with probability 1, it
follows that limn→∞X2

n exists with probability 1.
We want to show that in fact X2

n → 0 with probability 1.
Recall that in showing that {Wn} is a supermartingale, we dropped a term

−2anxnf(Xn) that only helps things. Putting this term back in, we see that, in fact,
{Wn} is a supermartingale “with room to spare,” in the sense that

E(Wn+1 | X0,n) ≤Wn − 2anbn+1Xnf(Xn).

That is, to have a supermartingale, we need only E(Wn+1 | X0,n) ≤ Wn, whereas we have
an extra negative contribution −2anbn+1Xnf(Xn) to the right-hand side. So the process
{Wn} is better than just a supermartingale; it is like a supermartingale and a batmartingale
put together.

Let δ > 0 and define D = {x : |x| > δ}. We know that X2
n approaches a limit. To

show that the limit is 0 with probability 1, it is sufficient to show that lim infX2
n = 0 with

probability 1. That is, it is sufficient to show that for each m, the set Bm = ∩∞n=m{Xn ∈ D}
has probability 0. However, letting ǫ = infx∈D xf(x), which is positive [[by an assumption
in the theorem]], for n ≥ m we have

E(Xnf(Xn)) ≥ E(Xnf(Xn)I(Bm)) ≥ ǫP (Bm),
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so that
EWn+1 ≤ EWn − 2anbn+1E[Xnf(Xn)] ≤ EWn − 2anbn+1ǫP (Bm).

Iterating this, for n ≥ m we have

E(Wn) ≤ E(Wm)− 2ǫP (Bm)
n−1∑

k=m

akbk+1.

Since Wn ≥ 0, so that E(Wn) ≥ 0, this implies

P (Bm) ≤ E(Wm)

2ǫ
∑n−1

k=m akbk+1

.

However, since
∑
ak = ∞ and bk → b > 0, the last expression approaches 0 as n → ∞.

Thus, we must have P (Bm) = 0, so we are done.

Miscellaneous quick thoughts about things to do (and, eventually, for me to add to these
notes):

• For more good clean fun, have your computer simulate and draw pictures of some
sample paths from stochastic approximation. It’s easy to program: look at the simple
recursion! You can explore the effects of various choices of the sequence {an} for
various functions f .

• For further interesting applications of stochastic approximation, look at neural net-
work training algorithms and clustering. Also see the “reinforcement learning” liter-
ature: Look for the terms “temporal differences” and “Q-learning.”

4.8 Exercises

[4.1] People first meeting the concepts of “Markov process” and “martingale” sometimes tend
to be fuzzy about the distinction, whether one implies the other, and so on. To make sure
this doesn’t happen to you, give an example of

(a) a Markov chain that is not a martingale, and

(b) a martingale that is not a Markov chain.

One of the two questions should be an insult; the other may require some thought.

[4.2] Define a function f : R→ R to be harmonic if it satisfies the equation f((1− λ)x+ λy) =
(1−λ)f(x)+λf(y) for all real x and y and for all λ ∈ [0, 1]. Define f to be subharmonic if
f((1−λ)x+λy) ≤ (1−λ)f(x)+λf(y) and superharmonic if f((1−λ)x+λy) ≥ (1−λ)f(x)+
λf(y). In this setting, there are some synonyms that may be more familiar: harmonic
functions are linear, subharmonic functions are convex, and superharmonic functions are
concave. The sub and super terminology even feels right here; in a graph, a subharmonic
function lies below any “chord,” and a superharmonic function stays above its chords. Let
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X be a martingale, and let f be a function with E|f(Xt)| <∞ for all t. Show that if f is
subharmonic, then the process {f(Xt)} is a submartingale, and if f is superharmonic, then
the process {f(Xt)} is a supermartingale.

[4.3] In your best lawyerly manner, marshal arguments that would persuade a jury that the
infimum of the empty set of real numbers should be defined to be ∞.

[4.4] In the definition of stopping time, show that the requirement that I{T = k} be a function
of W0,k for each k is equivalent to requiring that I{T ≤ k} be a function of W0,k for each
k.

[4.5] Suppose that T and U are stopping times with respect to a process W0,W1, . . .. Show that
each of the following is also a stopping time: (a) min{T,U}, (b) max{T,U}, and (c) T +U .

[4.6] [[Wright-Fisher process]] This is a famous urn models from genetics. An urn contains d
balls, some black and some white. [[These might represent two forms of a gene. We might
ask questions like: as genes are sampled randomly to form successive generations, what
is the probability that the “white” gene will take over and completely replace the other
form?]] Here is a way to form the next “generation.” Sample a ball at random from the
urn d times, with replacement . We get a new, random set of d balls, containing 0, 1, . . .,
or d white balls, with various probabilities. Call the resulting sample generation 1. Then
we sample in the same way from generation 1 to form generation 2, and so on. Let Xt

denote the number of white balls in generation t. After many generations, the population
will have become “fixed,” that is, it will consist of just one color. Suppose that X0 = x0,
some number between 0 and d.

(a) Show that the process {Xt} is a martingale.

(b) Use the martingale to show that the probability that the population eventually be-
comes all white is x0/d.

[4.7] Let Mn denote the fraction of white balls at time n in Polya’s urn, as in Example (4.7).
Show that as the time n→∞, the fraction Mn approaches a limit with probability 1. What
is the distribution of this limiting fraction?

[[To get an idea of the distribution of the limit, figure out the distribution of Mn for finite
n. You can do a few small values of n by hand and see the pattern of your answers.]]

[4.8] Consider modifying the definition of the Polya urn from Example (4.7) so that, instead of
adding one new ball of the same color at each step of the process, we add c new balls of
the same color, where c ≥ 1. Show that the fraction of white balls is still a martingale. Is
the process still a martingale if we add c new balls of the same color and d new balls of the
opposite color at each step?
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[4.9] [[Asymmetric random walk on the integers]] Consider a random walk {St} satisfying S0 = 0
and Sn = X1+· · ·+Xn, where X1, X2, . . . are iid taking values +1 and −1 with probabilities
p and 1− p, respectively. Suppose p 6= 1/2.

(a) There is a special value θ 6= 1 (expressible in terms of p) such that the process {Mt}
defined by Mt = θSt is a martingale. What is θ?

(b) Let a and b be integers satisfying a < 0 < b. Let T be the first time the random walk
reaches either a or b. Use the martingale you discovered in the previous part to find
P{ST = b}.

[4.10] [[Doob’s inequality for submartingales]] Let X0, X1, . . . be a nonnegative submartingale,
and let b be a positive number. Prove that

P{max(X0, . . . , Xn) ≥ b} ≤
E(Xn)

b
,

using the following steps as hints.

(a) Define τ to be the first time t such that Xt ≥ b, or n, whichever comes first; that is,
τ = inf{t : Xt ≥ b} ∧ n. Argue that {max(X0, . . . , Xn) ≥ b} = {Xτ ≥ b}.

(b) Apply Markov’s inequality, and use an Optional Sampling theorem.

[4.11] upcrossing inequality...

[4.12] Consider a martingale S with respect to the probability measure Q, and let M be another
martingale with respect to Q, as shown below.

(a) Solve for the numerical values of a, b, and c.

(b) What is the trading strategy such that Mt = M0 + (H • S)n?

4

2

6

9

5

4

1

1/ 2

1/ 2

1/ 4

3/ 4

1/3

2 / 3

b

6

14

c

10

7

a

1/ 2

1/ 2

1/ 4

3/ 4

1/3

2 / 3�
 Probability measure 

stock process

, 
  S �Martingale   

with respect to  

M
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[4.13] In Theorem (4.38) there is nothing special about assuming nonnegativity, that is, a lower
bound of zero. Show that if {Xt} is a supermartingale and there is a random variable X
with E(|X|) <∞ and Xt ≥ X for all t, then Xt converges with probability 1 as t→∞.

[4.14] Let X0, X1, . . . be a branching process: Xt+1 =
∑Xt

i=1 Zti, where the offspring numbers
{Zti} are iid with mean µ > 1 and variance σ2 <∞. Define Mt = µ−tZt.

(a) Find a formula for the variance of Mt.

(b) Show that as t→∞, Mt converges with probability 1 to a limit random variable M∞.

(c) Show that E(M∞) = 1.

[4.15] This is a continuation of the previous problem. If you have not already completed the
previous problem but still want to work on this one, you may assume the result of part (b)
of the previous problem. This problem shows that the branching process either becomes
extinct (hits the value 0) or grows geometrically fast; the probability of any other sort of
behavior is 0.

(a) For each integer b, show that P{0 < Xt < b for all t} = 0.

(b) Define τb = inf{t : Xt ≥ b}. Show that P{τb <∞, Xt = 0 for some t} → 0 as b→∞.

(c) Show that P{τb <∞,M∞ = 0} → 0 as b→∞.

(d) Show that P{lim supXt =∞,M∞ = 0} = 0.

(e) Show that P{Xt > 0 for all t,M∞ = 0} = 0.

[4.16] Let {Mt} be a likelihood ratio martingale as discussed in Example 4.9.

(a) Show that EMt = 1 for all t.

(b) Show that as t→∞, we have Mt → 0 with probability 1.

[4.17] Comment on what you found in exercise [4.16]. Don’t the results of parts (a) and (b) seem
somewhat at odds with each other? How is it possible for them both to hold simultaneously?
From a statistical point of view, explain why we should be happy that the result of part
(b) holds.

[4.18] Let X1, X2, . . . be independent with

Xt =

{
−1 with probability 1− 1

t2
,

t2 − 1 with probability 1
t2

.

Define M0 = 0 and Mt = X1 + · · · + Xt for t ≥ 1. Show that {Mt} is a martingale, and
Mt → −∞ with probability 1. The moral: Even martingales can be pretty unfair!

[4.19] Suppose T is a stopping time and {Xt} is a submartingale. Define Yt = Xt∧T . Show that
{Yt} is a submartingale.
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[4.20] Give an example to show that the conclusion of Exercise [4.19] can be false without the
assumption that T is a stopping time.

[4.21] Use Exercise [4.19] and the martingale convergence theorem to show, if we start a simple
symmetric random walk at 1, with probability 1 it will eventually hit 0.

⊲ The next four exercises are discrete-time versions of results that are considered fundamental
and important in the theory of continuous time processes, stochastic integration, and so on.
In discrete time, they are elementary and simple; in the occult realm of continuous time,
they are much more technical and mysterious.

We’ll use the following definition. We say a process A = {At : t ≥ 0} is predictable with
respect to a process W = {Wt : t ≥ 0} if, for each t, the random variable At is a function of
W0,t−1 = (W0, . . . ,Wt−1). That is, if we think of Wt as representing information available
at time t, then we can perfectly predict the random variable At before time t, that is, at
time t− 1.

[4.22] [[Doob decomposition]] Let {Xt : t = 0, 1, . . .} be a stochastic process with E|Xt| < ∞
for all t. Let W = {Wt} be another stochastic process; the role of W is that the terms
“martingale” and “predictable” will be understood to be with respect to W . Show that
there exists a martingale M , starting at M0 = 0, and a predictable process A, such that
Xt = X0 +At +Mt for all t.

[[Hint: If you just use the required properties of A and M , you will eventually be forced to
the right definitions. In case you get stuck and want a hint, though, you can define M by
Mt =

∑t
s=1

(
Xt − E(Xt |W0,t−1)

)
.]]

[4.23] [[Uniqueness of Doob decomposition]] Show that the Doob decomposition in Exercise [4.22]
is unique. That is, show that if Ã and M̃ satisfy the same conditions as A and M , respec-
tively, then Ãt = At and M̃t = Mt with probability 1, for all t.

[4.24] [[Doob decomposition for functions of a Markov chain]] Let {Xt} be a Markov chain on
a finite state space S with probability transition matrix P = (P (i, j)). Given a function
f : S→ R, define the function (Pf) : S→ R by (Pf)(i) =

∑
j P (i, j)f(j). That is, here we

are thinking of f as a column vector and simply doing matrix multiplication. Consider the
Doob decomposition of the process {f(Xt)} with respect to the process {Xt}. Show that
the martingale part of this Doob decomposition equals

(4.46) f(Xt)− f(X0)−
t−1∑

s=0

(
(P − I)f

)
(Xs),

where I is the identity matrix.
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[4.25] Let {Xt} be a stochastic process on a state space S containing n states. X is not assumed
to be a Markov chain. Let P be an n × n probability transition matrix. (This simply
means that P has nonnegative entries and each row of P sums to 1. Up to this point,
there is no relationship assumed between P and X.) We say that the process X “satisfies
the martingale problem for P” if, for each function f : S → R, the expression (4.46) is a
martingale with respect to X. Show that if X satisfies the martingale problem for P , then
in fact X is a Markov chain with transition matrix P .
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5. Brownian motion

Section 1. The definition and some simple properties.
Section 2. Visualizing Brownian motion. Discussion and demys-
tification of some strange and scary pathologies.
Section 3. The reflection principle.
Section 4. Conditional distribution of Brownian motion at some
point in time, given observed values at some other times.
Section 5. Existence of Brownian motion. How to construct
Brownian motion from familiar objects.
Section 6. Brownian bridge. Application to testing for unfor-
mity.
Section 7. A boundary crossing problem solved in two ways:
differential equations and martingales.
Section 8. Discussion of some issues about probability spaces
and modeling.

Brownian motion is one of the most famous and fundamental of stochastic processes.
The formulation of this process was inspired by the physical phenomenon of Brownian mo-
tion, which is the irregular jiggling sort of movement exhibited by a small particle suspended
in a fluid, named after the botanist Robert Brown who observed and studied it in 1827. A
physical explanation of Brownian motion was given by Einstein, who analyzed Brownian
motion as the cumulative effect of innumerable collisions of the suspended particle with the
molecules of the fluid. Einstein’s analysis provided historically important support for the
atomic theory of matter, which was still a matter of controversy at the time—shortly after
1900. The mathematical theory of Brownian motion was given a firm foundation by Nor-
bert Wiener in 1923; the mathematical model we will study is also known as the “Wiener
process.”

Admittedly, it is possible that you might not share an all-consuming fascination for the
motion of tiny particles of pollen in water. However, there probably are any number of
things that you do care about that jiggle about randomly. Such phenomena are candidates
for modeling via Brownian motion, and the humble Brownian motion process has indeed
come to occupy a central role in the theory and applications of stochastic processes. How
does it fit into the big picture? We have studied Markov processes in discrete time and
having a discrete state space. With continuous time and a continuous state space, the
prospect arises that a process might have continuous sample paths. To speak a bit roughly
for a moment, Markov processes that have continuous sample paths are called diffusions.
Brownian motion is the simplest diffusion, and in fact other diffusions can be built up
from Brownian motions in various ways. Brownian motion and diffusions are used all the
time in models in all sorts of fields, such as finance [[in modeling the prices of stocks, for
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example]], economics, queueing theory, engineering, and biology. Just as a pollen particle
is continually buffeted by collisions with water molecules, the price of a stock is buffeted
by the actions of many individual investors. Brownian motion and diffusions also arise
as approximations for other processes; many processes converge to diffusions when looked
at in the right way. In fact, in a sense [[does non-sense count?]], Brownian motion is to
stochastic processes as the standard normal distribution is to random variables: just as
the normal distribution arises as a limit distribution for suitably normalized sequences of
random variables, Brownian motion is a limit in distribution of certain suitably normalized
sequences of stochastic processes. Roughly speaking, for many processes, if you look at
them from far away and not excessively carefully, they look nearly like Brownian motion
or diffusions, just as the distribution of a sum of many iid random variables looks nearly
normal.

5.1 The definition

Let’s scan through the definition first, and then come back to explain some of the words in
it.

(5.1) Definition. A standard Brownian motion (SBM) {W (t) : t ≥ 0} is a stochastic
process having

(i) continuous paths,

(ii) stationary, independent increments, and

(iii) W (t) ∼ N(0, t) for all t ≥ 0.

The letter “W” is often used for this process, in honor of Norbert Wiener. [[Then again,
there is also an object called the “Wiener sausage” studied in physics.]]

The definition contains a number of important terms. First, it is always worth pointing
out that a stochastic process W is really a function W : R × Ω → R, and thus may be
viewed in two ways: as a “collection of random variables” and as a “random function” [[or
“random path”]]. That is, W = W (t, ω). For each fixed t, W (t, ·) is a real-valued function
defined on Ω, that is, a random variable. So W is a collection of random variables. We will
use both notations W (t) and Wt for the random variable W (t, ·). For fixed ω, W (·, ω) is
a real-valued function defined on R+; such a function could be viewed as a “path.” Thus
W is a random function, or random path. Which brings us to the next item: continuous
paths. By this we mean that

P{ω ∈ Ω : W (·, ω) is a continuous function} = 1.

Next, the independent increments requirement means that for each n and for all choices
of times 0 ≤ t0 < t1 < · · · < tn < ∞, the random variables W (t1) − W (t0),W (t2) −
W (t1), . . . ,W (tn) −W (tn−1) are independent. The term stationary increments means
that the distribution of the increment W (t)−W (s) depends only on t− s. Note that from
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the requirement that W (t) ∼ N(0, t), we can see that W (0) = 0 with probability one. From
this, using (ii) and (iii) of the definition,

W (t)−W (s) ∼W (t− s)−W (0) = W (t− s) ∼ N(0, t− s)

for s ≤ t. Thus:

The increment that a standard Brownian motion makes over
a time interval of length h is normally distributed with mean
0 and variance h.

Here is a very useful alternative characterization of standard Brownian motion. While
describing this characterization we will also introduce two important definitions. First, W is
a Gaussian process, which means that for all numbers n and times t1, . . . , tn the random
vector (W (t1), . . . ,W (tn)) has a joint normal distribution. An equivalent characterization
of the Gaussianity of W is that the sum

a1W (t1) + · · ·+ anW (tn)

is normally distributed for each n, all t1, . . . , tn, and all real numbers a1, . . . , an. Being a
Gaussian process having mean 0, the joint distribution of all finite collections of random
variables W (t1), . . . ,W (tn) are determined by the covariance function

r(s, t) = Cov(Ws,Wt).

For standard Brownian motion, Cov(Ws,Wt) = s ∧ t. To see this, suppose that s ≤ t, and
observe that

Cov(Ws,Wt) = Cov(Ws,Ws + (Wt −Ws))

= Var(Ws) + Cov(Ws,Wt −Ws)

= s+ 0 = s,

where we have used the independence of increments to say that

Cov(Ws,Wt −Ws) = Cov(Ws −W0,Wt −Ws) = 0.

It is easy to see [[Exercise!]] that a process W is Gaussian with mean 0 and covariance
function r(s, t) = s ∧ t if and only if (ii) and (iii) of Definition (5.1) hold for W . Thus:

(5.2)
A Gaussian process having continuous paths, mean 0, and
covariance function r(s, t) = s ∧ t is a standard Brownian
motion.

The characterization (5.2) of Brownian motion can be a convenient and powerful tool.

(5.3) Example. Suppose that W is a SBM, and define a process X by X(t) = tW (1/t) for
t > 0, and define X(0) = 0. Then we claim that X is also a SBM.
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To check this, we’ll check that X satisfies the conditions in the last characterization.
To start we ask: is X a Gaussian process? Given n, t1, . . . , tn, and a1, . . . , an, we have

a1X(t1) + · · ·+ anX(tn) = a1t1W (1/t1) + · · ·+ antnW (1/tn),

which, being a linear combination of W evaluated at various times, has a normal distribu-
tion. Thus, the fact that W is a Gaussian process implies that X is also. Next, observe
that the path continuity of X is also a simple consequence of the path continuity of W : if
t 7→W (t) is continuous, then so is t 7→ tW (1/t). [[Well, this proves that with probability one
X = X(t) is continuous for all positive t. For t = 0, if you believe that lims→∞W (s)/s = 0
with probability one—which is eminently believable by the SLLN—then making the sub-
stitution s = 1/t gives limt→0 tW (1/t) = 0 with probability 1, so that X is also continuous
at t = 0. Let’s leave it at this for now.]] The fact that X(t) has mean 0 is trivial. Finally,
to check the covariance function of X, let s ≤ t and observe that

Cov(X(s), X(t)) = Cov(sW (
1

s
), tW (

1

t
)) = stCov(W (

1

s
),W (

1

t
))

= st

(
1

s
∧ 1

t

)
= st

1

t
= s.

Thus, X is a SBM.

The previous example may appear to be at first sight to be a rather odd thing to want to
know. However, as we will see, there are times when this particular property of Brownian
motion provides just the right insight, relating the behavior of the process on the time
interval (0, 1) to its behavior on the time interval (1,∞).

The next property, sometimes called “Brownian scaling,” is used all the time.

(5.4) Theorem [Brownian scaling]. Suppose that W is a standard Brownian motion,
and let c > 0. Then the process X defined by X(t) = c−1/2W (ct) is also a standard
Brownian motion.

⊲ The proof is left to you, as Exercise [5.4]. Having seen Example (5.3), you should find this
easy.

⊲ Exercise [5.5] is an example with a “dimensional analysis” flavor, showing a use of the
Brownian scaling relationship to get substantial information about the form of a functional
relationship with little effort.

Brownian motion is continually “restarting” in a probabilistic sense. The next proposi-
tion is one way of formulating this idea mathematically.

(5.5) Proposition. Suppose that W is a standard Brownian motion, and let c > 0. Define
X(t) = W (c + t) − W (c). Then {X(t) : t ≥ 0} is a standard Brownian motion that is
independent of {W (t) : 0 ≤ t ≤ c}.
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⊲ The proof is again an exercise; see Exercise [5.6].

The Proposition says that, at each time c, the Brownian motion “forgets” its past and
continues to wiggle on just as if it were a new, independent Brownian motion. That is,
suppose that we know that W (c) = w, say. Look at the graph of the path of W ; we are
assuming the graph passes through the point (c, w). Now imagine drawing a new set of
coordinate axes, translating the origin to the point (c, w). So the path now goes through
the new origin. Exercise (5.5) says that if we look at the path past time c, relative to the
new coordinate axes, we see the path of a new standard Brownian motion, independent of
what happened before time c. Brownian motion is a Markov process: given the current
state, future behavior does not depend on past behavior.

A standard Brownian motion has a constant mean of 0, so that it has no “drift,” and its
variance increases at a rate of 1 per second. [[For now take the unit of time to be 1 second.]]
A standard Brownian motion is a standardized version of a general Brownian motion, which
need not have W (0) = 0, may have a nonzero “drift” µ, and has a “variance parameter”
σ2 that is not necessarily 1.

(5.6) Definition. A process X is called a (µ, σ2) Brownian motion if it can be written
in the form

X(t) = X(0) + µt+ σW (t),

where W is a standard Brownian motion.

Notice that the mean and variance of a (µ, σ2) Brownian motion increase at rate µ and σ2

per second, respectively.
This situation here is analogous to that with normal distributions, where Z ∼ N(0, 1)

is called a “standard” normal random variable, and general normal random variables are
obtained by multiplying a standard normal random variable by something and adding
something.

The following characterization of Brownian motion is sometimes useful.

(5.7) Fact. If a stochastic process X has continuous paths and stationary, independent
increments, then X is a Brownian motion.
Thus, the assumptions of path continuity and stationary, independent increments is enough
to give the normality of the increments “for free.” This is not surprising, from the Central
Limit Theorem.

5.2 Visualizing Brownian motion

First, friends, it’s time for some frank talk about Brownian motion. Brownian motion can
be very difficult to visualize; in fact, in various respects it’s impossible. Brownian motion
has some “pathological” features that make it seem strange and somewhat intimidating.
Personally, I remember that after having heard some weird things about Brownian motion,
I felt rather suspicious and mistrustful of it, as if I could not use it with confidence or even
speak of it without feeling apologetic somehow. We will not dwell unduly on the pathologies
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here, but I do not want us to completely avert our eyes, either. Let’s try to take enough
of a peek so that we will not be forever saddled with the feeling that we have chickened
out completely. Hopefully, such a peek will result in an improved level of confidence and
familiarity in working with Brownian motion.

What is all this about “pathologies”? After all, Brownian motion has continuous sample
paths, and continuous functions are quite nice already, aren’t they? Here’s one slightly
strange feature, just to get started. Recall that W (0) = 0. It turns out that for almost
all sample paths of Brownian motion [[that is, for a set of sample paths having probability
one]], for all ǫ > 0, the path has infinitely many zeros in the interval (0, ǫ). That is, the
path changes sign infinitely many times, cutting through the horizontal axis infinitely many
times, within the interval (0, ǫ); a Brownian motion does more before time ǫ than most of
us do all day. Another rather mind-boggling property is that with probability 1, a sample
path of Brownian motion does not have a derivative at any time! It’s easy to imagine
functions—like f(t) = |t|, for example—that fail to be differentiable at isolated points. But
try to imagine a function that everywhere fails to be differentiable, so that there is not even
one time point at which the function has a well-defined slope.

Such functions are not easy to imagine. In fact, before around the middle of the
19th century mathematicians generally believed that such functions did not exist, that
is, they believed that every continuous function must be differentiable somewhere. Thus,
it came as quite a shock around 1870 when Karl Weierstrass produced an example of a
nowhere-differentiable function. Some in the mathematical establishment reacted nega-
tively to this work, as if it represented an undesirable preoccupation with ugly, monstrous
functions. Perhaps it was not unlike the way adults might look upon the ugly, noisy music of
the next generation. It is interesting to reflect on the observation that, in a sense, the same
sort of thing happened in mathematics much earlier in a different context with which we are
all familiar. Pythagorus discovered that

√
2—which he knew to be a perfectly legitimate

number, being the length of the hypotenuse of a right triangle having legs of length one—is
irrational. Such numbers were initially viewed with great distrust and embarrassment.
They were to be shunned; notice how even the name “irrational” still carries a negative
connotation. Apparently some Pythagoreans even tried to hide their regretable discovery.
Anyway, now we know that in a sense “almost all” numbers are of this “undesirable” type,
in the sense that the natural measures that we like to put on the real numbers [[like Lebesgue
measure (ordinary length)]] place all of their “mass” on the set of irrational numbers and
no mass on the set of rational numbers. Thus, the proof of existence of irrational numbers
by producing an example of a particular irrational number was dwarfed by the realization
that if one chooses a real number at random under the most natural probability measures,
the result will be an irrational number with probability 1. The same sort of turnabout
has occurred in connection with these horrible nowhere-differentiable functions. Weier-
strass constructed a particular function and showed that it was nowhere differentiable. The
strange nature of this discovery was transformed in the same sense by Brownian motion,
which puts probability 0 on “nice” functions and probability 1 on nowhere differentiable
functions.

Having presented two scary pathologies, let us now argue that they are not really all
that strange or unexpected. We’ll start with the fact that a Brownian motion W has
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infinitely many zeros in the interval (0, ǫ). Let b be an arbitrary positive number, perhaps
very large. Do you believe that a Brownian motion will necessarily hit 0 infinitely many
times in the time interval (b,∞)? This proposition seems to me to be quite believable and
not at all scary [[for example, by recurrence considerations we know that a simple random
walk will behave this way]]. Well, recall that X(s) = sW (1/s) is a Brownian motion. So
you believe that X(s) = sW (1/s) = 0 for infinitely many values of s in (b,∞). But this
implies that W (t) = 0 for infinitely many values of t in the interval (0, 1/b). Making the
identification of 1/b with ǫ shows that the scary pathology and the believable proposition
are the same. Now for the nondifferentiability of the Brownian paths. This should not be
very surprising, by the assumption of independent increments. Indeed, for each t and each
δ > 0, the increment W (t+ δ)−W (t) is independent of the increment W (t)−W (t− δ), so
that it would just be the wildest stroke of luck if the increments on both sides of t “matched
up” well enough for W to be differentiable at t!

Enough of that for a while. How does Brownian motion look and behave? We can get a
good idea of the behavior on a rough scale by sampling the process at every integer, say. If
we are looking at the process over a large time interval and are not concerned about little
fluctuations over short time intervals, then this sort of view may be entirely adequate. It
is also very easy to understand, since W (0),W (1),W (2), . . . is just a random walk with iid
standard normal increments. This a very familiar, non-mysterious sort of process.

1 2 3

What if we want to get a more detailed picture? Let’s zoom in on the first tenth of a
second, sampling the process in time intervals of length 0.01 instead of length 1. Then we
might get a picture that looks like this.
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.03

.1

.01

-.1

.02

We get another normal random walk, this time with the increments having variance 0.01
instead of variance 1. Notice that the standard deviation of the increments is 0.1, which
is 10 times bigger than the time interval 0.01 over which the increments take place! That
is, the random walk changes by amounts of order of magnitude 0.1 over intervals of length
0.01, so that we get a random walk that has “steep” increments having “slope” on the order
of magnitude of 10.

We could continue to focus in on smaller and smaller time scales, until we are satisfied
that we have seen enough detail. For example, if we sampled 10,000 times every second
instead of 100 times, so that the sampling interval is .0001, the standard deviation of the
increments would be

√
.0001 = .01, so that the random walk would have even “steeper”

increments whose slope is now measured in the hundreds rather than in tens. Notice again
how we should not be surprised by Brownian motion’s catastrophic failure of differentiabil-
ity.

It is reassuring to know that in a sense we can get as accurate and detailed a picture of
Brownian motion as we like by sampling in this way, and that when we do so, we simply
get a random walk with normally distributed increments.

5.3 A simple calculation with Brownian motion: the reflec-
tion principle

Let {Wt} be a standard Brownian motion. For b > 0, define the first passage time

τb = inf{t : Wt ≥ b};
by path continuity, an equivalent definition would be inf{t : Wt = b}. Here is a problem:
what is P{τb ≤ t}? Here is how to do it. First note that {τb ≤ t,Wt > b} = {Wt > b},
since by path continuity and the assumption that W (0) = 0, the statement that W (t) > b
implies that τb ≤ t. Using this,

P{τb ≤ t} = P{τb ≤ t,Wt < b}+ P{τb ≤ t,Wt > b}
= P{Wt < b | τb ≤ t}P{τb ≤ t}+ P{Wt > b}.

The term P{Wt > b} is easy: since Wt ∼ N(0, t), the probability is 1−Φ( b√
t
). Next, a little

thought will convince you that P{Wt < b | τb ≤ t} = 1
2 . Indeed, path continuity guarantees
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that Wτb = b, so that, knowing that τb ≤ t, the process is equally likely to continue on
to be above b or below b at time t. [[A rigorous justification involves the “strong Markov
property,” but let’s not get into that now. Also note that path continuity is important
here. We could not make a statement like this about a discrete-time random walk having
N(0, 1) increments, for example, since there will always be an “overshoot” when such a
process first jumps above b.]]

t

b

Making the above substitutions and solving for P{τb ≤ t} gives

P{τb ≤ t} = 2P{Wt > b} = 2

[
1− Φ

(
b√
t

)]
,

a nice explicit result! This is one reason why people like to use Brownian motion in
models—it sometimes allows explicit, tidy results to be obtained.

Here’s another example of a nice, explicit formula. For now let’s just present it “for
enrichment”; we’ll come back to derive it later. For Brownian motion Xt = Wt + µt with
drift µ, defining τb = inf{t : Xt ≥ b}, we have

Pµ{τb ≤ t} = 1− Φ

(
b− µt√

t

)
+ e2µbΦ

(−b− µt√
t

)
.

Isn’t that neat?

⊲ Exercises [5.10], [5.11], [5.12], and [5.13] apply the reflection principle.

5.4 Conditional distributions for Brownian motion

What happens between sampled points of a Brownian motion? That is, if we are given the
value of Brownian motion at two time points, what is the conditional distribution of the
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process between those times?

0
ut

?

We will examine this question in more detail when we discuss the Brownian bridge in
Section 5.6. For now we’ll just do what we need for the construction of Brownian motion
in the next section. So here is a problem. Let W be a standard Brownian motion (so we
know that W0 = 0) and let 0 < t < u. What is the conditional distribution of Wt given
Wu?

The next result gives a nice way of working with the relevant normal distributions.

(5.8) Fact. Wt − (t/u)Wu is independent of Wu.

To verify this, just note that

Cov(Wt − (t/u)Wu,Wu) = (t ∧ u)− (t/u)(u ∧ u) = t− (t/u)u = 0,

and recall that jointly Gaussian variables are independent if they have zero covariance.
The simple fact (5.8) makes everything easy. To get the conditional mean E(Wt |Wu),

observe that

0 = E(Wt − (t/u)Wu)
(a)
= E(Wt − (t/u)Wu |Wu)

= E(Wt |Wu)− (t/u)Wu,

where (a) follows from the claim. Thus,

E(Wt |Wu) = (t/u)Wu.

This relation makes sense; undoubtedly you would have guessed it from the picture! The
conditional mean of Brownian motion is obtained by linearly interpolating between the
points we are given.
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For the conditional variance,

Var(Wt |Wu) = E[(Wt − E(Wt |Wu))
2 |Wu]

= E[(Wt − (t/u)Wu)
2 |Wu]

(a)
= E[(Wt − (t/u)Wu)

2]

= (t ∧ t)− 2(t/u)(t ∧ u) + (t/u)2(u ∧ u)

= t− 2(t2/u) + (t2/u) = t

(
1− t

u

)
=
t(u− t)

u
,

where we have again used the claim at (a). The functional form t(u−t)/u for the conditional
variance makes some qualitative sense at least: notice that it approaches 0 as t approaches
either of the two points 0 or u, which makes sense. Also, for fixed u, the conditional variance
is maximized by taking t in the middle: t = u/2.

In summary, we have found:

(5.9) For 0 < t < u, L(Wt |Wu) = N

(
t

u
Wu,

t(u− t)
u

)
.

Observe that the conditional variance does not depend on Wu! Does this surprise you?
For example, to take an extreme example, we have found that the conditional distribution
of W (1/2) given that W (1) = 10 billion is normal with mean 5 billion and variance 1/4!
How do you feel about that? In this example, should we really claim that W (1/2) is within
1.5 (that’s 3 standard deviations) of 5 billion with probability 0.997? Well, that is what
is implied by the Brownian motion model. Here is one say to conceptualize what is going
on. It’s extremely painful for a Brownian motion to get to 10 billion at time 1 (that’s why
it is so extremely rare). Among all of the painful ways the Brownian motion can do this,
by far the least painful is for it to spread the pain equally over the two subintervals [0,1/2]
and [1/2,1], making an increment of very nearly 5 billion over each. This last property
of Brownian motion, which basically stems from the small tail of the normal distribution,
could be viewed as a defect of the model. In real life, if one observes a value that seems
outlandish according to our model, such as the value W (1) =10 billion as discussed above,
it does not seem sensible to be pig-headedly sure about the value of W (1/2). In fact,
an outlandish observation should be an occasion for healthy respect for the limitations of
models in general and for skepticism about the suitability of this model in particular, which
should lead to a humbly large amount of uncertainty about the value of W (1/2).

⊲ Exercises [5.14], [5.15], and [5.16] concern this sort of conditional distribution.

5.5 Existence and construction of Brownian motion (Or:
Let’s Play Connect-the-Dots)

I like the way David Freedman puts it: “One of the leading results on Brownian motion is
that it exists.” It is indeed comforting to know that we have not been talking about nothing.
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We will show that Brownian motion exists by “constructing” it. This means that we will
show how we can obtain Brownian motion by somehow putting together other simpler,
more familiar things whose existence we are not worried about. Why do I want to do this?
It is not because I think that a mathematical proof of the existence of Brownian motion is
somehow legally necessary before we can do anything else (although I suppose it could be
a bit embarrassing to be caught analyzing things that do not exist). Rather, it is because
I think that seeing how a construction of Brownian motion works gives one a much better,
more “familiar” feeling for Brownian motion. Personally, after having heard some weird
things about Brownian motion, I felt much less queasy about it after seeing how it could be
constructed rather simply from familiar objects. For gaining familiarity and understanding,
there’s nothing like taking something apart and putting it together again.

We will construct Brownian motion on the time interval [0,1]; having done that, it will
be easy to construct Brownian motion on [0,∞). We’ll do it by an intuitive connect-the-dots
approach, in which at each stage of the construction we obtain a more and more detailed
picture of a sample path. We know W (0) = 0. At the initial stage, we start with the
modest goal of simulating the value of the Brownian motion at time 1. Since we know that
W (1) ∼ N(0, 1), we can do this by going to our computer and generating a N(0, 1) random
variable Z1; take Z1 to be W (1). Given just the information that the path passes through
the two points (0, 0) and (1, Z1), the conditional expectation is the linear interpolation X(0)

shown in Figure 1, that is, X(0)(t) = Z1t. This will be our first crude approximation to a
sample path.

1

X(0) (t)

t

Figure 1

Next let’s simulate a value for W (1/2). Given the values we have already generated
for W (0) and W (1), we know that W (1/2) is normally distributed with mean Z1/2 and
variance (1/2)(1/2) = 1/4. Since X(0)(1/2) is already Z1/2, we need only add a normal
random variable with mean 0 and variance 1/4 to X(0)(1/2) to get the right distribution.
Accordingly, generate another independent N(0, 1) random variable Z2 and take W (1/2) to
beX(0)(1/2)+(1/2)Z2. Having done this, define the approximationX(1) to be the piecewise
linear path joining the three points (0,0), (1/2,W (1/2)), and (1,W (1)) as in Figure 2.
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1.5

X(1) (t)

t

Figure 2

Now let’s simulate W (1/4) and W (3/4). Notice how the correct conditional means are
already given by the piecewise linear path X(1); that is, E(W (t) | W (0),W (1/2),W (1)) =
X(1)(t); this holds for all t, and in particular for t = 1/4 and t = 3/4. The conditional
variance of W (1/4) given W (0), W (1/2), and W (1) is (1/4)(1/4)/(1/2) = 1/8. Similarly,
the conditional variance of W (3/4) is 1/8. Thus, to simulate these points we generate two
more independent standard normal random variables Z3 and Z4, and define

W (1/4) = X(1)(1/4) +
1√
8
Z3,

W (3/4) = X(1)(3/4) +
1√
8
Z4.

The approximation X(2) is then defined to be the piecwise linear interpolation of the sim-
ulated values we have obtained for the times 0, 1/4, 1/2, 3/4, and 1, as in Figure 3.

1.5

X(2) (t)

t

Figure 3

One more time: Given the values simulated so far, each of W (1/8),W (3/8),W (5/8),
and W (7/8) has conditional variance (1/8)(1/8)/(1/4)=1/16. So we can simulate
W (1/8),W (3/8),W (5/8), and W (7/8) by multiplying some more standard normal
random variables Z5, Z6, Z7, Z8 by

√
1/16 = 1/4 and adding these to the values

X(2)(1/8), X(2)(3/8), X(2)(5/8), and X(2)(7/8) given by the previous approximation. The
piecewise linear interpolation gives X(3).

And so on. In general, to get from X(n) to X(n+1), we generate 2n

new standard normal random variables Z2n+1, Z2n+2, . . . , Z2n+1 , multiply these by
the appropriate conditional standard deviation

√
2−n−2 = 2−(n/2)−1, and add to

the values X(n)(1/2n+1), X(n)(3/2n+1), . . . , X(n)(1 − 1/2n+1) to get the new values
X(n+1)(1/2n+1), X(n+1)(3/2n+1), . . . , X(n+1)(1− 1/2n+1).

(5.10) Claim. With probability 1, the sequence of functions X(1), X(2), . . . converges uni-
formly over the interval [0,1].
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The importance of the uniformity of the convergence stems from the following fact from
analysis:

The limit of a uniformly convergent sequence of continuous func-
tions is a continuous function.

[[To appreciate the need for uniformity of convergence in order to be guaranteed that the
limit function is continuous, recall the following standard example. For n = 1, 2, . . . consider
the function t 7→ tn for t ∈ [0, 1]. Then as n→∞, this converges to 0 for all t < 1 whereas
it converges to 1 for t = 1, so that the limit is not a continuous function.]] Since each of
the functions X(n) is clearly continuous, the claim then implies that with probability 1, the
sequence X(1), X(2), . . . converges to a limit function X that is continuous.

Proof: Define the maximum difference Mn between X(n+1) and X(n) by

Mn = max
t∈[0,1]

|X(n+1)(t)−X(n)(t)|.

Note that if
∑
Mn <∞, then the sequence of functions X(1), X(2), . . . converges uniformly

over [0,1]. Thus, it is sufficient to show that P{∑Mn <∞} = 1. Observe that

Mn = 2−(n/2)−1 max{|Z2n+1|, |Z2n+2|, . . . , |Z2n+1 |}.

We will use the following result about normal random variables.

(5.11) Fact. Let G1, G2, . . . be iid standard normal random variables, and
let c be a number greater than 2. Then

P{|Gn| ≤
√
c logn for all sufficiently large n} = 1.

Proof: Remember the tail probability bound

P{G > x} ≤ ϕ(x)

x
=

1√
2π

e−x
2/2

x

for a standard normal random variable G and for x > 0. From this,

∞∑

n=1

P{|Gn| >
√
c logn} ≤ 2

1√
2π

∞∑

n=1

e−(1/2)c logn

√
c logn

=

√
2

π

∞∑

n=1

n−(1/2)c

√
c logn

,

which is finite for c > 2. Thus, by the Borel-Cantelli lemma,

P{|Gn| >
√
c logn infinitely often} = 0,

which is equivalent to the desired statement.
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Taking c > 2, the fact implies that with probability 1,

Mn ≤ 2−(n/2)−1
√
c log(2n+1)

holds for all sufficiently large n. That is,

P{Mn ≤ 2−(n/2)−1
√
n+ 1

√
c log 2 eventually} = 1.

Thus, since
∑

2−(n/2)
√
n+ 1 <∞, we have

∑
Mn <∞ with probability 1, which completes

the proof of Claim (5.10).

So we know that with probability 1, the limit X = limn→∞X(n) is a well-defined,
continuous function. That is, we have established the existence of a limit process X, and
the process X has continuous paths. It remains to check that X satisfies the other defining
properties of a standard Brownian motion, that is, X(t) ∼ N(0, t) and the process X has
stationary independent increments.

To check that X(t) ∼ N(0, t), first note that for any dyadic rational r, that is, any
number r of the form r = k/2m, we already know that X(r) ∼ N(0, r). [[Why? Because
for all n ≥ m, we have X(n)(k/2m) = X(m)(k/2m); that is, in the construction process just
described, once we assign a value to the process at a dyadic rational time r = k/2m, we never
change it. SoX(r) = X(m)(r). But the processX(m) was constructed so thatX(m)(k/2m) ∼
N(0, k/2m).]] Letting t be an arbitrary number in the interval [0, 1], choose a sequence of
dyadic rational numbers r1, r2, . . . such that limn→∞ rn = t. Then X(t) = limn→∞X(rn)
with probability 1, by the path continuity of the process X. Thus, since X(rn) ∼ N(0, rn)
and limn→∞ rn = t, we must have X(t) ∼ N(0, t). [[Just in case you have any doubts, think
of it this way: we have shown that X(rn) ∼

√
rnZ, where Z ∼ N(0, 1). Take the limit of

both sizes as n→∞. X(rn)→ X(t) by path continuity, and
√
rnZ →

√
tZ ∼ N(0, t).]]

Checking that X has stationary independent increments may be done by exactly the
same idea. For example, to show that X(u)−X(t) ∼ N(0, u−t), X(t)−X(s) ∼ N(0, t−s),
and X(u) −X(t) is independent of X(t) −X(s) for s < t < u, take three dyadic rational
sequences sn → s, tn → t, and un → u. Then note that by construction, X(un)−X(tn) ∼
N(0, un − tn) is independent of X(tn)−X(sn) ∼ N(0, un − tn) for all n. That is,

(X(tn)−X(sn), X(un)−X(tn)) ∼ (
√
tn − snZ1,

√
un − tnZ2),

where Z1 and Z2 are iid N(0, 1) random variables. Finally, take the limit of both sides
and use the path continuity of X. This completes the construction of standard Brownian
motion.

5.6 The Brownian bridge

A standard Brownian bridge over the interval [0,1] is a standard Brownian motion W (·)
conditioned to have W (1) = 0. People say the Brownian motion is “tied down” at time
1 to have the value 0. By Exercise ([5.15]), we know that E(W (t) | W (1) = 0) = 0 and
Cov(W (s),W (t) |W (1) = 0) = s(1− t) for 0 ≤ s ≤ t ≤ 1.

(5.12) Definition. A standard Brownian bridge is a Gaussian process X with continuous
paths, mean 0, and covariance function Cov(X(s), X(t)) = s(1− t) for 0 ≤ s ≤ t ≤ 1.
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Here is an easy way to manufacture a Brownian bridge from a standard Brownian
motion: define

(5.13) X(t) = W (t)− tW (1) for 0 ≤ t ≤ 1.

It is easy and pleasant to verify that the process X defined this way satisfies the definition of
a Brownian bridge; I wouldn’t dream of denying you the pleasure of checking it for yourself!
Notice that, given the construction of standard Brownian motion W , now we do not have
to worry about the existence or construction of the Brownian bridge. Another curious but
sometimes useful fact is that the definition

(5.14) Y (t) = (1− t)W
(

t

1− t

)
for 0 ≤ t < 1, Y (1) = 0

also gives a Brownian bridge.

5.6.1 A boundary crossing probability

Earlier, using the reflection principle, we found the probability that a Brownian motion
reaches a certain height by a certain time. What is this probability for a Brownian bridge?
Letting W be a standard Brownian motion, recall the definition of the first hitting time of
the positive level b:

τb = inf{t : W (t) = b}.
In the standard Brownian bridge, we considered the particular condition W (1) = 0. Instead
of the particular time 1 and the particular value 0, let us consider the general condition
where we tie the Brownian motion down at an arbitrary time t to an arbitrary value x, so
that we are interested in the probability P{τb ≤ t |W (t) = x}. Clearly by path continuity
the answer is 1 if x ≥ b, so let us assume that x < b. Adopting rather informal notation,
we have

(5.15) P{τb ≤ t |W (t) = x} =
P{τb ≤ t,W (t) ∈ dx}

P{W (t) ∈ dx} .

Heuristically, dx is a tiny interval around the point x. Or, somewhat more formally, think
of the dx as shorthand for a limiting statement—the usual limiting idea of conditioning on
a random variable taking on a particular value that has probability 0. We can calculate
the right side of (5.15) explicitly as follows:

numerator = P{τb ≤ t}P{W (t) ∈ dx | τb < t}
= P{τb ≤ t}P{W (t) ∈ 2b− dx | τb < t}
= P{W (t) ∈ 2b− dx, τb < t}
= P{W (t) ∈ 2b− dx}

=
1√
t
ϕ

(
2b− x√

t

)
dx

and of course

denominator =
1√
t
ϕ

(
x√
t

)
dx,
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so that

P{τb < t |W (t) = x} =
ϕ

(
2b−x√

t

)

ϕ
(
x√
t

)

= exp
[
− 1

2

(2b− x)2
t

+
1

2

x2

t

]

= exp
[−2b(b− x)

t

]
,

a handy formula! Of course, it makes qualitative sense: the probability goes to 0 [[very
fast!]] as b → ∞, and the probability is nearly 1 if b is small or if b − x is small or if t is
large.

5.6.2 Application to testing for uniformity

Suppose U1, . . . Un are iid having a distribution F on [0,1], and we are interested in testing
the hypothesis that F is the uniform distribution F (t) = t. The empirical distribution
function Fn is defined by

Fn(t) =
1

n

n∑

i=1

I{Ui ≤ t} for 0 ≤ t ≤ 1.

Thus, Fn(t) is the fraction of the sample that falls in the interval [0, t]; this is a natural
estimator of F (t), the probability that one random observation from F falls in [0, t]. By
the law of large numbers, Fn(t) → F (t) for all t as n → ∞. So if F is Unif[0,1], we
have Fn(t) → t. The idea of the Kolmogorov-Smirnov test is to look at the difference
Fn(t) − t, and reject the uniformity hypothesis if the difference gets large enough at any
t ∈ [0, 1]. The question is: how large is large enough? For example, we might want to find
a rejection threshold that gives a probability of false rejection of .05; that is, find b so that
P{max(Fn(t)− t) : t ∈ [0, 1]} = .05.

Again, the Strong Law of Large Numbers says that for all t, the difference Fn(t) − t
approaches 0 as n → ∞. A limit distribution is obtained by multiplying the difference by√
n: since

Var(I{U1 ≤ t}) = P{U1 ≤ t} − (P{U1 ≤ t})2 = t(1− t)
the Central Limit Theorem tells us that

√
n(Fn(t)− t) D−→N(0, t(1− t)).

So define Xn(t) =
√
n(Fn(t)− t). Then, similarly to the above, since

Cov(1{U1≤s}, 1{U1≤t}) = P{U1 ≤ s, U1 ≤ t} − (P{U1 ≤ s})(P{U1 ≤ t}) = s− st = s(1− t)

for s ≤ t, the vector Central Limit Theorem tells us that

(
Xn(s)

Xn(t)

)
=

(√
n(Fn(s)− s)√
n(Fn(t)− t)

)
D−→N

((
0

0

)
,

(
s s

s t

))
∼

(
X(s)

X(t)

)
,

Stochastic Processes J. Chang, February 2, 2007



Page 166 5. BROWNIAN MOTION

where X is a Brownian bridge, and, in general,



Xn(t1)

...
Xn(tk)



 D−→N








0
...
0



 ,




t1 · · · t1
...
t1 tk







 ∼




X(t1)

...
X(tk)



 .

Thus, as n→∞, the joint distribution of process Xn sampled at any finite number of time
points converges to the joint distribution to the Brownian bridge X sampled at those same
times. Therefore, for any finite collection of times T = {t1, . . . , tk} ⊂ [0, 1],

lim
n→∞

P{max{Xn(t) : t ∈ T} ≥ b} = P{max{X(t) : t ∈ T} ≥ b}

This leads one to suspect that we should also have

lim
n→∞

P{max{Xn(t) : t ∈ [0, 1]} ≥ b} = P{max(X(t) : t ∈ [0, 1]) ≥ b}

In fact, this last convergence can be rigorously shown; the proof is a bit too involved for
us to get into now. [[For the general subject of weak convergence of stochastic processes
see the books Convergence of Stochastic Processes by David Pollard and Convergence of
Probability Measures by P. Billingsley.]] Since we know the exact expression for the last
probability, we can say that

lim
n→∞

P{max{Xn(t) : t ∈ [0, 1]} ≥ b} = e−2b2 .

Thus, for example, since e−2b2 = 0.05 for b = 1.22, then if n is large we have

P{max{Xn(t) : t ∈ [0, 1]} ≥ 1.22} ≈ 0.05.

So we have found an approximate answer to our question of setting a rejection threshold
in the test for uniformity.

5.7 Two Approaches to a Simple Boundary Crossing Prob-
lem

Let W be standard Brownian motion as usual, let b > 0, and define τb = inf{t : Wt = b}.
Recall that the reflection principle gives

P{τb ≤ t} = 2P{Wt > b} = 2

[
1− Φ

(
b√
t

)]
,

from which, letting t→∞ with b fixed, it follows that P{τb <∞} = 1. That is, W is sure
to cross the horizontal level b eventually.

More generally, we could ask:

Problem A: What is the probability

P{W (t) = b+ µt for some t ≥ 0}
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that the process W ever crosses the linear boundary b+ µt?

Clearly the answer is 1 if µ < 0, and we just observed in the previous paragraph that the
answer is also 1 when µ = 0. Accordingly, let’s look at linear boundaries having positive
slope µ > 0.

��� � ��� � ��� �

����

���
E

E�µ W

Note that if we subtract µt from W , we get Brownian motion with drift −µ, and if we
subtract µt from the line b+µt, we get the horizontal level b. Thus, lettingX(t) := W (t)−µt
and defining the stopping time τb by τb = inf{t : Xt = b}, it is clear that our problem is
equivalent to the following problem.

Problem A′: Find P−µ{τb < ∞}. Here the subscript “−µ” is attached to the P in order
to remind us that the Brownian motion that we are considering has drift −µ.

��� � ��� � ��� �

��

��

��

E

−µ W

To solve problems A and A′, we will in fact solve the following “better” problem.

Problem B: Let a < 0 < b and µ be given, and define T = min{τa, τb}. What is the
probability

P−µ{τb < τa} = P−µ{XT = b}
that the Brownian motion hits the level b before the level a?
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Solving Problem B will enable us to solve the other two, since

P−µ{τb <∞} = lim
a→−∞

P−µ{τb < τa}.

5.7.1 Differential Equations

We could formulate Problem B in terms of an absorbing Markov process. Consider a
(−µ,1)-Brownian motion {Xt} having two absorbing states a and b. Then our problem is
to find the probability that the process gets absorbed in b rather than a. This should have
a familiar feel to it: we solved this sort of problem for finite-state Markov chains earlier.
In fact, we did this by two different methods, both of which solved the given problem
by simultaneously solving the whole family of analogous problems starting from all of the
possible starting states of the chain. The first method used the “fundamental matrix.” The
second method involved conditioning on what the chain did at the first step.

Here we will do the same sort of thing, using the continuous-time analog of the “condi-
tioning on what happened at the first step” method. We won’t try to be rigorous here. Let
P x and Ex denote probability and expectation when the (−µ,1)-Brownian motion {Xt}
starts in the state X0 = x. Then, defining the function u(x) = P x{XT = b}, Problem B
asks for the value of u(0), which we will find by in fact solving for the whole function u(x)
for x ∈ [a, b]. Clearly u(a) = 0 and u(b) = 1, so let x ∈ (a, b). In continuous time there is
no “first step” of the process, but we can think of conditioning on the value of X(h) where
h is a tiny positive number. This gives

u(x) = ExP x{XT = b|X(h)} = Exu[X(h)] + o(h),

where in the last equality we have used the Markov “restarting” property to say that
P x{XT = b|X(h), T > h} = u[X(h)], and Exercise [5.11] to say that P x{T ≤ h} = o(h).

Now since h is tiny, X(h) will be very close to x with high probability under P x. So
u[X(h)] can be closely approximated by the first few terms of its Taylor expansion

u[X(h)] = u(x) + u′(x)[X(h)− x] + (1/2)u′′(x)[X(h)− x]2 + · · · .
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Combining this with the previous equation gives

u(x) = u(x) + u′(x)Ex[X(h)− x] + (1/2)u′′(x)Ex{[X(h)− x]2}+ · · · .

However, the (−µ,1)-Brownian motion {Xt} satisfies

Ex[X(h)− x] = −µh+ o(h),

Ex{[X(h)− x]2} = h+ o(h),

and
Ex{[X(h)− x]k} = o(h) for k > 2.

Thus,
0 = u′(x)(−µh) + (1/2)u′′(x)h+ o(h),

so that, dividing through by h and letting h ↓ 0, we see that u satisfies the differential
equation

(5.16) (1/2)u′′(x)− µu′(x) = 0.

The boundary conditions are u(a) = 0 and u(b) = 1. This differential equation is very easy
to solve: the general solution is u(x) = Ce2µx + D where C and D are constants, so the
solution satifying the boundary conditions is

(5.17) u(x) =
e2µx − e2µa
e2µb − e2µa .

This is a handy, explicit result, from which the solution to our original problems follow
easily. In particular, since we wanted our Brownian motionX to start at 0, we are interested
in

P−µ{τb < τa} = u(0) =
1− e2µa
e2µb − e2µa .

Since µ > 0, by letting a→ −∞ we obtain

P−µ{τb <∞} = lim
a→−∞

P−µ{τb < τa} = e−2µb.

Let’s pause to make sure that (5.17) is consistent with what we know about the cases
where µ is not positive. If µ were negative, so that −µ were positive, then we would have
obtained the limit lima→−∞ u(0) = 1, which makes sense, as we said before: Brownian
motion with positive drift is sure to pass through the level b eventually. What if µ = 0? In
that case the solution (5.17) breaks down, reducing to the form “0/0”. What happens is
that the differential equation (5.16) becomes u′′(x) = 0, whose solutions are linear functions
of x. The solution satisfying the boundary conditions u(a) = 0 and u(b) = 1 is

u(x) =
x− a
b− a ,

so that u(0) = a/(a− b), which approaches 1 as a→ −∞, again as expected.
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It is interesting to contemplate our solution still a bit more. Let M denote the maximum
height ever attained by the Brownian motion, that is, M = max{Xt : t ≥ 0}. Then what
we have found is that P−µ{M ≥ b} = e−2µb, or, in other words, M ∼ Exp(2µ). Now this
result also makes a good deal of sense, at least qualitatively: we could have guessed that
M should be exponentially distributed, since it seems intuitively clear that M should have
the memoryless property. To see this, suppose I tell you that I observed M to be greater
than b, and I ask you for your conditional probability that M > b + y. Then you should
think to yourself: “He just told me that τb < ∞. The portion of the BM path after time
τb should look just like ordinary BM with drift −µ, except started at the level b. [[Then
you should mutter something about the strong Markov property [[see Exercise [5.8]]]: τb is
a stopping time.]] So I should say P−µ{M > b + y | M > b} = P−µ{M > y}.” This is the
memoryless property.

The fact that the parameter of the exponential distribution should be 2µ does not seem
obvious, so our calculation has given us some substantial information. Again, you should
check that 2µ at least makes some crude, qualitative sense; for example, it is monotone in
the right direction and that sort of thing.

5.7.2 Martingales

The results we discussed in the previous chapter for martingales in discrete time have
counterparts for continuous-time martingales. Here is a definition. Suppose that W is a
standard Brownian motion.

(5.18) Definition. A stochastic process M is a martingale with respect to W if it satisfies
the following two conditions:

1. M is adapted to W ; that is, for every t, M(t) is some deterministic function of the
portion 〈W 〉t0 := {W (s) : 0 ≤ s ≤ t} of the path of W up to time t.

2. For all 0 < s < t we have E{M(t)|〈W 〉s0} = M(s).

The second condition is a “fair game” sort of requirement. If we are playing a fair game,
then we expect to neither win nor lose money on the average. Given the history of our
fortunes up to time s, our expected fortune M(t) at a future time t > s should just be the
fortune M(s) that we have at time s.

The important optional sampling (“conservation of fairness”) property of martingales
extends to continuous time. Let M be a martingale with respect to W , and suppose that
we know that M(0) is just the constant m0. By the “fair game” property, EM(t) = m0

for all times t ≥ 0. [[Exercise: check this!]] That is, I can say “stop” at any predetermined
time t, like t = 8, say, and my winnings will be “fair”: EM(8) = m0. As before, the issue
of optional sampling is this: If τ is a random time, that is, τ is a nonnegative random
variable, does the equality EM(τ) = m0 still hold? As before, we can be assured that this
holds if we rule out two sorts of obnoxious behaviors: “taking too long” and “taking back
moves.” That is, optional sampling holds for bounded stopping times.

(5.19) Definition. We say that a nonnegative random variable τ is a stopping time (with
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respect to W ) if for each t it is possible to determine whether or not τ ≤ t just by looking
at 〈W 〉t0. That is, the indicator random variable I{τ ≤ t} is a function of 〈W 〉t0.
[[We could also perversely express this in the language introduced above by saying that τ
is a stopping time if the process X defined by X(t) = {τ ≤ t} is adapted to W .]] We say
that a random time τ is bounded if there is a number c such that P{τ ≤ c} = 1.

(5.20) Theorem [Optional Sampling Theorem]. Suppose that M is a martingale
with respect to W starting at the value M(0) = m0, and let τ be a bounded stopping time
with respect to W . Then we have EM(τ) = m0.

You may be disappointed by the boundedness restriction on the stopping time τ . How-
ever, often we can prove optional sampling for unbounded stopping times by combining the
above optional sampling theorem with a result like the bounded convergence theorem, for
example. We will see this in our application, to which I think it is high time we got back
now. If in the force Yoda’s so strong, construct a sentence with the words in the proper
order then why can’t he?

The next result introduces a martingale called “Wald’s martingale” or “the exponential
martingale.” Any martingale with more than one name must be important!

(5.21) Claim. For any real λ, M(t) := exp{λW (t)− 1
2λ

2t} is a martingale.

Proof: Easy exercise. Use the fact that if Z ∼ N(0, 1), then E{eθZ} = eθ
2/2 for real θ;

this is the moment generating function of the N(0, 1) distribution.

We can use this to form a martingale out of our process X(t) = W (t) − µt, which has
drift −µ: since X(t) + µt is a standard Brownian motion, for every λ

(5.22) M(t) := exp{λ[X(t) + µt]− 1

2
λ2t} = exp{λX(t) + λ(µ− 1

2
λ)t}

is a martingale. The nice thing is that since this holds for every λ, we are free to choose
any λ that we like. There is a clear choice here that appears to simplify things: if we take
λ = 2µ, we see that

M(t) := e2µX(t) is a martingale.

Retaining the notation T = min{τa, τb} from before, in accordance with the optional
sampling ideas we discussed above, we would like to say that

E{e2µX(T )} = EM(T ) = M(0) = 1.

Is this right? Well, clearly T is a stopping time; that’s good. However, T is not bounded;
that might be bad. Here’s the trick. For any number n, the random time T ∧n is a bounded
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stopping time, so that we can say that E{e2µX(T∧n)} = 1. So clearly we would like to take
a limit as n→∞ as follows

E{e2µX(T )} = E
{

lim
n→∞

e2µX(T∧n)
}

= lim
n→∞

E
{
e2µX(T∧n)

}

= lim
n→∞

1 = 1.

This interchange of limit and expectation is permitted by the bounded convergence theorem
in our case, since the fact that X(T ∧n) must be between a and b implies that the random
variables e2µX(T∧n) are bounded [[between e2µa and e2µb]].

⊲ Strictly speaking, in order to apply bounded convergence this way, we should show that T is
finite with probability one. Can you do that? This is Exercise [5.20]

We are almost done. Write

1 = E{e2µX(T )} = e2µaP{X(T ) = a}+ e2µbP{X(T ) = b}.
Noting that P{X(T ) = a} = 1 − P{X(T ) = b}, this becomes a simple equation for the
desired probability P{X(T ) = b}, and the answer is the same as before.

Let’s end this section with more food for thought. If you really think about the optional
sampling result, from a certain point of view it is exceedingly strange. Here is what I mean.
We know that if T is any bounded stopping time and W is a standard Brownian motion,
then E[W (T )]=0. In gambling terms, you cannot stop a Brownian motion before time 1,
for example, and make a profit — i.e. end up with a positive expected amount of money.
However, we also know that with probability 1, a Brownian motion must become positive
before time 1. In fact, in each interval of the form (0, ǫ), W hits 0 infinitely often and is
positive infinitely often and is negative infinitely often. Not only that, but since W has
continuous paths, whenever W is positive at any point in time, in fact there is a whole
interval of times over which W is positive. Imagine yourself “riding along” on the bumpy
graph of a Brownian motion. We have just noted that, with probability 1, before time 1
you will ride through many intervals of times on which the Brownian motion is positive,
that is, the graph lies above the time axis. As you ride, can’t you just look down, see
the time axis below us, think “Good, I’m positive now,” and say “Stop”? It doesn’t seem
hard, does it? If you are a microscopic rider on the graph of a Brownian path, there will
be all these stretches of time over which the Brownian motion is positive. You don’t have
to be greedy; just choose any of those times and say “Stop.” Isn’t it clear that you can
do this with probability 1? If so, your winnings will be positive with probability 1, and so
obviously your expected winnings are positive. But the optional sampling theorem implies
that there is no such stopping time!

5.8 Some confusing questions (or answers)

I suspect the effect of this section may be to toggle your state of confusion about some issues
— if you were not already confused and searching for answers, this section may confuse
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you, whereas if you have been wondering about these issues yourself, I hope this section
will help you sort them out. So, have you ever wondered about questions of this sort?

(1) What is the Ω for a Brownian motion?
(2) What does it mean to “fix ω” for a pollen particle in water?

I’ve been asked questions like these a number of times by a number of students, and they
are good questions (perhaps a little too good... grumble grumble...).

The answer to (1) is: the set Ω is unimaginably complicated. Or not. Actually, there
are many ways to answer this sort of question. This shouldn’t be surprising. For example,
there are many different random variables that have (or are commonly modeled as having)
a N(0, 1) distribution; for example, (women’s height− 65 inches)/3, (IQ− 100)/10, and so
on. Just as there are many different N(0, 1) random variables, there are many different
Brownian motions.

Let’s start by reviewing these ideas in a context much simpler than Brownian motion:
tossing a coin, just once. We want to define a random variable X that models a coin toss,
according to the mathematical framework of probability. That is, we need a probability
space (Ω,F, P ) and then we define X as a function X : Ω → R. [[Recall Ω is called the
sample space, and P is a probability measure on Ω. F is a collection of subsets of Ω called
events.]]

A standard description of the concept of a sample space Ω is that “Ω is the set of all
possible outcomes of the experiment under consideration.” Here that would be Ω = {H,T}.
So defining the probability measure P by P{H} = P{T} = 1/2 and the random variable
X by X(ω) = ω for ω ∈ Ω, we have a model. Notice that the random variable X here is
rather trivial—the identity function. Given this generic choice for X, we have customized
the probability P to model the phenomenon.

Here is another way to model a coin toss. Imagine simulating the toss using a uniformly
distributed random number: take Ω = [0, 1], the unit interval, and P=Lebesgue measure
(ordinary length) on Ω. Then we could define X by X(ω) = H if ω ≤ 1/2 and X(ω) = T if
ω > 1/2. Notice that this is an entirely different random variable than the X defined in the
previous paragraph: they are different functions, with different domains! However, the two
random variables have the same probability distribution: each satisfies P{ω ∈ Ω : X(ω) =
H} = P{ω ∈ Ω : X(ω) = T} = 1/2. In this second setup we have used a generic sort of
source of randomness: a uniformly distributed ω. So P was not tailored to our application
here; it is the random variable X that was carefully defined to give the desired distribution.
Notice the contrast with the last sentences of the previous paragraph.

Now for a more physical picture. Imagine a person actually tossing a coin and letting it
fall to the floor. What is it about the randomness in this situation that we would need to
specify in order to know the outcome? This motivates a description like Ω = {all possible
initial conditions, i.e., all possible values for (initial position, initial velocity, initial angular
velocity)}. Here P would be the probability distribution over Ω that describes the way
that our flipper will “choose” initial conditions. And X is a complicated function that you
could in principle write down from the laws of physics [[good luck]] that tells us, for each
possible initial condition, whether the toss will be heads or tails.
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What does it mean to fix ω? For each fixed ω, the outcome X(ω) is determined—recall
that X is simply a function of ω. So having fixed ω, there is no randomness left in X(ω).
The “randomness” is all in the choice of ω; this applies to each of the three descriptions
above.

Let’s stop modeling a coin toss now; you can think of other probability spaces and
random variables that we could use to do it. Now to Brownian motion: each of the 3 ways
of thinking described above has a natural analog here. The first approach had Ω as the set
of all possible outcomes. We know that the “outcome” of Brownian motion is a continuous
path. So we could take Ω to be the set of all continuous functions

Ω = C[0,∞) = {ω : ω(·) is a continuous function on [0,∞)}.

Then P would be the probability measure on C[0,∞) that corresponds to Brownian motion;
this is called Wiener measure. It is rather complicated conceptually; an example of a simple
statement that one could make about Wiener measure P is

P{ω ∈ C[0,∞) : ω(1) < 2} = Φ(2)

where Φ is the standard normal cumulative distribution function. The definition of Brow-
nian motion W in terms of this sample space is trivially simple, just as the definition of
X was trivial in the first example above; just define W (ω) = ω. That is, for each t, we
define Wt(ω) = ω(t). So simple it looks like gibberish. [[Remember, ω is a function in its
own right; it is an element of C[0,∞).]] The function W is trivial; the interesting part is
the Wiener measure.

A second approach uses a simpler measure and a more complicated function. The ques-
tion comes down to: how could you simulate a realization (that is, a path) of Brownian
motion? We have seen (from our “construction” of Brownian motion) that it can be done
from an independent sequence of uniformly distributed random variables. But in fact a
whole sequence of such random variables can be produced from a single uniformly dis-
tributed random variable. [[How?]] So Brownian motion can be defined on the nice friendly
probability space [0, 1] with Lebesgue measure. The tradeoff for the simple probability
space is that the function W must then be more complicated — we can’t get by with the
trivial identity function any more! This function must perform the tasks of producing a
sequence of iid uniforms, transforming them to a sequence of iid N(0, 1)’s, then combin-
ing them into the series of functions discussed in the construction of Brownian motion, all
starting from a single uniformly distributed random variable.

Finally, one could imagine modeling an actual pollen particle in a drop of water. We
could define Ω to be the set of all possible initial conditions of the positions and velocities
of the pollen particle and of all of the molecules of water in the drop. Wow. Then P would
be our probability distribution for such initial conditions. The function W would again be
determined [[in principle!]] from the laws of physics, with Wt(ω) giving the position of the
pollen at time t if the initial conditions were ω.

Here are some words. A function X : Ω → R is usually called a random variable. We
can consider functions from Ω to a more general space X, say. Such a function X : Ω→ X

would be called a random variable taking values in X or a random element of X. We can
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consider a stochastic process such as W to be a random element of a function space such
as C[0,∞), since, for each ω, we get a whole path (i.e. continuous function) W (ω).

I hope you are not put off by all these different modeling approaches. Thankfully, as
we have seen, most of the time, we don’t have to agonize over just what Ω we have in our
minds and how complicated or trivial the corresponding random element is. This works
because usually we are interested in probabilities that the random element is in various
sets, and these depend only on the probability distribution of the random element. It is
well to keep in mind that this is all a game going on inside our heads. Of course, the same
statement applies to all probability and statistics, and indeed to all of mathematics (and
perhaps much more...). There are no points or lines in the physical universe, yet the mental
game of geometry can be useful.

5.9 Exercises

⊲ In the exercises of this chapter, W will denote a standard Brownian motion process.

[5.1] [[A sojourn time problem]] Let X(t) = µt+σW (t), where W is a standard Brownian motion
and µ > 0.

(i) For δ > 0, find the expected total amount of time that the process X spends in the
interval (0, δ). That is, defining

T =

∫ ∞

0
I{X(t) ∈ (0, δ)} dt,

what is E(T )? A rather involved calculus calculation should eventually arrive at a
strikingly simple answer.

(ii) Can you give a convincing but calculation-free argument why the simple answer is
correct?

[5.2] [[Another sojourn time problem]] As in the previous problem, let X(t) = µt+σW (t), where
W is a standard Brownian motion and µ > 0. What is the expected amount of time that
the process X spends below 0? [[The calculus is easier in this problem than in the previous
one.]]

[5.3] For 0 < a < b, calculate the conditional probability P{Wb > 0 |Wa > 0}.

[5.4] Prove the Brownian scaling property, Theorem (5.4).

[5.5] Imagine that you do not already know the answer to Exercise [5.2]; you know only that the
answer is some function of µ and σ2. Use Brownian scaling to argue without calculus that
the desired function must be of the form aσ2/µ2 for some number a.

[5.6] Prove Proposition (5.5).
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[5.7] Let {Wt : t ∈ [0, 1]} and {Xt : t ∈ [0, 1]} be standard Brownian motions that are indepen-
dent of each other. Show that with probability 1, there are infinitely many times t in [0, 1]
such that Wt = Xt.

[5.8] The strong Markov property is an extension of the restarting property of Proposition 5.5
from fixed times c to random stopping times γ: For a stopping time γ, the process x
defined by X(t) = W (γ + t)−W (γ) is a Brownian motion, independent of the path of W
up to time γ. Explain the role of the stopping time requirement by explaining how the
restarting property can fail for a random time that isn’t a stopping time. For example, let
M = max{Bt : 0 ≤ t ≤ 1} and let β = inf{t : Bt = M}; this is the first time at which B
achieves its maximum height over the time interval [0, 1]. Clearly β is not a stopping time,
since we must look at the whole path {Bt : 0 ≤ t ≤ 1} to determine when the maximum
is attained. Argue that the restarted process X(t) = W (β + t) −W (β) is not a standard
Brownian motion.

[5.9] [[Ornstein-Uhlenbeck process]] Define a process X by

X(t) = e−tW (e2t)

for t ≥ 0, where W is a standard Brownian motion. X is called an Ornstein-Uhlenbeck
process.

(a) Find the covariance function of X.

(b) Evaluate the functions µ and σ2, defined by

µ(x, t) = lim
h↓0

1

h
E[X(t+ h)−X(t) | X(t) = x]

σ2(x, t) = lim
h↓0

1

h
Var[X(t+ h)−X(t) | X(t) = x].

[5.10] Let W be a standard Brownian motion.

(i) Defining τb = inf{t : W (t) = b} for b > 0 as above, show that τb has probability
density function

fτb(t) =
b√
2π
t−3/2e−b

2/(2t)

for t > 0.

(ii) Show that for 0 < t0 < t1,

P{W (t) = 0 for some t ∈ (t0, t1)} =
2

π
tan−1

(√
t1
t0
− 1

)
=

2

π
cos−1

(√
t0
t1

)
.

[[Hint: The last equality is simple trigonometry. For the previous equality, condition
on the value of W (t0), use part (i), and Fubini (or perhaps integration by parts).]]
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(iii) Let L = sup{t ∈ [0, 1] : Wt = 0} be the last zero of W on [0,1]. Find and plot the
probability density function of L. Rather peculiar, wouldn’t you say?

[5.11] Let Xt = Wt + µt be a Brownian motion with drift µ, and let ǫ > 0. Show that

P{max
0≤t≤h

|Xt| > ǫ} = o(h) as h ↓ 0.

[[That is,
1

h
P{max

0≤t≤h
|Xt| > ǫ} → 0 as h ↓ 0.

Hint: You might want to do the special case µ = 0 first. For the general case, you can
transform the problem about X into an equivalent problem about W , and use the special
case to do an easy bound. This shouldn’t be a very involved calculation.]] This result is
useful when we are calculating something and keeping terms up to order h, and we want
to show that the probability of escaping from a strip can be neglected.

[5.12] Let M(t) = max{W (s) : 0 ≤ s ≤ t}. Find the joint probability density function of M(t)
and W (t).

[5.13] Let (X(t), Y (t)) be a two-dimensional standard Brownian motion; that is, let {X(t)} and
{Y (t)} be standard Brownian motion processes that are independent of each other. Let
b > 0, and define τ = inf{t : X(t) = b}. Find the probability density function of Y (τ).
That is, find the probability density of the height at which the two-dimensional Brownian
motion first hits the vertical line x = b.

[[Hint: The answer is a Cauchy distribution.]]

[5.14] Show that for 0 ≤ s < t < u,

L(Wt |Ws,Wu) = N

(
Ws +

t− s
u− s(Wu −Ws),

(t− s)(u− t)
u− s

)
.

[[Hint: This may be obtained by applying the result of (5.9) to the Brownian motion W̃
defined by W̃ (v) = W (s+ v)−W (s) for v ≥ 0.]]

[5.15] Let 0 < s < t < u.

(a) Show that E(WsWt |Wu) = s
tE(W 2

t |Wu).

(b) Find E(W 2
t | Wu) [[you know Var(Wt | Wu) and E(Wt | Wu)!]] and use this to show

that

Cov(Ws,Wt |Wu) =
s(u− t)

u
.

[5.16] What is the conditional distribution of the vector (W5,W9,W12) given that W10 = 3? [[It is
a joint normal distribution; you should give the (3× 1) mean vector and (3× 3) covariance
matrix.]]

Stochastic Processes J. Chang, February 2, 2007



Page 178 5. BROWNIAN MOTION

[5.17] Verify that the definitions (5.13) and (5.14) give Brownian bridges.

[5.18] We defined the Brownian bridge by conditioning a standard Brownian motion to be 0 at
time 1. Show that we obtain the same Brownian bridge process if we start with a (µ, 1)
Brownian motion and condition it to be 0 at time 1.

[5.19] Let X(t) = x0 +µt+σW (t) be a (µ, σ2) Brownian motion starting from x0 at time 0. What
is the probability

P{X(s) ≥ b+ cs for some s ≤ t | X(t) = xt}?

[[Your answer should be a function of µ, σ, x0, xt, b, c, and t (maybe not depending on all of
these). This should not require significant calculation, but rather a reduction to something
we have done.]]

[5.20] As in Section 5.7, let T denote min{τa, τb}, where a < 0 < b. Show that P{T <∞} = 1.

[5.21] The exponential martingale [[see (5.21) and (5.22)]] is quite useful. For example, let µ > 0
and b > 0 and consider X(t) to be BM with drift µ. Find the moment generating function
E(eθτb) of τb, as a function of θ. Note that the answer is finite for some values of θ and
infinite for others. Can you solve the same problem for T = τa ∧ τb?
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6. Diffusions and Stochastic
Calculus

We have discussed Markov processes in discrete time with discrete state space—these are
discrete time Markov chains. We have also studied Brownian motion, a special Markov
process in continuous time that has continuous sample paths. In this chapter, we will study
more general continuous-time Markov processes that have continuous sample paths. These
are called diffusions.

There is a whole family of Brownian motions: for each µ and σ2 there is a (µ, σ)
Brownian motion. However, in a sense these are all the same—all are obtained from the
standard Brownian motion by multiplying by a constant and adding on a deterministic
linear function. This is analogous to the way that all normal random variables are obtained
from a standard normal random variable simply by adding and multiplying by constants.
Thus, the family of Brownian motions has limited flexibility in modeling and describing
random phenomena. For example, unless your random process is expected to follow a
linear trend, you will be frustrated trying to fit a (µ, σ2) Brownian motion to it; you will
not be able to get it to do what you want. We have seen some other sorts of processes built
out of Brownian motion, such as the Brownian bridge and geometric Brownian motion, for
example. These processes are simple examples of diffusions, which is a much more general
class of processes that can exhibit a variety of more interesting behaviors, and are therefore
flexible and useful tools in stochastic modeling and analysis.

Diffusions are built up, in a sense, from Brownian motions. They are built up from
Brownian motions in the same way as in ordinary calculus, general differentiable functions
are built up out of linear functions. Think about the functions of the form x(t) = Ce−t,
for example. These functions satisfy the differential equation x′(t) = −x(t). What is this
equation telling us? Suppose you wanted to graph the function that satifies the equation
x′(t) = −x(t) and the initial condition x(0) = 3. Let’s pretend that you never heard of
exponential functions; all you know is that you want to graph the function—whatever it
may be—that satisfies the given differential equation and initial condition. So you start
with the point you know: x(0) = 3. Then the differential equation tells you that the slope
of the solution curve at that point is x′(0) = −x(0) = −3. In other words, the equation is
telling you that the desired curve is closely approximated by the straight line 3− 3t over a
short time interval [0, ǫ], say. Drawing that linear function 3− 3t as an approximation over
the interval [0, ǫ] brings us to the new point (ǫ, 3 − 3ǫ). Note that this point is wrong; in
fact, we are wrong as soon as we leave our initial point, since as x(t) leaves the initial value
3, we should no longer be using the initial slope −3! However, since the slope change little
over tiny invervals, we are nearly right. So we have gotten to the point (ǫ, 3− 3ǫ). Now we
would use the differential equation to re-evaluate the slope we should use: the slope is now
−3 + 3ǫ. Then we can move along a line with the new slope over the time interval [ǫ, 2ǫ].
Then we would re-evaluate the slope using the differential equation, and so on.

If we use a small enough ǫ, we get an arbitrarily good approximation to the true solution
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x(t) = 3e−t of the differential equation this way. Notice that the true solution curve has no
straight lines in it, but it is arbitrarily well approximated by a piecewise linear function.
In a sense, we might say that the function x(t) = 3e−t is always behaving according to a
linear function; it is just continually adjusting its slope according to the recipe specified by
the differential equation: slope=−current value. The differential equation is telling us, at
each time, the slope of the line we should be following. The equation expresses the current
slope as a function of the current state.

Diffusions are the stochastic analog of such solutions of differential equations. They
are built up out of the family of Brownian motions in the same spirit as the way in which
functions like 3e−t are built up from the family of linear functions. In the same loose
sense as above, a diffusion is always behaving according to a Brownian motion; it is just
continually re-adjusting its drift µ and variance σ2 parameters according to its current
state. We specify a diffusion by giving a rule for determining what Brownian motion we
should be following, as a function of the current state. That is, we specify two functions
µ(·) and σ2(·); if the current state is Xt, we should be running a (µ(Xt), σ

2(Xt))-Brownian
motion.

We can “solve,” or simulate, a stochastic differential equation on a computer using the
same idea as in solving a deterministic differential equation on a computer. Of course, we
can’t simulate a diffusion perfectly, just as we cannot simulate a Brownian motion perfectly.
[[Recall that the “construction” of Brownian motion on [0,1] that we described would take
an infinite amount of time to “finish”.]] However, as with Brownian motion, we can get an
arbitrarily good approximate simulation by working with a fine grid on the time axis, say
0, h, 2h, . . .. Start by simulating X0 from the initial distribution. Let Z1, Z2, . . . denote a
sequence of iid N(0, 1) random variables; we know how to simulate these. We can use these
normal random variables to simulate the process X on our grid as follows: take

Xh = X0 + µ(X0)h+ σ(X0)
√
hZ1,

then
X2h = Xh + µ(Xh)h+ σ(Xh)

√
hZ2,

and so on. This is a natural idea: instead of doing the ideal of “continually readjusting the
drift and variance functions at each instant,” we are content to adjust the drift and variance
only at the times 0, h, 2h, . . ., keeping their values constant between adjustment times. The
approximate diffusion consists of piecing together the resulting little Brownian motions
run over those tiny time intervals. Again, although the actual diffusion will generally
have no time intervals on which it is truly a pure Brownian motion, since it is continually
readjusting its drift and variance, if we take h sufficiently small the resulting simulation
is a good approximation to the real thing. This is like the situation with deterministic
differential equations: on a computer, we approximate a solution—which is a curve—by a
piecewise linear function.

6.1 Specifying a diffusion

Let’s state a common definition of a diffusion process, at least so we can say we did it.
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(6.1) Definition. A stochastic process that has the strong Markov property and (almost
surely) continuous sample paths is called a diffusion process.
I do not want to emphasize this definition, which, incidentally, is not universally agreed
upon for various subtle reasons. We will ignore those subtleties. Just think of a diffusion
as a continuous-time Markov process that has continuous paths; you won’t go far wrong.

Let us take a more pragmatic or operational point of view. As we did with Markov
chains, we’ll start by saying how to specify a diffusion. That is, if I am thinking of a
diffusion, how do I tell you which particular diffusion {Xt : t ≥ 0} I am thinking about?
Just as with Markov chains, to specify a diffusion, we need to specify a state space, an initial
distribution, and a probability transition structure. The state space will be an interval I
of the form (l, r), [l, r], [l, r), or (l, r], where −∞ ≤ l < r ≤ ∞. The initial distribution, of
course, is just a probability distribution on I. Now to describe the probability transition
structure: this is not easy to spell out rigorously in a few words, but the intuitive idea is not
hard. Again thinking in terms of simulation, suppose that we have already simulated the
process X up to time t and we are currently at the position X(t) = x, where x is some point
in the interior of the state space. How do we simulate the process over the next tiny time
interval [t, t + h]? The answer is (approximately): we simulate a certain (µ, σ2)-Brownian
motion. Which µ and σ2 we use are determined by the current position x; that is, µ and
σ2 are functions of x.∗ Thus, an intuitive description of the way we run the process is: at
each time t, we check to see where we are, calling our current state Xt. Then we evaluate
the two functions µ and σ2 at Xt, and run a (µ(Xt), σ

2(Xt))-Brownian motion for a tiny
amount of time. We are always continually checking where we are, and adjusting the drift
and variance of our Brownian motion accordingly.

Thus, in the interior (l, r) of the state space, the probability transition structure of a
time-homogeneous diffusion is specified by two functions µ = µ(x) and σ2 = σ2(x), which
satisfy the relations

(6.2) E[X(t+ h)−X(t) | X(t) = x] = µ(x)h+ o(h)

and

(6.3) Var[X(t+ h)−X(t) | X(t) = x] = σ2(x)h+ o(h)

as h ↓ 0.

(6.4) Exercise. Show that in the presence of (6.2), the condition (6.3) is equivalent to

E[(X(t+ h)−X(t))2 | X(t) = x] = σ2(x)h+ o(h).

Terms like “infinitesimal drift” or “infinitesimal mean function” are used for µ(·), and σ2(·)
has names like “infinitesimal variance” and “diffusion function.”

Let us also assume that moments of the increments X(t + h) − X(t) higher than the
second moment are negligible when compared with the first and second moments:

E[|X(t+ h)−X(t)|p | X(t) = x] = o(h) as h→ 0

∗This is for time-homogeneous diffusions. For general diffusions, µ and σ2 may depend on t as well as x.
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for all p > 2.
So far we have discussed the probability transition structure of our diffusion only in

the interior (l, r) of I. The behavior at the boundary points must be specified separately.
There are many possible types of boundary behaviors: absorbing boundaries, reflecting
boundaries, “sticky” boundaries, and others. We might talk about this more later.

Going back to the infinitesimal mean and variance functions, another interesting point
to appreciate is that it is not obvious that we have really specified a probability transition
structure just by giving functions µ(·), and σ2(·)—these just describe the behaviors of
the first and second moments of increments of the process, not the whole distribution.
However, in fact it is generally true that these two functions are enough. We will see how
the whole probability transition structure is determined by these two functions when we
discuss Kolmogorov’s forward and backward equations.

(6.5) Example [Geometric Brownian motion]. Suppose {Xt} is a (µ, σ2) Brownian
motion, and define Yt = eXt . Then {Yt} is called a geometric Brownian motion. A typical
application of this process is as a model of stock prices, where it seems reasonable to assume
that “returns,” which are ratios like Y (t2)/Y (t1) and Y (t4)/Y (t3), are independent for
nonoverlapping intervals (t1, t2) and (t3, t4).

(6.6) Example [Ornstein-Uhlenbeck process]. A standard Ornstein-Uhlenbeck pro-
cess is a diffusion having µ(x) = −x and σ2(x) = 2 on the state space I = (−∞,∞). If
the initial distribution is taken to be N(0, 1), then the resulting process is in fact station-
ary. This is the reason for the modifier standard—the process has the standard normal
distribution N(0, 1) as its stationary distribution. Here the σ2(·) is not very interesting;
the process has constant wiggliness. But look at the drift function µ(x) = −x. The process
is always drifting toward 0: for example if Xt = 1.5 then the drift at time t is −1.5, while
if Xt = −3 the drift at time t is 3. If Xt = 0 the drift at time t is 0. Thus, the process is
happy when it is at 0 (i.e. it just wanders around aimlessly not particularly going in either
direction). If it is near to 0, then it has a slight tendency to move back toward 0, while if
it is far away from 0 then there is a large drift pulling it strongly back toward 0. It is as if
there is a “restoring force” always pulling the process back toward 0, with the force being
stronger the further the process is away from 0.

Thus, there is a continual struggle between the drift part (which wants to pull the process
back toward 0) and the diffusion part (which wants the process to wander randomly). The
result is a wiggly process that tends to hover near to 0. It will occasionally by chance make
larger excursions away from 0, but then the drift will pull it quickly back to a vicinity of 0.

The Ornstein-Uhlenbeck process, sometimes called a mean-reverting process, is often
used as a model for stochastic systems that have an equilbrium state and a spring-like force
that tends to move the process back toward the equilibrium state. It approximates many
systems of this type. A simple example is the Ehrenfest chain. Recall there that we had
2d balls, say, in two urns, and at each time we choose at ball at random and move it to the
other urn. This process tends to move toward the equilibrium state of d balls in both urns.
The tendency to move toward equilibrium is stronger the further the system is away from
equilibrium.
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(6.7) Figure. Two simulated Ornstein-Uhlenbeck sample paths.

(6.8) Example [Wright-Fisher process]. This is a diffusion on the state space I =
[0, 1] having drift and variance functions µ(x) = 0 and σ2(x) = x(1−x). The states 0 and 1
are absorbing. There is no drift, so the process never has any systematic tendency to go up
or down. The interesting part here is the variance function: σ2(x) is maximized for x = 1/2
and approaches 0 as x→ 0 or x→ 1. What this means is that, if we watch a sample path,
then it is “more wiggly” when x is nearly 1/2, and it is less wiggly as x approaches either
endpoint of I.

Does the process actually get absorbed? If you consider this question, you may find
yourself thinking Zeno paradox-like thoughts: In order to get to the boundary, the process
has to get close to the boundary first. As the process gets nearer and nearer to the boundary,
the form of the σ2 function causes it to move around less and less. Maybe it never quite gets
all the way to the boundary... In fact, we’ll see that the process does reach the boundary,
and we’ll even find the expected time to absorption as a function of the starting state.
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(6.9) Figure. Two simulated Wright-Fisher sample paths.

6.2 A calculation with diffusions

Several interesting quantities associated with diffusions can be calculated by solving a dif-
ferential equation, and, in fact, this can often be done explicitly.

For example, here’s a problem. Consider a diffusion on the state space I, having
infinitesimal parameters µ = µ(x) and σ2 = σ2(x). Note that we are considering a
time-homogeneous diffusion: the functions µ and σ2 depend only on x, and not on t.
Choose two points a and b in the interior of I. Consider starting the diffusion {X(t)} off
at some x ∈ (a, b) at time 0 and letting the diffusion run along until the random time T at
which it first attains the value a or the value b. Let g(·) be a “cost function” that gives the
rate g(x) at which “cost” accrues per unit time when the diffusion X is in the state x, so

that the total cost of running the diffusion until time T is the random variable
∫ T
0 g(Xt) dt.

The question we are asking is: what is the expected cost Ex[
∫ T
0 g(Xt) dt]? [[Notation: here

the superscript “x” on the “E” indicates that we are assuming that X0 = x.]] For exam-
ple, a simple but important special case to consider is when the function g is the constant
g(x) ≡ 1, in which case

∫ T
0 g(Xt) dt = T , so that our problem is to find Ex(T ).

Defining w(x) = Ex[
∫ T
0 g(Xt) dt], our question is answered by the following result.

(6.10) Claim. The function w satisfies the differential equation

(6.11) µ(x)w′(x) +
1

2
σ2(x)w′′(x) = −g(x)

with the boundary conditions w(a) = w(b) = 0.
You may be getting the idea that the whole area of diffusion processes is intimately con-
nected with differential equations; this is another example of that connection. We would
expect the solution of the second-order equation (6.11) to involve two arbitrary constants;
presumably the two boundary conditions w(a) = 0 and w(b) = 0 will allow us to specify
the values of these constants.

Let’s do a very simple example before justifying the claim. This is a problem that we
have done before. Consider a standard Brownian motion [[which we have agreed starts at
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0]], let a < 0 < b, and as above let T = inf{t : Wt = a or Wt = b}. Our question is:
what is E(T )? The idea we use is familiar by now: to solve our particular given problem,
we imbed it in a whole family of similar problems and solve them all at once. Define
w(x) = Ex(T ) = E[T |W (0) = x]. As mentioned above, the appropriate cost function here
is simply g(x) = 1 for all x. Also, µ(x) ≡ 0 and σ2(x) ≡ 1. So (6.11) becomes 1

2w
′′(x) = −1,

which has general solution w(x) = −x2 + c1x+ c2. Thus, clearly the solution satisfying the
boundary conditions w(a) = 0 = w(b) is w(x) = (x−a)(b−x). This is a nice, handy result.
It’s interesting to stick in a couple of numbers. For example, if −a = b = 100 then the
Brownian motion takes a long time E(T ) = 10, 000 on the average to escape the interval
(a, b). On the other hand, if −a = b = .01 then the Brownian motion just shoots out in the
tiny average time E(T ) = .0001! This is another reflection of the fact that Brownian paths
are very “steep” over short intervals of time.

Now in support of the claim, let us see where (6.11) comes from. [[The boundary
conditions seem pretty clear.]] Here is a heuristic derivation. Begin with

w(x) = Ex
{∫ h

0
g(Xt) dt+

∫ T

h
g(Xt) dt

}
(6.12)

= hg(x) + Ex
{∫ T

h
g(Xt) dt

}
+ o(h).

We are imagining that h is extremely tiny, so that we can be virtually certain that T > h.
Using the basic property EY = E{E(Y | Z)} of conditional expectation,

Ex
{∫ T

h
g(Xt) dt

}
= Ex

[
Ex

{∫ T

h
g(Xt) dt

∣∣∣Xh

}]
(6.13)

= Ex
[
Ex

{∫ T

h
g(Xt) dt

∣∣∣Xh, T > h
}]

+ o(h)

= Ex
[
w(Xh)

]
+ o(h).

The last equality follows from the Markov property: given that Xh = xh and T > h, the
expected value of

∫ T
h g(Xt) dt is the same as the expected cost of running the diffusion until

time T starting at time 0 in the state xh, which is w(xh). However,

Ex
[
w(Xh)

]
= Ex

[
w(x) + w′(x)(Xh − x) +

1

2
w′′(x)(Xh − x)2

]
+ o(h)(6.14)

= w(x) + w′(x)µ(x)h+
1

2
w′′(x)σ2(x)h+ o(h).

Substituting (6.14) into (6.13), and then (6.13) into (6.12) gives

w(x) = hg(x) + w(x) + w′(x)µ(x)h+
1

2
w′′(x)σ2(x)h+ o(h),

or [
µ(x)w′(x) +

1

2
σ2(x)w′′(x) + g(x)

]
h = o(h),

which implies that µ(x)w′(x) + 1
2σ

2(x)w′′(x) + g(x) = 0, which is (6.11).
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6.3 Infinitesimal parameters of a function of a diffusion

Here is an example of the kind of question we’ll consider. Suppose {Xt} is a Brownian
motion having µX(x) ≡ µ and σ2

X(x) ≡ σ2, say, and define the geometric Brownian motion
Yt = eXt . Our question is: What are the infinitesimal parameters µY (·) and σ2

Y (·) of the Y
process? This type of question is answered by the following result.

(6.15) Proposition. Suppose X is a (µX(·), σ2
X(·)) diffusion. Let f be a strictly monotone

function that is “smooth enough” [[e.g., twice continuously differentiable]], and define Yt =
f(Xt). Then Y is a diffusion having infinitesimal parameters

µY (y) = µX(x)f ′(x) +
1

2
σ2
X(x)f ′′(x)

and
σ2
Y (y) = [f ′(x)]2σ2

X(x),

where x = f−1(y).
Taylor expansions underlie just about everything we will do with diffusions. One exam-

ple is the derivation of (6.11); see (6.14). Deriving the formulas in the above Proposition
provides another example. In fact, we have

E[Yt+h − Yt | Yt = y] = E[f(Xt+h)− f(x) | Xt = x] recall x = f−1(y)

= E[f ′(x)(Xt+h − x) +
1

2
f ′′(x)(Xt+h − x)2 | Xt = x] + o(h)

= f ′(x)µX(x)h+
1

2
f ′′(x)σ2

X(x)h+ o(h),

so that

µY (y) = µX(x)f ′(x) +
1

2
σ2
X(x)f ′′(x).

Similarly,

E[(Yt+h − Yt)2 | Yt = y] = E{[f ′(x)]2[Xt+h − x]2 | Xt = x}+ o(h)

= [f ′(x)]2σ2
X(x)h+ o(h),

so that
σ2
Y (y) = [f ′(x)]2σ2

X(x).

To return to the example of geometric Brownian motion, where µX(x) ≡ µ, σ2
X(x) ≡ σ2,

and y = ex = f(x) = f ′(x) = f ′′(x), we have

µY (y) = µy +
1

2
σ2y.

and
σ2
Y (y) = y2σ2.
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6.4 Kolmogorov’s backward and forward equations

Our aim here is to investigate the probability transition structure of diffusions. Recall that
for Markov chains, the probability transition rule was specified by giving a matrix P , whose
job is to tell us how to calculate the distribution at time n+ 1 in terms of the distribution
at time n: just multiply π(n + 1) = π(n)P . This formula answers the question: given the
distribution of the state now, how does one compute the distribution at the next time? In
continuous time, there is no “next time” after t, but we can hope to say how to calculate
the distribution of the process state a tiny infinitesimal time later, so to speak. That is,
the probability transition rule will give the rate of change, per unit time, of the probability
density function of the state. This is done by a partial differential equation. Why partial?
An ordinary differential equation describes a function of time f : R→ R by giving its rate
of change f ′(t). The derivative says approximately how to compute the number f(t+h) in
terms of f(t), if h is small. That is not what is happening in our case—here, at each time,
we are concerned with a whole function, namely, the probability density function at time t.
In other words, we are concerned with a function of two variables: f(t, x) is the probability
density at state x at time t. A partial differential equation describes such an f by giving the
rate of change (∂/∂t)f(t, x). Such an equation describes the time evolution of the function
f(t, ·)—for small h the time derivative (∂/∂t)f(t, x) tells us approximately how to compute
the function f(t+h, ·) in terms of the function f(t, ·). The partial differential equation gives
this time derivative (∂/∂t)f(t, x) in terms of the function f(t, ·), and possibly its derivatives
(∂/∂x)f(t, x), (∂2/∂x2)f(t, x), and so on.

Let X be a diffusion with infinitesimal mean and variance functions µ(·) and σ2(·). For
the “backward” equation, fix a state y, and define the function f(t, x) to be the density of
Xt evaluated at y, given that X0 = x; that is,

f(t, x) = fXt
(y | X0 = x).

Kolmogorov’s backward equation says that

∂tf(t, x) = µ(x)∂xf(t, x) +
1

2
σ2(x)∂xxf(t, x).

For the “forward” equation, fix an initial probability density for X0, and define g(t, y) to
be the density of Xt evaluated at y. The forward equation describes the evolution of this
density over time:

∂tg(t, y) = −∂y[µ(y)g(t, y)] + ∂yy

[
1

2
σ2(y)g(t, y)

]
.

You can understand the names for these equations if you think of x as the “backward”
variable and y as the “forward” variable. These names make sense since x describes the
state of the process way back at time 0, while the variable y refers to the value of Xt.

As promised, these are partial differential equations, but don’t let that scare you! For
example, for driftless Brownian motion the forward equation becomes

(6.16) ∂tg(t, y) =
1

2
∂yyg(t, y).
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This equation gives a rather intuitive description of how the density evolves. For example,
suppose that at time t the probability density g(t, ·) happens to look like this:

�� �� �� � � �

���

���

���

���
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���

(6.17) Figure. Density at time t for a Brownian motion.
[[Of course, this would not happen with standard Brownian motion started out at state
0 at time 0, but we could arrange it by starting the Brownian motion off with an initial
density that is bimodal.]] What does the probability density g(t+h, ·) look like a short time
h later? Of course, if h is small we expect g(t + h, ·) to look similar to g(t, ·). But the
density g(t+ h, ·) should be slightly more “spread out” than g(t, ·). That is, over the time
interval [t, t + h], the peaks of the density g(t, ·) should flatten out some by decreasing in
height, while the valleys of g(t, ·) should compensate by increasing in height. The peaks
are characterized by a negative value of the second derivative ∂yyg(t, y). The equation
(6.16) tells us that at such a point y, the time derivative ∂tg(t, y) will be negative, so that
g(t+h, y) will indeed be less than g(t, y): the peaks decrease in height. On the other hand,
for states y in a valley of g(t, y), where the second derivative ∂yyg(t, y) is positive, (6.16)
tells us that ∂tg(t, y) is positive, so that g(t+h, y) > g(t, y). In the example pictured above,
a short time later the density will have changed as shown in the next figure, in which g(t, ·)
and g(t+ h, ·) are plotted in dashed and solid lines, respectively.
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(6.18) Figure. Density at time t+ h for the same Brownian motion.
Let us now derive the backward and forward equations. We’ll begin with the backward

equation, which will then be used in the derivation of the forward equation. The backward
equation actually applies to more than just the transition density f(x, t); it describes a
more general class of functions that includes f . To work at this level of generality, let ρ be
a real-valued function defined on the state space of the diffusion. Define u(x, t) = Exρ(Xt);
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for example, if ρ is interpreted as a “reward” function, then u(x, t) is the conditional
expected reward if we stop the diffusion at time t, given that it started in state x at time
0. We will derive a backward equation satisfied by u. We have

u(x, t+ h) = Exρ(Xt+h) = Ex [Exρ(Xt+h | Xh)] = Exu(Xh, t).

So

∂tu(x, t) = lim
h↓0

1

h
[Exu(Xh, t)− u(x, t)]

= lim
h↓0

1

h
Ex

[
∂xu(x, t)(Xh − x) +

1

2
∂xxu(x, t)(Xh − x)2 + o(h)

]

= µ(x)∂xu(x, t) +
1

2
σ2(x)∂xxu(x, t)

This is the backward equation for u.
To specialize this to the transition density f , let us think of y as fixed but arbitrary for

the moment, and choose the function ρ to be the indicator function ρ(z) = 1{z ≤ y}. Then

u(x, t) = Exρ(Xt) = P x{Xt ≤ y} =: F (t, x, y),

so that we have shown that

∂tF (t, x, y) = µ(x)∂xF (t, x, y) +
1

2
σ2(x)∂xxF (t, x, y).

Taking ∂y of both sides and noting that ∂yF (t, x, y) is the function f(t, x) defined above
gives the backward equation for f .

Next, we will use the backward equation in a derivation of the useful forward equation
— “Life can only be understood backwards, but it has to be lived forwards,” according
to Kierkegaard. Denote the density of Xt by v(·, t) for all t ≥ 0. Our question is to find
the equation governing evolution over time of the function v. Retain the definition of the
function u(y, s) = Eyρ(Xs) from before, where ρ is some given function that we assume to
be smooth [[twice continuously differentiable say]] with compact support [[that is, ρ(x) = 0
for x outside some bounded interval]]. Using the assumed time-homogeneity of the diffusion
X, notice that

u(y, s) = E[ρ(Xs+t) | Xt = y].

So we have
∫
u(y, s)v(y, t) dy =

∫
E[ρ(Xs+t) | Xt = y]P{Xt ∈ dy} = Eρ(Xs+t).

Thus, we have shown that
∫
u(y, s)v(y, t) dy is a function of (s + t), from which it follow

that

∂s

[∫
u(y, s)v(y, t) dy

]
= ∂t

[∫
u(y, s)v(y, t) dy

]
,

or

(6.19)

∫
[∂su(y, s)]v(y, t) dy =

∫
u(y, s)[∂tv(y, t)] dy.
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But we know what ∂su(y, s) is, by the backward equation! So the left side of (6.19) is

(6.20)

∫
µ(y)[∂yu(y, s)]v(y, t) dy +

1

2

∫
σ2(y)[∂yyu(y, s)]v(y, t) dy.

Integration by parts in the first of the two integrals in (6.20) gives

∫
µ(y)[∂yu(y, s)]v(y, t) dy = −

∫
u(y, s)[∂yµ(y)v(y, t)] dy;

we have not written the difference of the “boundary terms” limy→±∞ u(y, s)µ(y)v(y, t) since
these two limits will both be zero under mild assumptions: in fact, u(y, s) will approach
zero because we have assumed ρ to have compact support, and we would also expect v(y, s)
to approach zero, as most good densities do. Similarly, integration by parts twice gives

1

2

∫
σ2(y)[∂yyu(y, s)]v(y, t) dy =

1

2

∫
u(y, s)[∂yyσ

2(y)v(y, t)] dy

for the second term in (6.20). Thus, by substituting the last two displays into (6.20) and
then into (6.19),

∫
u(y, s)

{
−∂y[µ(y)v(y, t)] +

1

2
∂yy[σ

2(y)v(y, t)]

}
dy =

∫
u(y, s)[∂tv(y, t)] dy,

which in turn becomes
∫
ρ(y)

{
−∂y[µ(y)v(y, t)] +

1

2
∂yy[σ

2(y)v(y, t)]

}
dy =

∫
ρ(y)[∂tv(y, t)] dy

by letting s ↓ 0. Finally, by observing that the last display holds for all ρ, where we have
allowed ρ to be quite an arbitrary function, we obtain the forward equation for v

(6.21) ∂tv(y, t) = −∂y[µ(y)v(y, t)] +
1

2
∂yy[σ

2(y)v(y, t)].

Of the two Kolmogorov equations, in a sense the forward equation gives the more natural
description of the evolution of the process, being an equation for the density as a function
of the “forward” variable y, and holding the initial distribution fixed. In contrast, the
backward equation keeps the forward variable y fixed, and describes the density at time
t as a function of the “backward” variable x that gives the initial state of the process at
time 0. An advantage of the backward equation is that it requires weaker assumptions
than the forward equation. You can get a hint of this just by looking at the form of the
two equations: notice that the functions µ and σ appear inside derivatives in the forward
equation, while they do not in the backward equation. So one might expect that the forward
equation requires more smoothness assumptions on µ and σ.
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6.5 Stationary distributions

The forward equation can be used to find stationary distributions. Suppose π(·) is a sta-
tionary density for the diffusion X. This means that if we start the diffusion in the density
π, then it stays in π. Consequently, the function

v(t, y) = π(y)

should satisfy the forward equation (6.21), so that π satisfies the ordinary differential equa-
tion

(6.22) 0 = − d

dy
[µ(y)π(y)] +

1

2

d2

dy2
[σ2(y)π(y)].

Thus, we can solve for stationary distributions by solving ordinary differential equations.

(6.23) Example [Diffusion in a potential well]. Let ψ : R → R be a “potential
function”; we could think of ψ as a function that we want to minimize. Assume that ψ
has a derivative [[almost everywhere at least]] and ψ(y) → ∞ as |y| → ∞. A deterministic
gradient descent method for minimizing ψ could be described as follows. Say we are at
position Xt at time t. Then we evaluate the gradient [[i.e. derivative]] ψ′(Xt) and take a
small step to move to the position Xt − ψ′(Xt)∆t at time t + ∆t. Letting ∆t → 0, we
obtain the continuous time model

dXt

dt
= −ψ′(Xt).

In the tiny time interval dt, the increment in the function X is dXt = −ψ′(Xt) dt.
This was a model of a deterministic algorithm. Suppose that, in the spirit of simulated

annealing, we add some randomness to the method in the hope that this will prevent
our getting stuck in local minima. We’ll model this by taking X to be a diffusion with
infinitesimal drift function µ(x) = −ψ′(x) and constant infinitesimal variance σ2(x) ≡ σ2,
say. Incidentally, we can write this symbolically in the form

dXt = −ψ′(Xt) dt+ σ dWt ;

more about this later. Let us find the stationary distribution of the processX. The equation
(6.22) becomes

0 =
d

dy
[ψ′(y)π(y)] +

σ2

2

d2

dy2
[π(y)],

or

π′(y) +
2

σ2
ψ′(y)π(y) = B

for some constant B. Introducing the integrating factor exp[(2/σ2)ψ(y)] gives

(
e(2/σ

2)ψ(y)π(y)
)′

= Be(2/σ
2)ψ(y),
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so that

π(y) = e−(2/σ2)ψ(y)

[
B

∫ y

0
e(2/σ

2)ψ(x) dx+ C

]
.

[[Notice that the lower limit 0 in the integral could equally well be any number; a change in
this limit would simply be compensated by a corresponding change in the value of C. This
is why many people write “

∫ y
e(2/σ

2)ψ(x) dx” here—the lower limit does not matter.]] Our
assumption that ψ(y)→∞ as |y| → ∞ clearly implies that the last integral approaches ∞
as y → ∞ and −∞ as y → −∞. Therefore, since π(y) must be nonnegative for all y, we
must have B = 0. So we have found that

π(y) = Ce−(2/σ2)ψ(y)

where C is the normalizing constant that makes
∫ ∞
−∞ π(y) dy = 1.

For example,

1. If ψ(y) = (1/2)y2 (so that µ(y) = −y) and σ2 = 2, then π(y) = Ce−y
2/2. This is

the standard Ornstein-Uhlenbeck process, and we have found that it has a standard
normal distribution as its stationary distribution.

2. If ψ(y) = |y| (so that µ(y) is -1 when y is positive and +1 when y is negative) and
σ2 = 2, then π(y) = Ce−|y|.

(6.24) Exercise. Can you find a diffusion that has a standard Cauchy distribution as its
stationary distribution?

6.6 Probability flux for diffusions

Think of the probability P{Xt < x,Xt+h > x} as the flux from the set (−∞, x) to the set
(x,∞) over the time interval [t, t + h]; that is, it is the flux across x “from left to right”.
Similarly, the probability P{Xt > x,Xt+h < x} is the flux across x in the other direction,
from right to left. We are interested in the net flux across x, defined to be the difference

P{Xt < x,Xt+h > x} − P{Xt > x,Xt+h < x}.

For example, this will be 0 for a stationary process. Let v(t, ξ) denote the density of Xt

evaluated at the state ξ, so that

P{Xt ∈ dξ} = v(ξ, t) dξ.

For a small positive h, let ∆(ξ, y) denote the conditional density of the increment Xt+h−Xt,
given that Xt = ξ, evaluated at y; that is,

P{Xt+h −Xt ∈ dy | Xt = ξ} = ∆(ξ, y) dy.
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Then

P{Xt < x,Xt+h > x} =

∫ ∞

y=0

∫ x

ξ=x−y
P{Xt+h −Xt ∈ dy | Xt = ξ}P{Xt ∈ dξ}

=

∫ ∞

y=0

∫ x

ξ=x−y
v(t, ξ)∆(ξ, y) dξ dy.

Similarly,

P{Xt > x,Xt+h < x} =

∫ 0

y=−∞

∫ x−y

ξ=x
v(t, ξ)∆(ξ, y) dξ dy.

Thus, the net flux is given by
∫ ∞

y=−∞

∫ x

ξ=x−y
v(t, ξ)∆(ξ, y) dξ dy.

Consider the integrand v(t, ξ)∆(ξ, y) as a function of ξ. For small h, only values of ξ that
are very near to x will contribute significantly. This motivates a Taylor expansion about
ξ = x, which we will do without worrying about being rigorous. This gives

v(t, ξ)∆(ξ, y) = v(t, x)∆(x, y) + {∂xv(t, x)∆(x, y)} (ξ − x) + · · · ,

so that

P{Xt < x,Xt+h > x} − P{Xt > x,Xt+h < x}

=

∫ ∞

y=−∞

∫ x

ξ=x−y

[
v(t, x)∆(x, y) + {∂xv(t, x)∆(x, y)} (ξ − x) + · · ·

]
dξ dy

=

∫ ∞

y=−∞

[
yv(t, x)∆(x, y)− y2

2
{∂xv(t, x)∆(x, y)}+ · · ·

]
dy

= v(t, x)

∫ ∞

−∞
y∆(x, y) dy − 1

2
∂x

{
v(t, x)

∫ ∞

−∞
y2∆(x, y) dy

}
+ · · ·

= v(t, x)µ(x)h− 1

2
∂x

{
v(t, x)σ2(x)h

}
+ o(h).

To convert this into a rate of flux per unit time, divide by the time increment h. Then
letting h tend to 0 gives an instantaneous rate at time t. Thus, the rate of net probability
flux across x at time t is given by

v(t, x)µ(x)− 1

2
∂x

{
v(t, x)σ2(x)

}
.

You should think about the form of this expression to make sure it makes qualitative
sense. For example, the first term is consistent with the obvious thought that increasing
µ(x) should increase the net flux across x from left to right. To think about the second
term, suppose µ(x) were 0. Then, for example, if σ2(·) were constant, then the flux at x
would be determined by the derivative ∂xv(t, x). For example, if the density were increasing
through x, so that it is larger to the right of x than to the left, there would be a negative
probability flux—a net flux to the left—which makes sense. The qualitative effect of the
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σ2 function also makes sense: for example, if σ2(·) were increasing through x, so that is it
bigger to the right than to the left of x, this would again contribute a net flux to the left.

This probability flux allows us to recover Kolmogorov’s forward equation. In fact,
the net flux has a simpler alternative expression, found by adding and subtracting the
probability P{Xt < x,Xt+h < x}:

P{Xt < x,Xt+h > x} − P{Xt > x,Xt+h < x}
= P{Xt < x,Xt+h > x}+ P{Xt < x,Xt+h < x}

−P{Xt < x,Xt+h < x} − P{Xt > x,Xt+h < x}
= P{Xt < x} − P{Xt+h < x}.

Thus, we have found that

P{Xt+h < x} − P{Xt < x} = −v(t, x)µ(x)h+
1

2
∂x

{
v(t, x)σ2(x)h

}
+ o(h),

so that

∂tP{Xt < x} = −v(t, x)µ(x) +
1

2
∂x

{
v(t, x)σ2(x)

}
.

Finally, differentiating with respect to x gives the familiar forward equation

∂tv(t, x) = −∂x {v(t, x)µ(x)}+
1

2
∂xx

{
v(t, x)σ2(x)

}
.

6.7 Quadratic Variation of Brownian Motion

A very important property of the standard Brownian motion process W is that its
“quadratic variation” over the interval [0, t] is t, with probability 1. This property is
fundamental to stochastic integration. Soon we will see that the formula

∫ t

0

{
[dW (s)]2

}
= t

makes some sort of sense. Since we also have
∫ t
0 ds = t for all t, it seems natural to write

[dW (s)]2 = ds.

In fact, this is the essence of “Ito’s formula,” to be discussed below: Ito’s formula just
involves doing a few terms of a Taylor series expansion and changing each [dW (t)]2 that
arises into a dt.

We will start with a definition of quadratic variation for an ordinary, nonrandom func-
tion f . Then we will look at the quadratic variation of a typical sample path of Brownian
motion.

(6.25) Definition. Let f be a real-valued function defined at least on the interval [0, t].
The quadratic variation qt(f) of f over [0, t] is defined to be

qt(f) = lim
n→∞

2n∑

k=1

[
f

(
kt

2n

)
− f

(
(k − 1)t

2n

)]2
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if the limit exists (otherwise the quadratic variation is undefined).
The concept of quadratic variation is not very interesting for most of the nice, tame

functions we think about every day, as the next result shows.

(6.26) Fact. If f is continuous and of bounded variation, then qt(f) = 0 for all t.

Proof: For any given t, observe that

2n∑

k=1

[
f

(
kt

2n

)
− f

(
(k − 1)t

2n

)]2

≤
{

max
1≤j≤2n

∣∣∣∣f
(
jt

2n

)
− f

(
(j − 1)t

2n

)∣∣∣∣

} 2n∑

k=1

∣∣∣∣f
(
kt

2n

)
− f

(
(k − 1)t

2n

)∣∣∣∣ .

However, the maximum over j approaches 0 as n→∞, since the continuity assumed of the
function f on the closed interval [0, t] implies that f is uniformly continuous there. The
last sum over k is bounded as n→∞; this is the meaning of bounded variation. Thus, the
limit in the definition (6.25) is 0.

Thus, for example, any continuous function f that we can draw has zero quadratic variation
on [0, t]: the finite total length of the graph is greater than the sum of the increments in
the function, which implies the function is of bounded variation.

The quadratic variation concept comes alive in the sample paths of Brownian motion
and related processes. For example, sample paths of standard Brownian motion have the
interesting property that, despite their continuity, with probability 1 they have quadratic
variation t on the interval [0, t]. Thus, in particular, by the previous fact, of course the
paths of Brownian motion must have infinite variation with probability 1.

To save writing, let ∆Wk,n denote the increment

∆Wk,n = W

(
kt

2n

)
−W

(
(k − 1)t

2n

)

and let Qn =
∑2n

k=1(∆Wk,n)
2. Then here is our main result about quadratic variation.

(6.27) Theorem. With probability 1, Qn → t as n → ∞. Also, Qn → t in mean square,
that is, E[(Qn − t)2]→ 0.

Proof: The proof is based on simple calculations of EQn and VarQn.

EQn =
2n∑

k=1

E
[
(∆Wk,n)

2
]

=
2n∑

k=1

Var(∆Wk,n) =
2n∑

k=1

(
t

2n

)
= t.

That’s reassuring. Next, using the independence of the increments ∆Wk,n for different
values of k,

Var(Qn) =
2n∑

k=1

Var
[
(∆Wk,n)

2
]

= 2nVar
[
N(0, t/2n)2

]

= 2nVar
[
(t/2n)N(0, 1)2

]
= t22−n Var

[
N(0, 1)2

]
︸ ︷︷ ︸

2

→ 0 as n→∞.
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This is already enough to show mean square convergence:

E[(Qn − t)2] = [E(Qn − t)]2 + Var(Qn − t)→ 0 as n→∞.

To prove almost sure convergence, let ǫ > 0. By Chebyshev,

P{|Qn − t| > ǫ} ≤ VarQn
ǫ2

=
t2

ǫ22n−1
,

which implies that
∑

n P{|Qn − t| > ǫ} <∞, which, by the Borel-Cantelli Lemma implies
that P{|Qn − t| > ǫ infinitely often} = 0. Thus, P{|Qn − t| > ǫ just finitely often} = 1, so
that, since ǫ was arbitrary, Qn → t almost surely.

There are two remarkable statements contained in this result. The first is that the
quadratic variation of Brownian motion is positive, not 0. Second, all Brownian sample
paths (up to a set of probability 0) have precisely the same quadratic variation over every
interval. Although different Brownian paths obviously will look very different, they have
exactly the same quadratic variation.

(6.28) Exercise. Let X(t) = µt + σW (t) be a (µ, σ2)-Brownian motion. Show that, with
probability 1, the quadratic variation of X on [0, t] is σ2t.
This has an interesting implication in terms of statistical estimation. Suppose that we are
observing a (µ, σ2)-Brownian motion X and we want to estimate µ and σ2. If we observe
the X process for a very long time T , we can estimate the drift µ well by its slope X(T )/T .
This estimator gets better as T increases, since X(t)/t → µ as t → ∞. Of course there is
always some error in this estimator; this error just gets smaller as the observation time T
increases. However, in contrast, for estimating σ2, it is enough to observe the X process
over any interval of time (arbitrarily short), and we can infer σ2 exactly ! The reason for this
is: by the previous exercise the quadratic variation of X over an interval [0, t] is σ2t with
probability 1. Therefore, since the quadratic variation over an interval is exactly determined
by the path just over that interval, σ2 is determined by the path over any interval. Thus,
we can estimate the variance parameter of a Brownian motion exactly [[or at least as closely
as we desire, depending on how much calculation we are willing to do]] from observing a
sample path over any time interval, arbitrarily short.

6.8 The Idea of Stochastic differential equations

Since differential equations play such an important role in modelling and analyzing deter-
ministic phenomena, it is natural to contemplate a stochastic analog of differential equa-
tions, which we would hope could do the same for phenomena in which randomness is
important.

So what is a stochastic differential equation (SDE)? Let’s start with a couple of thoughts
about ordinary, deterministic, first-order differential equations, which look something like
this:

dXt

dt
= f(Xt, t).
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It is interesting to observe that such equations have a kind of “Markov-like” property:
in generating a solution curve of a differential equation on a computer, for example, we
just have to know the value of X at time t in order to perform the calculation X(t +
∆t)

.
= X(t) + f(X(t), t)∆t. Given X(t), all past values X(s) for s < t are superfluous for

determining future behavior. The Markovishness of this last statement is apparent! On
the other hand, second order equations do not have this property. In solving a second
order differential equation numerically, one must use X(t −∆t) and X(t) to approximate
X(t+ ∆t). However, a familiar device in differential equations is to convert a second order
equation for X into a first order differential equation for the vector (X Ẋ). Thus, by
expanding the “state description” to include the information Ẋ(t) as well as X(t), we may
convert the “non-Markov” process X(t) into the “Markov process” (X(t) Ẋ(t)). This is
generally true of Markov (stochastic) processes: if we include enough information in the
state, we can get the process to be Markov. However, such augmentation of the state space
is seldom practical.

A simple example of a deterministic differential equation is dX/dt = rX, which might
model exponential growth of a population. If we wanted to model a “noisy” growth rate,
we might propose an equation of the form

dX(t)

dt
= [r +N(t)]X(t),

where N is a noise process. Here {N(t), t ≥ 0} is a stochastic process, and hence so is
{X(t), t ≥ 0}. More generally, we can consider equations of the form

dXt

dt
= µ(Xt, t) + σ(Xt, t)Nt.

What sorts of assumptions should we make about the noise process? Here are some
that seem desirable in many applied contexts. They are the characteristics of so-called
“Gaussian white noise.”

1. {Nt, t ≥ 0} is a stationary Gaussian process.

2. ENt = 0.

3. Ns is independent of Nt for s 6= t.

There is nothing really to the second assumption; it’s purely for convenience. The third
assumption is very strong, but seems reasonable as an idealization of a process in which
knowing the value at any one time gives very little information concerning values at other
times.

Rewriting our equation as

dXt = µ(Xt, t) dt+ σ(Xt, t)Nt dt

=: µ(Xt, t) dt+ σ(Xt, t) dVt

where we have let {Vt, t ≥ 0} be a process having increments dVt = Nt dt, we see that the
process {Vt, t ≥ 0} must be a Gaussian process with stationary independent increments.
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There is only one sort of process satisfying these requirements: {Vt, t ≥ 0} must be a
Brownian motion. So let’s rewrite our equation one more time:

dXt = µ(Xt, t) dt+ σ(Xt, t) dWt,

where as usual {Wt, t ≥ 0} is a standard Brownian motion.
There is one serious problem with all of this: the paths of {Wt, t ≥ 0} are not differen-

tiable! So what could we mean by dWt? In fact, it is a nontrivial problem to make sense of
this. The theory we will discuss later defines the previous equation to be just a convenient
and suggestive way of writing the integrated form

Xt −X0 =

∫ t

0
µ(Xs, s) ds+

∫ t

0
σ(Xs, s) dWs.

Now, do we know what this equation means? It turns out that the first integral presents no
conceptual problems; it can be defined for each fixed ω as just an ordinary Riemann integral;
that is, it is just the random variable (i.e., function of ω) ω 7→

∫ t
0 µ(Xs(ω), s) ds. The second

integral is a different story. It is natural first to try the idea that worked above. That is,
consider defining the second integral to be the random variable ω 7→

∫ t
0 σ(Xs(ω), s) dWs(ω).

By this we would presumably mean that the value of the integral at ω is the ordinary, non-
stochastic, Riemann-Stieltjes integral

∫ t
0 σ(Xs(ω), s) dWs(ω). However, as we will discuss

in more detail later, the last integral is generally not well-defined for the sorts of stochastic
processes {Xt, t ≥ 0} that we want to consider. This is the sticking point that causes the
definition of the stochastic integral to be such a long story; stochastic integrals need to
be given a special definition that is not an obvious extension of definitions that apply to
deterministic functions.

The issues here are in a sense analogous to some issues concerning the δ function. For
most practical purposes, one can think heuristically of the δ function δ(·) as a “function”
satisfying δ(x) = 0 for all x 6= 0 and

∫ ∞
−∞ δ(x) dx = 1. Of course, no such function exists,

but that does not stop people from using this idea to good advantage in many situations.
There is a even a “calculus” of the δ function. These rules for manipulating the δ function
are convenient and useful for automating and expediting certain routine calculations — in
fact, they help make such calculations routine. However, when the δ function manipulator
inevitably begins to wonder whether the manipulations are justified or even what they
really mean, or if any sort of nonstandard situation arises, then heuristic concepts and
manipulation rules may not be enough. Fortunately, in such circumstances one can turn
to a piece of mathematics that puts the δ function and δ calculus on a firm mathematical
foundation. As it turns out, the theory says that the δ function has rigorous meaning only
when it is inside an integral, and the manipulation rules of the δ calculus are really just
convenient shorthand for longer statements involving integrals. Stochastic calculus puts
“white noise” on a firm mathematical foundation in an analogous manner. White noise is
a useful heuristic concept, but does not exist in the usual sense of a Gaussian stochastic
process. The rules of stochastic calculus, which tell us how to manipulate “stochastic
differentials” involving white noise, are really shorthand for statements involving stochastic
integrals. There is a body of mathematical theory that gives stochastic integrals a rigorous
meaning.
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Stochastic calculus is quite a technical subject, and a rigorous mathematical treatment
is not easy. The typical path for a student interested in learning stochastic calculus is
this. First take a course in measure-theoretic probability. Then take a course in stochastic
calculus. In such a course, typically a good fraction of the semester is required just to
define a stochastic integral. By the time the definition is reached, the class is confused and
exhausted, and has forgotten why they wanted to do any of this in the first place. By the
end of the semester, only a fortunate few are not completely lost. So, still intent on finding
out what stochastic calculus is about, the student takes the class again. And the process
iterates.

Now, contrary to the dreary picture just presented, it is not the case that the purpose
of stochastic calculus is to make your life miserable; in fact, ideally it should make your life
easier. The original purpose of a calculus is to help you calculate. So let’s discuss a bit of
stochastic calculus at a basic level, without worrying about being mathematically rigorous.

6.9 Simple Examples of Stochastic Calculus and Ito’s For-
mula

Let’s start just by getting an idea of what some simple manipulations of stochastic calculus
look like.

A diffusion {X(t), t ≥ 0} with infinitesimal parameters µ(x, t) and σ2(x, t) has stochastic
differential

dX = µ(X, t) dt+ σ(X, t) dW.

Thus, turning this around, it is useful to know the stochastic differential of a diffusion, since
from it we can simply read off the infinitesimal parameters of the diffusion.

A version of Ito’s formula, one of the fundamental results of stochastic calculus, says
that if X is a stochastic process having stochastic differential dX and f is a suitably nice
function, then the process Y := f(X) has stochastic differential

dYt = f ′(Xt)dXt +
1

2
f ′′(Xt)(dXt)

2,

where (dXt)
2 is computed using the rules

1. (dt)[d(anything)] = 0,

2. (dWt)
2 = dt.

Note that the second rule makes some sense heuristically from what we showed about the
quadratic variation of standard Brownian motion.

In more general situations, such as when Y may be of the form Y = f(X, t), Ito’s formula
says to compute dY by first doing a Taylor expansion, keeping terms up to quadratic order
in the various differentials, and then simplifying the result by using the rules above.

(6.29) Example. Let’s redo the geometric Brownian motion example we did earlier. That
is, consider the Brownian motion with drift Xt = µt+σWt, which has stochastic differential
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dXt = µdt + σ dWt. Define the geometric Brownian motion Yt = eXt . What are the
infinitesimal mean and variance functions of the diffusion Y ?

Here Y = f(X) = eX , so that f ′(X) = f ′′(X) = eX = Y . Also,

(dXt)
2 = (µdt+ σ dWt)

2

= µ2(dt)2 + 2µσ(dt)(dWt) + σ2(dWt)
2

= 0 + 0 + σ2 dt.

Thus,

dYt = f ′(Xt) dXt + (1/2)f ′′(Xt) (dXt)
2

= Yt(µdt+ σ dWt) + (1/2)Ytσ
2 dt

= Yt[µ+ (1/2)σ2] dt+ σYt dWt,

so that Y is a diffusion process having infinitesimal parameters µY (y) = [µ+(1/2)σ2]y and
σ2
Y (y) = σ2y2.

The term Ito process refers to a stochastic process that has a stochastic differential of
the form

dZt = Xt dWt + Yt dt

where the processes X and Y satisfy some conditions: roughly,

1. X and Y are adapted; that is, Xt and Yt are determined by the portion of the
Brownian path W t

0 = {Ws : s ≤ t} up to time t.

2. Conditions that assure that X and Y are “not too big”.

(6.30) Example. There are simple Ito processes that are not diffusions. For example,
suppose Zt = X2

t where Xt = µt+ σWt. Then by Ito’s formula,

dZ = 2X dX + (dX)2

= 2X(µdt+ σ dW ) + σ2 dt

= (2σX)dW + (2µX + σ2)dt.

Now we can see that Z is not a diffusion. In fact, if it were, then we could read off its
infinitesimal mean and variance parameters from its stochastic differential. Let’s try to do
so and see where the trouble arises. The infinitesimal variance part looks OK: σ2

Z(z) =
(2σX)2 = 4σ2z. However, our candidate for an infinitesimal mean parameter, 2µx + σ2,
cannot (unless µ = 0) be expressed as a function of z := x2, since x is not a function of z.
In fact, Z is not even a Markov process. Given only that Zt = z, say, of course we cannot
tell whether Xt =

√
z or Xt = −√z. For purposes of predicting the future of Z, it seems

clear that we would like to know more about the past behavior of Z, because that could
give us a hint about whether Xt =

√
z or Xt = −√z. This reeks of nonmarkovianosity.

Note that if µ = 0, then Z is a diffusion, with σ2
Z(z) = 4σ2z and µZ(z) = σ2.
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6.10 The Black-Scholes Formula

In this section we will use some Ito calculus ideas to give a derivation of the celebrated
Black-Scholes formula of finance. You financial insiders will notice that I have adhered to
the unspoken rule of attaching the obligatory modifier “celebrated” to the hallowed formula.
Yes, indeed it is celebrated. I’d give it a 98; it has a good beat, and you can hope to make
a lot of money from it.

The problem addressed by the formula is determining how much an “option” should
cost. We’ll talk about “call” options. A call option on a certain stock is the right to buy a
share of the stock at a certain fixed price (the “strike price”) at a certain fixed time in the
future (the “maturity date”). If I buy a call option from you, I am paying you a certain
amount of money in return for the right to force you to sell me a share of the stock, if
I want it, at the strike price on the maturity date. Our problem is, what is the “right”
amount of money for me to pay for this right?

The meaning of the term “right” here relates to the economic term arbitrage. An
arbitrage opportunity is the opportunity to make money instantly and without risk. That
is, you get some money for sure, right now. Such free lunches are not supposed to exist, or at
least should be rare and short-lived. The basic reason for believing this is that many people
are looking for such opportunities to make money. If the price of commodity A were so
low, for example, that some clever financial transaction involving buying commodity A and
perhaps selling some others were guaranteed to make an instantaneous profit, then many
eager arbitrage seekers would try to perform the transaction many times. The resulting
increased demand for commodity A would cause its price to increase, thereby destroying
the arbitrage opportunity.

Let the stock price at time t be X(t). Let t1 denote the maturity date, and k, the strike
price of the option. A little thought shows that the value of the option at time t1 is the
random variable (X(t1) − k)+, since it makes sense for me to “exercise” the option if and
only if X(t1) > k. Let Y (t) denote the magic, no-arbitrage price for the option that we
are seeking. Assume that Y (t) may be expressed as some function f(X(t), t) of X(t) and
t; our goal is to determine the function f . As a final assumption, let the “interest rate” or
the “riskless rate of return” be r; that is, $1 in a riskless investment today becomes $ert at
time t.

Stocks and options are risky investments; they are not like banks, because we do not
know how much we will be able to get back at any future time. We assume a simple prob-
abilistic model for the evolution of the stock price: suppose X is the geometric Brownian
motion having stochastic differential

dX = µX dt+ σX dW.

Thus, X is the exponential of a Brownian motion with drift. It is comforting that this pro-
cess will not become negative. Indeed, in accordance with our view of Brownian motions
as the stochastic analog of linear functions, geometric Brownian motion seems like a sen-
sible first model: riskless investments change as exp(linear function), and stocks change as
exp(Brownian motion). What we are really assuming is that returns, that is, proportional
changes in the stock price, are stationary and independent over different time intervals.
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A key idea behind the Black-Scholes formula is that by trading both the stock and the
option simultaneously, we can reduce our risk. If we just buy a call option, we will be
happy if the stock price goes up and sad if it goes down. What can we do with the stock to
restore ourselves to blissful equanimity, in which we are indifferent whether the stock price
goes up or down? We need to do something that will make us sad if the stock goes up and
happy if it goes down. Selling some stock will do the trick!

Thus, let us consider the portfolio: “buy one call, sell A shares of stock, and put the
rest of our money in a bond.” The price of the bond is assumed to follow the riskless form
ert. Our investing strategy consists of two stochastic processes: at time t we hold A = A(t)
shares of stock and B = B(t) “shares” of bond, where A and B are assumed to be adapted
stochastic processes. The value of this portfolio at time t is

(6.31) V (t) = Y (t)−A(t)X(t) +B(t)ert.

We say that the strategy (A,B) is self-financing if X(t) dA(t) = ert dB(t) for all t. The
interpretation of this is: our trades of the stock and bond neither remove money from the
portfolio nor require adding additional money from the outside. The changes dA(t) and
dB(t) we make in our holdings just reallocate the money in the portfolio, without adding or
removing money. This relationship between the processes A and B says that the proceeds
X(t) dA(t) from the sale of stock at time t are precisely offset by the cost ert dB(t) of the
stock purchases made at time t. [[These changes could be positive or negative; if they are
negative we are buying stock and selling bonds at time t, and we are using the money from
the bond sales to buy the stock.]] Any gains or losses in the value of the portfolio then must
come from changes in the prices of the assets, not from our changing of our allocations A(t)
or B(t).

From the expression for V (t) we have

dV (t) = dY (t)−A(t) dX(t)−X(t) dA(t) +B(t)rert dt+ ert dB(t).

The self-financing condition causes two of the terms to cancel, leaving

(6.32) dV (t) = dY (t)−A(t) dX(t) +B(t)rert dt.

With our assumption that Y (t) = f(X(t), t), Ito’s formula gives

dY = fx(X, t)dX + ft(X, t)dt+ (1/2)fxxσ
2X2 dt.

Therefore,

(6.33) dV = [fx(X, t)−A(t)]dX(t) + [ft(X, t) + (1/2)fxxσ
2X2 +B(t)rert]dt.

There is an obvious choice that looks interesting: Suppose we adopt the strategy A(t) =
fx(X(t), t)—we can conceive of doing this, even though we do not happen to know what f
is yet. Observe that the differential dV then would have no dX part, just a dt part, and,
by (6.31),

B(t)rert = r[V (t)− Y (t) +A(t)X(t)] = rV (t)− rf(X, t) + rX(t)fx(X(t), t).

Stochastic Processes J. Chang, February 2, 2007



6.10. THE BLACK-SCHOLES FORMULA Page 203

Since the stochastic differential dV has only a deterministic “dt” part and no stochastic
“dX” part, the portfolio V is riskless over a short time interval following time t. Now a
little economic no-arbitrage reasoning gives that the instantaneous rate of return of this
portfolio V must be the assumed riskless rate of return r, that is,

(6.34) dV (t) = rV (t) dt.

Equating (6.33) and (6.34) gives the equation

rV (t) = ft(X, t) + (1/2)fxxσ
2X2 +B(t)rert

= ft(X, t) + (1/2)fxxσ
2X2 + {rV (t)− rf(X, t) + rX(t)fx(X(t), t)},

or
ft(X(t), t) = rf(X(t), t)− rX(t)fx(X(t), t)− (σ2/2)X2fxx(X(t), t).

This will hold if f satisfies the partial differential equation

ft = rf − rxfx −
1

2
σ2x2fxx.

Thus, solving this equation together with the obvious boundary condition

f(x, t1) = (x− k)+

should in principle give us the desired function f .
The following problem gives a nice way of using probability to solve the equation.

(6.35) Exercise [Feynmann-Kac Formula and Solution of Black-Scholes PDE].

1. To put the PDE in a slightly more convenient form, change variables by replacing “t”
by “t1 − t” [=“time to go”], and show that the new function g(x, t) := f(x, t1 − t)
satisfies the PDE

gt = −rg + rxgx +
1

2
σ2x2gxx

with the boundary condition g(x, 0) = (x− k)+.

2. Show that if Z is a diffusion satisfying dZ = rZ dt+ σZ dW , then the function

g(x, t) = E{e−rt[Z(t)− k]+ |Z(0) = x}

satisfies the PDE and boundary condition of part 1.

3. Using the expression in part 2, compute the answer

g(x, t) = xΦ

(
ln(x/k) + [r + (1/2)σ2]t

σ
√
t

)
− ke−rtΦ

(
ln(x/k) + [r − (1/2)σ2]t

σ
√
t

)
.
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It is interesting to observe that the solution does not involve the parameter µ (in fact, no µ
appears in the PDE). This seems quite mysterious at first thought: for example, one would
think that a call option would be more valuable for a stock that is expected to rise a great
deal than for one that is expected to fall! This is a point well worth pondering, and we will
discuss this further later.

This lack of dependence on µ is fortunate. To use the B-S formula, we do not need
to know or even try to estimate the µ that appeared in our original stochastic model of
the stock price behavior. The parameter σ does enter into the formula, however. But σ is
easier to estimate than µ.

Some final B-S comments: the Black-Scholes formula is really a sort of test of consis-
tency: the prices of the stock, the option, and the interest rate should be consistent with
each other. In particular, the theory underlying the formula is not an equilibrium theory;
we do not have to worry about people’s utility functions and other imponderables. That
may be a key reason why the formula is so successful in practice as compared with many
other results in economics: it does not require us to pretend that we know many things
that we cannot know. Briefly, the reason we can get away with this is that the option is in
fact “redundant” given the stock and bond—a portfolio can be formed using just the stock
and the bond that duplicates the cash flows from the option. Thus, if we observe the stock
price process and the interest rate, then the option price is determined by a no-arbitrage
condition.

6.11 A Little About Stochastic Integrals

It seems quite clear that Ito’s formula is useful. In fact, I’d say it’s useful enough to be
worthwhile to prove. O.K., let’s prove it. So, let’s see, hmmm . . . what is it exactly that
we’re trying to show? That’s a real problem; in fact, we don’t know what we’re trying to
prove because we haven’t defined the ingredients of Ito’s formula. But we did say something
about Ito’s formula actually just being a convenient form for expressing statements about
stochastic integrals. To progress with the theory, we will finally have to say what we mean
by a stochastic integral.

Let’s start with a simple example of an Ito integral. To choose a first example, we can
use Ito’s formula to generate an example for which we know the answer. By Ito’s formula,
d(W 2) = 2W dW + dt. The meaning of this statement is given by the integrated form

W 2(t)−W 2(0) = 2

∫ t

0
W dW + t.

Using W (0) = 0 and solving for the integral gives

∫ t

0
W dW =

1

2
[W 2(t)− t].

This gives us an answer to shoot for. Notice that it is different from the answer “ordinary
calculus” (Riemann-Stieltjes integral) would give, which is

∫ t
0 W (s) d[W (s)] = W 2(t)/2.
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Stochastic integrals are defined in terms of mean-square convergence of random vari-
ables.

(6.36) Definition. Let Z1, Z2, . . . and Z be random variables with E(Z2
n) < ∞ for all n

and E(Z2) < ∞. We say Zn → Z in mean square (or Z is the mean-square limit of
{Zn}) if limn→∞ E[(Zn − Z)2] = 0.

Back to our example: The integral
∫ t
0 W dW is defined to be the mean square limit of

the sum

(6.37)
n∑

k=0

W (tk)[W (tk+1)−W (tk)]

as n→∞ and the partition 0 = t0 < t1 < · · · < tn = t becomes more and more refined.
To calculate the limit in our example, we make the substitution

W (tk) =
1

2
[W (tk+1) +W (tk)]−

1

2
[W (tk+1)−W (tk)],

for the first W (tk) in (6.37). Then the sum becomes

1

2

n∑

k=0

[W 2(tk+1)−W 2(tk)]−
1

2

n∑

k=0

[W (tk+1)−W (tk)]
2.

But
∑n

k=0[W
2(tk+1) − W 2(tk)] telescopes to W 2(t), independently of n. Also, by what

we showed about the quadratic variation of Brownian motion,
∑n

k=0[W (tk+1) −W (tk)]
2

approaches t in mean square. Thus, the integral
∫ t
0 W dW comes out to be (1/2)[W 2(t)−t],

as we expected.

(6.38) Exercise. Show that if we had evaluated the integrand W at the “right-hand
endpoint” tk+1 instead of the “left-hand endpoint” tk in the definition of the stochas-
tic integral — that is, if we had defined

∫ t
0 W dW to be the mean-square limit of∑n

k=0W (tk+1)[W (tk+1)−W (tk)] — we would have obtained
∫ t
0 W dW = (1/2)[W 2(t) + t].

The sort of modification discussed in the previous exercise would not make any difference
in the definition of a Riemann-Stieltjes integral; there the integrand may be evaluated at
any point of the interval that contains it. Thus, the definition of the stochastic integral is
a matter of some subtlety.

In fact, more than one definition of stochastic integral with respect to Brownian motion
would be reasonable. The definition that has turned out to be the most useful is the Ito
integral that we have described. Thinking about our little example

∫ t
0 Ws dWs = (1/2)(W 2

t −
t) from above, although at first you may find the extra term −t/2 disconcerting, it does
have a nice property: it makes the answer a martingale. That is, although the natural
guess (1/2)W 2

t is not a martingale, as a process in t, the odd extra term is just what we
need to add in order to make the answer into a martingale. That is not a coincidence, as
we will see below.
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The example we worked out shows the idea used to define the stochastic integral∫ b
a X dW for a whole class of G of “good” processes X. Of course, the class G will con-

tain our example X = W . The following definition is meant to give the idea of what
“good” is; it is not rigorously spelled out.

(6.39) Definition. Let G be a class of “good” stochastic processes, having certain nice
properties that we will not enumerate in complete detail. One important requirement of
a good process {Xt} is that for each t, the random variable Xt is not allowed to depend
on any future values of the Brownian motion—that is, Xt may depend only on the values
{Ws : s ≤ t} and not on the values {Wu : u > t}. The other requirements on a good
process are more technical. For example, there are measurability requirements. Another
property says that the values of a good process {Xt} are not too big, in the sense that∫ t
0 E(X2

s ) ds < ∞ for all t. Finally, we assume a certain amount of regularity on the
sample paths: we require them to be right continuous and have left limits.

(6.40) Definition. For a good process X ∈ G, define the stochastic integral
∫ t
0 X dW as

the mean-square limit of the sum

(6.41)

n∑

k=0

X(tk)[W (tk+1)−W (tk)]

as n→∞ and the partition 0 = t0 < t1 < · · · < tn = t becomes more refined.
Back to the issue of evaluating X at the left endpoint of each interval versus the right

endpoint or some other choice: here is the promised result stating the useful martingale
property of Ito integrals.

(6.42) Fact. If the process {Xt} is in the class G, then the process {Yt} defined by
Yt =

∫ t
0 Xs dWs is a martingale.

The main idea here is that evaluating the integrand at the left endpoint produces a
martingale. To understand this, look at a sum of the form I(n) =

∑n
k=1X(tk−1)[W (tk)−

W (tk−1)]; we take the limit of such sums to define the Ito integral. It is easy to see that
{I(n)} is a martingale:

E(I(n+ 1) | {W (s) : 0 ≤ s ≤ tn})
= I(n) + E(X(tn)[W (tn+1)−W (tn)] | {W (s) : 0 ≤ s ≤ tn})
= I(n) +X(tn)E(W (tn+1)−W (tn) | {W (s) : 0 ≤ s ≤ tn}) = I(n)

It is easy to see intuitively the role of the left endpoint. In a gambling interpretation of
the sums

∑n
k=1X(tk−1)[W (tk)−W (tk−1)] defining the stochastic integral, the increments

W (tk)−W (tk−1) in the Brownian motion can be thought of as the gains from a sequence
of fair games. The sum is our fortune when we are allowed to multiply the stakes by
varying amounts; in particular, we multiply the winnings W (tk) −W (tk−1) by X(tk−1).
Clearly it would be to our advantage if we were allowed to multiply by W (tk)−W (tk−1),
for example, since then our total winnings would be

∑n
k=1[W (tk)−W (tk−1)]

2! These sort
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of gains correspond to evaluating the integrand at the right endpoint, and are prevented if
we evaluate at the left endpoint.

(6.43) Exercise. Let {Wt} be a standard Brownian motion and define Xt = (Wt)
3.

1. Use Ito’s formula to find the mean and variance functions µX(x) and σ2
X(x) of the

diffusion X.

2. You should have found that µX(0) = 0 and σ2
X(0) = 0. Yet the process is perfectly

free to pass through the state 0, taking both positive and negative values. What do you
make of this?

(6.44) Exercise. Find a function f = f(t) so that the process Xt := W 3
t − f(t)Wt is a

martingale.

A parting thought...

Again, why bother with stochastic calculus?
We’ve mentioned two major roles for Ito calculus. Firstly, it provides the mathematical

machinery needed to for a rigorous treatment of diffusions and diffusion-like processes.
Secondly, it is useful for doing calculations. Although we have tried to glimpse a bit of the
theory, in this course it is more appropriate to emphasize applications and the calculation
aspect. In your first exposure to ordinary calculus, I hope you were not forced to agonize
over what an area is and precisely what functions are integrable. You said, let’s see how to
calculate some areas, and volumes, and work, and ...
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7. Likelihood Ratios

The idea of this chapter is known under various names: likelihood ratios, Radon-Nikodym
derivatives, and change of measure. It is the basis of the technique of exponential
tilting in the study of large deviations, importance sampling in simulation, and the
Cameron-Martin-Girsanov transformation in stochastic differential equations.

In a sense, the idea is mathematically rather trivial: we multiply and divide by some-
thing inside a sum or integral, and observe that the answer does not change. But the proba-
bilistic interpretation is powerful. When we are given a random variable whose expectation
we wish to evaluate, we are not restricted to work only with the particular probability
measure given in the problem. We are free to choose another probability measure—that is,
pretend the random variable is generated by a different distribution—as long as we com-
pensate for the change in probability measure by multiplying the random variable by a
likelihood ratio before taking the expectation under the new probability measure.

7.1 The idea of likelihood ratios

Suppose X is a random variable on a probability space Ω that has two different probability
measures P1 and P2 defined on it. For simplicity, suppose for now that the probability
space Ω has only a finite number of elements. Then we may define the likelihood ratio L
simply by

(7.1) L(ω) =
P1{ω}
P2{ω}

.

We need to worry about possibile division by zero to make sure the quotient in (7.1) makes
sense. In fact, the appropriate condition to require is this:

(7.2) For each ω satisfying P2{ω} = 0 we also have P1{ω} = 0.

That is, as we will see in a moment, it will be all right for the denominator to be zero as
long as the numerator is also zero.

The likelihood ratio L is used to relate expectations (and hence also probabilities) taken
under P1 to those taken under P2. In the discrete situation that we are now considering,

E1(X) =
∑

X(ω)P1{ω} =
∑

X(ω)
P1{ω}
P2{ω}

P2{ω}

=
∑

X(ω)L(ω)P2{ω} = E2(XL).(7.3)

Now you should be able to think through why we are not bothered by those ω that make
L(ω) of the form “0/0”. In fact, the set of all such dubious ω values will have probability
zero under P2, so it cannot affect the expectation E2(XL).

Stochastic Processes J. Chang, February 2, 2007



Page 210 7. LIKELIHOOD RATIOS

[[To write this down more carefully:

E1(X) =
∑

P1{ω}>0

X(ω)P1{ω}

=
∑

P1{ω}>0

X(ω)P1{ω}+
∑

P1{ω}=0,P2{ω}>0

X(ω)P1{ω}

=
∑

P2{ω}>0

X(ω)P1{ω}

=
∑

P2{ω}>0

X(ω)
P1{ω}
P2{ω}

P2{ω}

=
∑

X(ω)L(ω)P2{ω} = E2(XL).]]

How does this go if Ω is not necessarily discrete? In that case, the set B = {ω : P2{ω} =
0} need not be negligible under P2; in fact, even in many of the simplest cases of interest B
will already be the whole space Ω. For example, if Ω is the real line, then any continuous
distribution will put zero probability on each point in Ω. So we can no longer think of L(ω)
as the quotient P1{ω}/P2{ω}. However, intuitively we can think of L(ω) as some sort of
limit like

L(ω) = lim
∆ω→0

P1(∆ω)

P2(∆ω)
.

Whatever that might mean, it certainly looks like some kind of derivative, and in fact the
notation dP1/dP2 is often used for L. It would seem sensible to think of ∆ω roughly as
a small set that contains ω. This would allow us, in the limit as ∆ω shrinks down to
the point ω, to speak of the likelihood ratio at the point ω, while at each stage keeping a
nondegenerate quotient of positive numbers P1(∆ω) and P2(∆ω). If Ω were the Euclidean
space Rd, say, and the probabilities P1 and P2 had densities f1 and f2 on Rd, then L would
be the ratio of densities

L(x1, . . . , xd) =
f1(x1, . . . , xd)

f2(x1, . . . , xd)
.

The rigorous foundation for such likelihood ratios in general probability spaces is found
in measure theory, in the theory of Radon-Nikodym derivatives. In fact, in that context,
the requirement that the relation

E1(X) = E2(XL)

hold for all bounded random variables X becomes the definition of the likelihood ratio L.
The condition for the existence of the likelihood ratio that is analogous to condition (7.2)
in the discrete case is that P1 be absolutely continuous with respect to P2, that is,

For each event A satisfying P2A = 0 we also have P1A = 0.

7.2 The idea of importance sampling

This idea of changing probability measures using the likelihood ratio is the basis of the tech-
nique of importance sampling for the Monte Carlo evaluation of integrals and expectations.
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Importance sampling is particularly useful in simulations of low probability events. In such
cases it can sometimes increase the efficiency of the simulation by many thousands of times
over straightforward “naive” sampling. Naive sampling for the given problem would sample
from the given probability density, which gave the event of interest low probability. Our
estimate of the probability would be the fraction of times the event of interest occurred
during our simulations. Unfortunately, since the probability of this event is small, we may
well sample many times and not even see one occurrence of the event of interest. This
would give an estimated probability of 0, which is not very useful—although it confirms
that the probability of interest is small, it gives very little idea of precisely how small the
probability is. For example, if the event occurs 0 times in 1000 samples, the probability of
interest might be .002 or 10−6 or 10−9 or whatever. With importance sampling, we sample
from a different probability density of our choosing. The idea is to choose a density that
concentrates more of its mass on the event of interest, that is, on the more “important”
region of the space. Multiplication by the likelihood ratio compensates for the fact that we
have changed from the given, desired probability measure to a different measure.

[[More on the problem of low probability events. Just compute the standard deviation
of our estimator of p to see the difficulty. The standard deviation is

√
p(1− p)/n, so that,

since
√
p ≫ p, we need to take n large just to get the standard deviation down to around

p, and still much larger in order to make the standard deviation acceptably small relative
to p.]]

(7.4) Example. Just to see the idea in a simple setting, let’s simulate a simple problem
for which we already know the answer: letting X ∼ N(0, 1), what is the probability that
X is greater than 2.5? Let us write this desired probability as P0{X > 2.5}, where the
subscript 0 is there to remind us that X has mean 0.

From a table of the normal distribution, we see that the answer is 0.0062. Pretending
that we do not know this, let us naively simulate the event of interest 100 times. Below is
a little Mathematica experiment that generates 100 N(0, 1) random variables X1, . . . , X100

and records a 1 for each i such that X1 > 2.5 and records a 0 otherwise.

list={}

nit=100;

For [it=1,it<=nit,it++,

x=Random[NormalDistribution[0,1]];

If [x > 2.5, list=Append[list,1], list=Append[list,0]];

];

list

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

mean=Apply[Plus,list]/nit
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0.

Just as we feared: no successes, and an estimated probability of 0! The problem, of
course, is that the N(0, 1) distribution places very little probability on the even {X > 2.5}.
Let us change to the N(2.5, 1) distribution and see what happens. The likelihood ratio of
the N(0, 1) distribution with respect to the N(2.5, 1) distribution is the ratio of densities

L(x) =
f0(x)

f2.5(x)
=

(1/
√

2π) exp[−x2/2]

(1/
√

2π) exp[−(x− 2.5)2/2]
= exp[−2.5x+ (1/2)(2.5)2],

so that the desired probability is

P0{X > 2.5} = E2.5(L(X)I{X > 2.5}).

To simulate the right-hand side, we generate 100 N(2.5, 1) random variables X1, . . . , X100,
recording L(Xi) when Xi > 2.5 and recording 0 otherwise. The expectation in the
right-hand side is estimated by the average of the recorded numbers.

L[x_]:=Exp[-2.5 x + 0.5 (2.5)^2];

list={};

nit=100;

For [it=1,it<=nit,it++,

x=Random[NormalDistribution[2.5,1]];

If [x > 2.5, list=Append[list,L[x]], list=Append[list,0]];

];

N[list,3]

{0.00147, 0., 0.000688, 0., 0.00194, 0.0386, 0.0294, 0., 0.,

0., 0.00216, 0.023, 0.00911, 0.00619, 0.0222, 0., 0., 0., 0.,

0., 0.0419, 0., 0.00769, 0.00109, 0.000943, 0.0134, 0., 0.,

0., 0., 0.0115, 0., 0.0334, 0.0191, 0.00523, 0., 0.00462, 0.,

0.0065, 0.00294, 0.0319, 0., 0., 0.0282, 0., 0., 0.0241,

0.0378, 0.00491, 0., 0., 0.0242, 0., 0., 0., 0., 0., 0.00119,

0., 0.0125, 0., 0.000842, 0.0396, 0.00299, 0.00627, 0.0165,

0., 0.00115, 0., 0.021, 0.0361, 0., 0.0177, 0., 0., 0.0371,

0., 0., 0.00164, 0., 0., 0., 0., 0., 0.0148, 0.00703, 0., 0.,

0., 0.000764, 0., 0., 0.0251, 0.0324, 0., 0., 0., 0., 0.,

0.00217}

mean=Apply[Plus,list]/nit

0.00711085

Sqrt[Apply[Plus,(list-mean)^2]/((nit-1)nit)]

0.00119063
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Observe that we have found an estimate of 0.0071 for the probability, and this estimate
has a standard error of 0.0012, which is respectably small for the modest sample size of 100
that we used. Thus, for example, an approximate 95% confidence interval for the unknown
probability would be 0.0071± 0.0024 = (0.0047, 0.0095).

7.3 A gambler’s ruin problem

Let’s consider a gambler’s ruin problem for a random walk having normally distributed
increments: let X1, X2, . . . be iid and distributed as N(µ1, 1) with µ1 < 0, and define the
random walk Sn = X1 + · · ·+Xn. Our problem is to find Pµ1{τb <∞}, where as usual τb
denotes the first passage time inf{n : Sn > b}.

(7.5) Exercise. Show that Pµ1{τb < ∞} ≤ e2µ1b. [[Hint: Note that the right-hand side is
a probability for Brownian motion!]]

For x = (x1 . . . , xn) ∈ Rn, we have the likelihood ratio

fµ1(x1, . . . , xn)

fµ2(x1, . . . , xn)
=

exp[−1
2

∑n
1 (xi − µ1)

2]

exp[−1
2

∑n
1 (xi − µ2)2]

=
exp[µ1

∑n
1 xi − n

2µ
2
1]

exp[µ2
∑n

1 xi − n
2µ

2
2]

= exp
[
(µ1 − µ2)

n∑

1

xi −
n

2
(µ2

1 − µ2
2)

]
,

so that for A ⊆ Rn

Pµ1{(X1, . . . , Xn) ∈ A} =

∫

x∈A
fµ1(x) dx

=

∫

x∈A
exp

[
(µ1 − µ2)

n∑

1

xi −
n

2
(µ2

1 − µ2
2)

]
fµ2(x) dx

= Eµ2

[
e(µ1−µ2)Sn−n(µ2

1−µ2
2)/2{(X1, . . . , Xn) ∈ A}

]
.

That is, for any event B that is determined by (X1, . . . , Xn), we have

(7.6) Pµ1(B) = Eµ2

[
e(µ1−µ2)Sn−n(µ2

1−µ2
2)/2B

]
.

Things get really interesting when we apply this to stopping times like τb. For conve-
nience, let’s repeat the definition here.

(7.7) Definition. A nonnegative integer-valued random variable τ is a stopping time
with respect to the process X1, X2, . . . if for each n, the event {τ = n} is a function of the
random variables X1, . . . , Xn.

Stochastic Processes J. Chang, February 2, 2007



Page 214 7. LIKELIHOOD RATIOS

That is, whether or not the event {τ = n} occurs is determined by the values of the X
process only up to time n. We do not have to look at any values of Xm for m > n to
determine whether τ = n. Clearly the first passage time τb is a stopping time.

To remind ourselves that µ1 is negative, let us take µ1 = −µ, where µ > 0. So our
object is to find the probability P−µ{τb < ∞}. Since the event {τb = n} is determined by
(X1, . . . , Xn), (7.6) gives

P−µ{τb = n} = Eµ2

[
e(−µ−µ2)Sn−n(µ2−µ2

2)/2{τb = n}
]

= Eµ2

[
e(−µ−µ2)Sτb

−τb(µ2−µ2
2)/2{τb = n}

]
.

Thus,

P−µ{τb <∞} =

∞∑

n=1

P−µ{τb = n}

=

∞∑

n=1

Eµ2

[
e(−µ−µ2)Sτb

−τb(µ2−µ2
2)/2{τb = n}

]

= Eµ2

[
e(−µ−µ2)Sτb

−τb(µ2−µ2
2)/2

∞∑

n=1

{τb = n}
]

= Eµ2

[
e(−µ−µ2)Sτb

−τb(µ2−µ2
2)/2{τb <∞}

]

We are free to choose whatever value of µ2 might be convenient. Notice that a nice
simplification in the likelihood ratio takes place when µ2 − µ2

2 = 0, in which case the
coefficient of τb in the exponential vanishes. It does no good to take µ2 = −µ, since in that
case the last equation reduces to a triviality. Choosing µ2 = µ gives

P−µ{τb <∞} = Eµ

[
e−2µSτb{τb <∞}

]
= Eµ

[
e−2µSτb

]
,

where we are allowed to omit the event {τb <∞} in the last equality because the assumption
that µ > 0 implies that Pµ{τb < ∞} = 1. By definition of τb, we have Sτb > b. The
difference is the “overshoot” [[or “excess over the boundary” or “residual”]] Rb := Sτb − b.
That is, the residual Rb is the amount by which the random walk overshoots the level b
when it first exceeds b. In terms of this overshoot, we have

(7.8) P−µ{τb <∞} = e−2µbEµ

[
e−2µRb

]
.

By the way, you showed in Exercise (7.5) that the probability P−µ{τb < ∞} is bounded
above by e−2µb. Since the overshoot Rb is positive, the result (7.8) agrees with this bound,
and gives some insight into how tight one might expect the bound to be.

Similarly, I’ll leave it to you to show that for a < 0 < b and T = τa ∧ τb defined as
above, we have

(7.9) P−µ{ST > b} = e−2µbEµ

[
e−2µRb{ST > b}

]
.
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Let us give a more general formulation of the above pattern of reasoning. To do this,
assume that X1, X2, . . . are random variables with X1, . . . , Xn having joint density f1n and
f2n under the two probability measures P1 and P2, respectively. Suppose for simplicity, so
that we don’t have to worry about dividing by 0, that f1n and f2n are positive functions.
Let Fn denote the set of random variables that are functions of (X1, . . . , Xn). Then for
Y = h(X1, . . . , Xn) ∈ Fn we have, letting x denote (x1, . . . , xn) and dx denote dx1 · · · dxn,

(7.10) E1(Y ) =

∫
h(x)f1n(x) dx =

∫
h(x)

f1n(x)

f2n(x)
f2n(x) dx = E2(Y Ln),

where

Ln =
f1n(X1, . . . , Xn)

f2n(X1, . . . , Xn)
.

As in the random walk problems discussed above, things really get interesting when we
apply this to stopping times. In terms of the sets of random variables Fn, we say that τ
is a stopping time if for each n the event {τ = n} is in Fn. Thus, {τ = n} is a function
of (X1, . . . , Xn), so that whether or not we stop at time n is determined by the random
variables X1, . . . , Xn; we do not have to look at any of the future values Xn+1, Xn+2, . . ..
Next, we define Fτ to be the set of random variables Y such that

(7.11) Y {τ = n} ∈ Fn

for all n.

(7.12) Exercise. Show that τ is a stopping time if and only if {τ ≤ n} ∈ Fn for all n, and
Y ∈ Fτ if and only if

Y {τ ≤ n} ∈ Fn

for all n.

(7.13) Proposition [Wald’s Likelihood Ratio Identity]. For bounded random vari-
ables Y ∈ Fτ ,

E1[Y {τ <∞}] = E2[Y Lτ{τ <∞}].

Proof: We have assumed Y bounded just so we can invoke the Bounded Convergence
Theorem to eliminate any worries about interchanging sums and expectations. We have

E1[Y {τ <∞}] =
∞∑

n=1

E1[Y {τ = n}]

=
∞∑

n=1

E2[Y Ln{τ = n}]

=
∞∑

n=1

E2[Y Lτ{τ = n}]

= E2[Y Lτ{τ <∞}],

where the second equality uses (7.10) together with the definition (7.11) of Fτ .
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7.4 Importance sampling for the gambler’s ruin

Suppose we want to simulate the probability p = P−µ{ST > b} from (7.9), where either
the drift −µ is very negative or the height b is large or both, so that p is very small. The
straightforward “naive” method of simulating this probability would be to simulate many
realizations of a random walk with drift −µ, for each realization stopping at the first time
T at which the walk either goes below a or above b. Our estimate of p would then be
the fraction of our simulated realizations that escaped above b rather than below a. The
difficulty with this is that if p is very small, we would have to simulate a very long time
before we see even one realization that escapes above b. You know the problem; a very
large number of replications would be required to achieve acceptable precision.

However, (7.9) gives us a way to do much better than the naive method. Look at the
right-hand side of (7.9). The main contributor to the “smallness” of p is the factor e−2µb.
The remaining expected value can be simulated quite efficiently: since we have changed to
the measure Pµ, the simulation would involve realizations of random walks having positive
drift µ. This positive drift guarantees that nearly all of the realizations would satisfy
ST > b, so that the random variable e−2µRb{ST > b} would be positive. The residual Rb
is a nice, moderate quantity, so that in a relatively small number of realizations we would

have a good estimate of the expectation Eµ

[
e−2µRb{ST > b}

]
.

In the Mathematica experiment below, I simulated the probability (7.9) with a = −3,
b = 3, and a random walk having drift −µ = −1. First I tried the “naive” method,
simulating 400 realizations of the random walk and getting a total of zero realizations in
which ST was greater than b. This gives the very uninformative estimator 0 for p—getting
no “successes” out of 400 iterations is consistent with having p as large as a few times 1/400
or so, or anything smaller. The second program performs 100 iterations of the importance
sampling method, and gets an estimate of 0.00089 for p, with a standard error of 0.00007.
Thus, we have gotten quite a good idea of the size of p from only 100 iterations.

The naive method:

mu=1.0;a=-3.0;b=3.0;

nit=400;

nsucc=0;

For [it=1,it<=nit,it++,

s=0;

While[s >= a && s <= b,

s=s+Random[NormalDistribution[-mu,1]]];

If [s > b, nsucc=nsucc+1];

];

nsucc

0

Using importance sampling:

Stochastic Processes J. Chang, February 2, 2007



7.5. BROWNIAN MOTION Page 217

mu=1.0;a=-3.0;b=3.0;

list={}

nit=100;

For [it=1,it<=nit,it++,

s=0;

While[s >= a && s <= b,

s=s+Random[NormalDistribution[mu,1]]];

If [s > b, list=Append[list,Exp[-2.0 mu s]]];

];

N[list,3]

{0.00201, 0.000104, 0.00166, 0.0000459, 0.0000633, 0.00169,

0.000887, 0.00129, 0.00182, 0.00107, 0.000625, 0.00047,

0.00096, 0.00165, 0.00052, 0.0000113, 0.000879, 0.00144,

0.000574, 0.000117, 0.000285, 0.0000792, 0.000217, 0.00212,

0.00072, 0.00222, 0.00043, 0.000131, 0.000696, 0.000759,

0.000925, 0.000354, 0.00059, 0.0000381, 0.00014, 0.00231,

0.00169, 0.000273, 0.00239, 0.000733, 0.00119, 0.00214,

0.000363, 0.00165, 0.0000509, 0.00235, 0.00128, 0.000355,

0.00212, 0.00171, 0.00132, 0.000234, 0.000136, 0.000208,

0.00046, 0.000443, 0.000101, 0.0000684, 0.00064, 0.000994,

0.000681, 0.000138, 0.00159, 0.00219, 0.00101, 0.000231,

0.000185, 0.0000257, 0.000591, 0.00146, 0.000864, 0.00193,

0.00225, 0.00123, 0.00097, 0.000376, 0.00169, 0.00024,

0.000294, 0.000718, 0.00204, 0.000912, 0.000896, 0.000203,

0.00203, 0.00236, 0.00144, 0.0000242, 0.000374, 0.0000961,

0.00016, 0.000254, 0.00105, 0.000102, 0.00131, 0.000327,

0.00133, 0.00104, 0.00193, 0.0000586}

mean=Apply[Plus,list]/nit

0.000894185

Sqrt[Apply[Plus,(list-mean)^2]/((nit-1)nit)]

0.0000733288

7.5 Likelihood ratios for Brownian motion

Next let’s see how to change measure with Brownian motion. First we need to see what
the likelihood ratio looks like. Here Ft will denote the set of random variables that are a
function of the random variables W t

0 = {Ws : 0 ≤ s ≤ t}. Letting Pµ denote the probability
distribution making {Wt} into a (µ, 1) Brownian motion, we want to find the likelihood ratio
of W t

0 under Pµ1 with respect to Pµ2 . The idea is to approximate the infinite set of random
variables W t

0 by the finite set (W (t1), . . . ,W (tn)) where 0 = t0 < t1 < t2 < · · · < tn = t,
and then to take the limit as n→∞ and the points t1, . . . , tn become dense in (0, t). The
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likelihood ratio of (W (t1), . . . ,W (tn)) under Pµ1 with respect to Pµ2 is the ratio of densities

Pµ1{W (t1) ∈ dw1, . . . ,W (tn) ∈ dwn}
Pµ2{W (t1) ∈ dw1, . . . ,W (tn) ∈ dwn}

=
exp

{
−1

2

∑n
i=1

1
ti−ti−1

(wi − wi−1 − µ1(ti − ti−1))
2
}

exp
{
−1

2

∑n
i=1

1
ti−ti−1

(wi − wi−1 − µ2(ti − ti−1))2
}

= exp

{
(µ1 − µ2)

n∑

i=1

(wi − wi−1)−
1

2
(µ2

1 − µ2
2)

n∑

i=1

(ti − ti−1)

}

= exp

{
(µ1 − µ2)W (t)− t

2
(µ2

1 − µ2
2)

}
.

Here the situation is particularly simple, since the previous likelihood ratio does not depend
on n. Letting n→∞ we get that the likelihood ratio of W t

0 under Pµ1 with respect to Pµ2

is

(7.14) Lt = exp

{
(µ1 − µ2)W (t)− t

2
(µ2

1 − µ2
2)

}
.

Analogously with the discrete time case, the nonnegative random variable τ is a stopping
time if {τ ≤ t} ∈ Ft for all t. Also, Fτ is defined to be the collection of random variables
Y such that

Y {τ ≤ t} ∈ Ft

for all t ≥ 0. With these definitions, the following analog of Proposition (7.13) holds.

(7.15) Proposition. For nonnegative Y ∈ Fτ ,

Eµ1 [Y {τ <∞}] = Eµ2 [Y Lτ{τ <∞}],

where the process {Lt} is given by (7.14).

(7.16) Example. The previous likelihood ratio identity allows us to derive a beautiful fact
about Brownian motion. For a particular example of this fact, consider a Brownian motion
W with negative drift −µ. Letting b > 0 be large, we know that P−µ{τb < ∞} is only
e−2µb, which is small. But suppose that we are told that the unusual happened: our sample
path has τb < ∞. What is the conditional distribution of τb? We will see that the answer
is that this conditional distribution is exactly the same as the unconditional distribution of
τb for a Brownian motion having the positive drift +µ!

More generally, for Y ∈ Fτb ,

E−µ[Y {τb <∞}] = Eµ[Y Lτb{τb <∞}]
= Eµ[Y e

−2µW (τb){τb <∞}]
= e−2µbEµ[Y ]. [[Note Pµ{τb <∞} = 1]]
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Notice that in the special case Y = 1, the previous equation becomes our old friend
P−µ{τb <∞} = e−2µb. Thus,

(7.17) E−µ[Y | τb <∞] =
E−µ[Y {τb <∞}]
P−µ{τb <∞}

=
e−2µbEµ[Y ]

e−2µb
= Eµ[Y ].

Now specializing to the choice Y = {τb ≤ t}, we get the promised result

P−µ{τb ≤ t | τb <∞} = Pµ{τb ≤ t}.

That is, the conditional distribution under drift −µ of τb given that τb is finite is the same
as the unconditional distribution of τb under drift +µ.

In fact, given that τb is finite, the path of a Brownian motion with drift −µ up to time
τb cannot be probabilistically distinguished from the path of a Brownian motion with drift
µ up to time τb. This follows as a result of (7.17); what is important is that (7.17) holds for
all random variables Y ∈ Fτb that are determined by the path up to time τb. For example,
we could consider Y to be an event of the form

Y = {W (τb/m) ∈ A1,W (2τb/m) ∈ A2, . . . ,W ((m− 1)τb/m) ∈ Am−1,W (τb) ∈ Am},

where each Ai is a subset of the real numbers. By taking m large, we can get as detailed a
picture as we like of the path up to time τb. The result (7.17) tells us that the probabilities
of such events coincide for a Brownian motion with drift −µ that is lucky enough to reach
the height b and for a Brownian motion with drift +µ.

This sort of result is useful for large deviations. If b is large then the rare (−µ, 1)
Brownian motion that hits the level b does so in a neighborhood of b/µ that is only of
size of order

√
b, which is negligibly small compared to b. There is a sort of optimization

problem that the Brownian motion is doing. Maybe I’ll say more about this later...

(7.18) Example [Inverse Gaussian distribution]. Here is another example of a useful
and explicit Brownian motion formula. We know the distribution of τb when the drift µ = 0;
we did this by using the reflection principle. How about general µ? The formula is

(7.19) P−µ{τb ≤ t} = 1− Φ

(
b+ µt√

t

)
+ e−2µbΦ

(−b+ µt√
t

)
,

where Φ is the standard normal distribution function. The distribution of τb is called an
Inverse Gaussian distribution.

In typical calculus-intensive derivations of (7.19), the answer mysteriously appears as
the dust settles at the end of the calculation. When I first saw this formula, I found it
tantalizing: after all, it just involves two simple normal probabilities together with the very
interpretable, familiar factor e−2µb. Here is a derivation that uses the ideas that we have
been discussing; it also is very much in the same spirit as the reflection principle. Start
with

P−µ{τb ≤ t} = P−µ{τb ≤ t,Wt > b}+ P−µ{τb ≤ t,Wt ≤ b}.
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The first term on the right side is simple:

P−µ{τb ≤ t,Wt > b} = P−µ{Wt > b} = 1− Φ

(
b+ µt√

t

)
.

Here is a way to get the second term: conditioning on τb gives

P−µ{τb ≤ t,Wt ≤ b} =

∫ t

0
P−µ{Wt ≤ b | τb = s}P−µ{τb ∈ ds}.

However,

P−µ{Wt ≤ b | τb = s} = P−µ{Wt ≤ b |Ws = b}
= P{N [−µ(t− s), t− s] ≤ 0}
= P{N [µ(t− s), t− s] ≥ 0}
= Pµ{Wt ≥ b |Ws = b}
= Pµ{Wt ≥ b | τb = s},

where the first and last equalities follow from the Markov property. Notice that this is
just the sort of symmetry we used in the special case µ = 0 for the reflection principle.
Furthermore, by the likelihood ratio identity,

P−µ{τb ∈ ds} = e−2µbPµ{τb ∈ ds}.

Thus,

P−µ{τb ≤ t,Wt ≤ b} = e−2µb

∫ t

0
Pµ{Wt ≥ b | τb = s}Pµ{τb ∈ ds}

= e−2µbPµ{Wt ≥ b, τb ≤ t}
= e−2µbPµ{Wt ≥ b}
= e−2µbP−µ{Wt ≤ −b}

= e−2µbΦ

(−b+ µt√
t

)
.

There it is!
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7.6 The Sequential Probability Ratio Test

Let f0 and f1 be two given probability density functions. Suppose X1, X2, . . . are iid and
distributed according to the density f , and we are trying to decide whether f = f0 or
f = f1. That is, we want to test the null hypothesis H0 : f = f0 against the alternative
hypothesis H1 : f = f1. Define the likelihood ratio statistic

Ln =
n∏

i=1

f1(Xi)

f0(Xi)

for each n. If we have decided to take a sample X1, . . . , Xn of size n and then do a test, the
best tests are the likelihood ratio tests, which take the following form: choose a number B,
and reject H0 if Ln > B, and accept H0 otherwise. Such tests are optimal in that for each
“significance level” α they maximize the power P1{reject H0} over all tests that have error
probability P0{reject H0} ≤ α. [[Here we have introduced the notation Pi for probability
when the true density of the observations is fi.]]

Now suppose that we are interested in making a decision between H0 and H1 as
“quickly” as possible, that is, after looking at as few observations as possible. We might be
doing a clinical trial comparing two treatments, and we want to decide as quickly as possible
which treatment is better, so that we can give the inferior treatment to as few patients as
possible. Another way to describe the problem is to imagine that we are observing the data
sequentially, and we want to stop as soon as enough evidence has accumulated in order for
us to make a reliable decision. The idea is that, rather than committing to a particular
choice of a sample size n before looking at any data, we allow ourselves to look at the
observations one by one, and after each observation we decide whether to stop sampling or
to take another observation. The extra flexibility this gives us can lead to significant im-
provements in speed. If we are lucky enough to get some observations that are particularly
informative, we can stop early; we don’t force ourselves to continue sampling after already
accumulating sufficient evidence to make a reliable decision, merely in order to fulfill some
previously specified fixed sample size.

For example, suppose f0 and f1 are the normal densities N(−1/2, 1) and N(1/2, 1),
respectively. If our first two observations happened to be 4.1 and 5.2, say, we might like to
stop sampling and conclude that f1 is the true density, while if our first two observations
were 0.3 and -0.2, we would probably want to take at least one more observation.

This field of study is a part of statistics called sequential analysis. See Wald (1947),
Siegmund (1985), and Wetherill and Glazebrook (1986), for example. The major develop-
ment of the field began in World War II, and in fact was apparently kept secret until after
the war because it was considered to be so valuable in practice. My memory of the history
is fuzzy as you can see, but I believe that Wald (1947) contains interesting discussions.

Hypothesis tests that make use of sequential observations, deciding after each observa-
tion whether or not to stop sampling, are called sequential. In the situation described above,
where we are just trying to decide between two given densities, the optimal tests have the
name sequential probability ratio test, or “SPRT”. A SPRT is performed by choosing two
numbers A and B, sampling until the stopping time

T = inf{n : Ln < A or Ln > B},
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rejecting H0 if LT > B and accepting H0 if LT < A. Such tests have a strong optimality
property; see Ferguson or Lehmann, for example.

What does this have to do with the gambler’s ruin problem? Define a = log(A),
b = log(B), and

Sn = log(Ln) =
n∑

i=1

log

(
f1(Xi)

f0(Xi)

)
.

Then
T = inf{n : Sn < a or Sn > b},

and the significance level of the test, or probability of a type I error, is

(7.20) P0{ST > b}.

Under the probability P0, note that Sn is the sum of n iid random variables, that is, the
process {Sn} is a random walk. Thus, the problem of finding the probability (7.20) is
exactly in the form of a gambler’s ruin problem.

As an example, let’s look briefly at what happens in the normal case, in which case the
test takes a particularly simple form. For example, if f0 and f1 are the normal densities
N(−1/2, 1) and N(1/2, 1), then we have

log

(
f1(Xi)

f0(Xi)

)
=
−1

2

(
Xi −

1

2

)2

+
1

2

(
Xi +

1

2

)2

= Xi.

Thus, in this case Sn = log(Ln) is simply the sum Sn = X1 + · · ·+Xn.
Incidentally, the drift of the random walk in (7.20) is

E0 log

(
f1(X1)

f0(X1)

)
= −D(f0‖f1) ≤ 0,

where the Kullback-Leibler distance defined by

D(f‖g) = EX∼f log

(
f(X)

g(X)

)

is nonnegative [[a simple consequence of Jensen’s inequality; Exercise!]]. The negativity of
the drift of the random walk under P0 is fortunate, since it allows us to make the error
probability (7.20) small by taking b large. Analogous remarks apply to the other error
probability P1{ST < a}.

(7.21) Exercise [Optimality of the SPRT]. ...
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8. Extremes, Large Deviations, and
the Poisson Clumping Heuristic

8.1 The Poisson clumping heuristic

This is an interesting and useful technique for deriving probability approximations. The
wonderful reference for this topic is David Aldous’ book Probability Approximations via the
Poisson Clumping Heuristic by (Springer-Verlag, 1989). Aldous has over 100 substantial
examples from all different areas of probability, often deriving in a heuristic and intuitive
manner and with relatively little effort (a few paragraphs or so) an approximation whose
rigorous jusitification requires a long, difficult paper. I refer you to Aldous’ preface for more
selling points on the method and for more on the philosophy of approximations.

Let us discuss the method through an example. Let {Xt : t ≥ 0} be a standard,
stationary Ornstein-Uhlenbeck process: µ(x) = −x, σ2(x) = 2. What is the probability
P{maxt≤t1 Xt ≥ b} that the process reaches the level b by time t1? We will think of b as a
high level, so that the desired probability will be small.

Consider the random set S := {t : Xt ≥ b}. In the picture above, S is the set of
highlighted points on the time axis. The first idea in the Poisson clumping heuristic is the
key assertion that S “looks like” or “behaves like” or “has almost the same distribution as”
a mosaic process. What is a mosaic process? Here is how to make one. Start with an iid
sequence of random sets. For example, the first three such sets might be as shown here.

Let’s call the random sets C1, C2, C3, . . .; they are small, localized “clumps,” one might say.
Next, let 0 < Y1 < Y2 < Y3 < · · · be the ordered points in a Poisson process with rate λ,
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say. For each i, translate the set Ci by the amount Yi, and write the resulting translated
set as the sum Yi +Ci. The union

⋃∞
i=1(Yi +Ci) of the randomly translated random sets is

a mosaic process. Let’s call each set Yi + Ci a “clump,” and call the point Yi the “origin”
of the clump Yi + Ci. The rate λ is called the clump rate of the mosaic process.

Given the suggestive [[but not accurately drawn, of course]] picture above, I hope you
get a feeling for what the clumps are in the Ornstein-Uhlenbeck example and why the key
assertion above might make sense. When X first reaches the high level b, that’s the origin of
the first clump. Recall that for some time after that origin, X behaves locally like a (−b, 2)
Brownian motion. In particular, there is a strong negative drift pulling X back down. So it
won’t be long at all before X is back to being far below b, and probably back around 0, in
fact. So, after that first origin, there will be a complicated but very localized set (clump!)
of times at which Xt ≥ b, followed a very much longer stretch of time over which X is below
b. Eventually, after a long time, by chance X will reach the high level b again, and we’ll
get another clump of values t at which Xt ≥ b. And so on. It makes sense that the time
between clump origins should be approximately exponentially distributed with some large
mean [[and so a small rate]]—that the time between clumps should be nearly memoryless
makes intuitive sense. If we know that it has been 50 seconds since the last clump, then
we suspect that we must be down around 0 somewhere just hovering around, and it will
be a long time before we get back up to b. We would think the same way if we were told
that it has been 100 seconds or 1000 seconds since the last clump. This is the memoryless
property, which characterizes the exponential distribution.

Taking the key assertion to heart, let’s heuristically assume that the set S = {t : Xt ≥ b}
actually is a mosaic process with rate λ, where λ is to be determined. Then we would have

P{max
t≤t1

Xt ≥ b} = P{S ∩ [0, t1] 6= ∅} = P{Y1 ≤ t1} = 1− e−λt1 ,

where Y1 is the random origin of the first clump. Well, we don’t really believe that S is
exactly a mosaic process, so we propose the approximation

P{max
t≤t1

Xt ≥ b} ≈ 1− e−λt1 .

Observe at this point that our problem has reduced to determining the clump rate λ. To
do this, recall that the X process is stationary, and let π denote the stationary distribution,
which is N(0, 1) in this case. The second major idea of the Poisson clumping heuristic is
the fundamental relation

(8.1) π[b,∞) = λE(C),

where E(C) is the expected length of a clump. For example, if a clump happened to be
a finite union of intervals, then C would be defined to be the sum of the lengths of those
intervals. Why is (8.1) true? Think about what happens over a long stretch of time: we
claim that as t→∞,

(8.2) π[b,∞)t ∼ (λt)E(C).

To see why this last claim should be true, interpret the stationary probability π[b,∞) as
the long-run fraction of time that Xs ∈ [b,∞), so that the amount of time the X process
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spends in [b,∞) up to some large time t should be about π[b,∞)t. On the other hand, there
should be about λt clumps in the time interval [0, t], each of which has an average length
of E(C), so that the total length of S ∩ [0, t] should be about (λt)E(C). This argument
justifies (8.2), and therefore also (8.1).

Since π[b,∞) = 1 − Φ(b) is known, by the fundamental relation (8.1), to find λ it
is sufficient to find E(C). However, by the local description of the Ornstein-Uhlenbeck
process, we would expect to be able to approximate E(C) well by the expected amount of
time a (−b, 2) Brownian motion W , started at W0 = b, spends above the level b. In other
words, E(C) ≈ ET[0,∞), where T[0,∞) is the sojourn time in [0,∞) of a (−b, 2) Brownian
motion started at 0. Equivalently, EC = ET(−∞,0], where here T(−∞,0] is the sojourn time

of a (b/
√

2, 1) Brownian motion started at 0. Thus, by one of the infamous exercises on
sojourn times,

E(C) ≈ 1

2(b/
√

2)2
=

1

b2
.

Now we can put the approximation together:

λ =
π[b,∞)

EC
≈ 1− Φ(b)

(1/b2)
= b2(1− Φ(b)),

or λ ≈ bϕ(b) if we like, since 1− Φ(b) ∼ ϕ(b)/b, which gives

(8.3) P{max
t≤t1

Xt ≥ b} ≈ 1− e−bϕ(b)t1 .

Here is another, slightly different, way to derive (8.3). Instead of taking S = {t : Xt ≥ b}
as we did in the preceding derivation, let’s take S = {t : Xt ∈ [b − δ, b]}, where δ is a very
small positive number. Again we assert that S is nearly a mosaic process, with rate λ, say.
Again we want to determine λ, since then we will be able to say just as above

P{max
t≤t1

Xt ≥ b} ≈ P{S ∩ [0, t1] 6= ∅} ≈ 1− e−λt1 .

The “fundamental relation” (8.1) now takes the form

π[b− δ, b] = λEC.

But π[b − δ, b] ≈ ϕ(b)δ, and by the first [[even more infamous!]] sojourn time homework
problem, EC = δ/b , since the drift of X when X(t) = b is −b. Thus,

λ =
π[b− δ, b]
EC

≈ ϕ(b)δ

(δ/b)
= bϕ(b),

which again gives (8.3)!
So, there’s the Poisson clumping heuristic, applied to the Ornstein-Uhlenbeck process,

in two slightly different ways. Now lets go back and look at the neat, one-paragraph
description of the idea of the Poisson clumping heuristic that Aldous gives in his preface:

1. Problems about random extrema can often be translated into problems about sparse
random sets in d ≥ 1 dimensions.
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2. Sparse random sets often resemble iid random clumps thrown down randomly
(i.e. centered at points of a Poisson process).

3. The problem of interest reduces to estimating a mean clump size.

4. This mean clump size can be estimated by approximating the underlying random
process locally by a simpler, known process for which explicit calculations are possible.

Get it? Here’s how it applied to the Ornstein-Uhlenbeck example:

1. The “random extremum” was the maximum maxt≤t1 Xt, and the problem was to
approximate the probability P{maxt≤t1 Xt ≥ b}. The sparse random set was S = {t :
Xt ∈ [b− δ, b]}, say. The “translation” was

P{max
t≤t1

Xt ≥ b} ≈ P{S ∩ [0, t1] 6= ∅}.

2. This is the key heuristic assertion of the Poisson clumping heuristic: S is approxi-
mately a mosaic process, with some rate λ.

3. Since P{S ∩ [0, t1] 6= ∅} ≈ 1 − e−λt1 , we want to know λ. But the “fundamental
relation” gives π[b − δ, b] = λEC and we know π[b − δ, b] ≈ ϕ(b)δ, so the problem
reduces to estimating the mean clump size EC.

4. The mean clump size EC is estimated by approximating the Ornstein-Uhlenbeck
process locally by an appropriate Brownian motion. EC becomes an expected sojourn
time. This is simple enough for Brownian motion so that “explicit calculations are
possible.”
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A. Monotone Convergence,
Dominated Convergence, and All
That

Suppose that Xn → X with probability 1 [[that is, P{ω : Xn(ω)→ X(ω)} = 1.]] The ques-
tion is: Can we say that E(Xn)→ E(X)? The following results give sufficient conditions.

(A.1) Monotone Convergence Theorem. If Xn → X with probability 1 and 0 ≤
X1 ≤ X2 ≤ · · · , then E(Xn)→ E(X).
Note that E(X) might be infinity in the previous result!

(A.2) Bounded Convergence Theorem. If Xn → X with probability 1 and there is a
finite number b such that |Xn| ≤ b for all n, then E(Xn)→ E(X).
Here is a generalization of the last result.

(A.3) Dominated Convergence Theorem. If Xn → X with probability 1 and there is
a random variable Y such that |Xn| ≤ Y for all n and E(Y ) <∞, then E(Xn)→ E(X).
Still more generally, we say that a family of random variables {Xn} is uniformly ntegrable
if

lim
b→∞

sup
n
E[|Xn|{|Xn| > b}] = 0.

(A.4) Theorem. If Xn → X with probability 1 and {Xn} is uniformly integrable, then
E(Xn)→ E(X).
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B. Conditioning

B.1 Definitions

In the study of probability, the word “condition” is a verb as often as it a noun. In this
appendix, I’d like us to get to the point where it is clear what is meant by a phrase like
“condition on X,” and an assertion like E(Y ) = E[E(Y | X)].

Suppose we are interested in the probability of an event A, and X is some discrete
random variable. To condition on X means to write the probability as

(B.1) P(A) =
∑

x

P(X = x)P(A | X = x).

This is known as the Law of Total Probability, and is just a simple consequence of the
definition of the conditional probability

(B.2) P(A | X = x) =
P

[
A ∩ {X = x}

]

P{X = x} .

[[Note: the probability (B.2) is well-defined if P{X = x} > 0. The sum in (B.1) can be
taken over such values of x that have positive probability.]] We can do the same thing with
conditional expectations: from the definition

E(Y | X = x) =
E

[
Y I{X = x}

]

P{X = x} ,

it follows that

E(Y ) =
∑

x

E
[
Y I{X = x}

]
=

∑

x

P(X = x)E(Y | X = x).

In the case where the random variable X has a continuous distribution with probability
density function f , analogous results replace the sums by integrals:

P(A) =

∫
P(A | X = x)f(x) dx,

E(Y ) =

∫
E(Y | X = x)f(x) dx.

A general comment: Defining conditional probabilities and expectations of the form
P(A | X = x) and E(Y | X = x) is a bit subtle when the event {X = x} has probability 0.
At an elementary level, it is common to treat the discrete case in detail, then state more
general results by analogy. That is probably the best way to proceed here also.
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The discrete and the continuous cases are special cases of the more general results

P(A) = E
[
P(A | X)

]
,(B.3)

E(Y ) = E
[
E(Y | X)

]
.(B.4)

What do these mean?
Define a function h by h(x) = E(Y | X = x). For example h(3) = E(Y | X = 3) and

h(5) = E(Y | X = 5). Now, since h is a perfectly well defined function, we could consider
applying h to the random variable X getting a new random variable h(X).

(B.5) Definition. Given two random variables X and Y , the notation E(Y | X) stands for
the random variable h(X), where the function h : R→ R is defined by h(x) = E(Y | X = x).
So, at the risk of creating complete confusion, I ask: What is h(X)? Beware of mechanically

substituting X into the definition of h — you will get the incorrect suggestion h(X)
??
=

E(Y | X = X), which is just the constant number E(Y ), not a random variable. The
correct definition h(X) = E(Y | X) is truly a random variable; for example, it takes on the
value E(Y | X = 3) with probability P{X = 3} and it takes on the value E(Y | X = 5)
with probability P{X = 5}. Note the distinction: while E(Y | X = x) is a number for each
x value, E(Y | X) is a random variable—it is just the random variable h(X) where the
function h is as defined above.

For example, if X and Y have N(0, 1) distributions with correlation ρ, then E(Y | X =
x) = ρx for all x. So E(Y | X) = ρX. Also, in the same situation, E(Y 2 | X = x) =
1− ρ2 + ρ2x2. So E(Y 2 | X) = 1− ρ2 + ρ2X2.

Since E(Y | X) is a random variable, we can take its expectation: defining h(x) = E(Y |
X = x) as above,

E
[
E(Y | X)

]
= E[h(X)] =

∑

x

h(x)P{X = x}

=
∑

x

E(Y | X = x)P{X = x} = E(Y ).

This is the identity (B.4).
Given the concept of conditional expectation, there is nothing new with conditional

probabilities. In fact, we can think of conditional probabilities as special cases of the
notion of conditional expectation, where the random variable Y is the indicator of an event
A; that is, P(A | X) = E(I(A) | X). But let’s give a definition, just to make sure.

(B.6) Definition. The notation P(A | X) stands for the random variable g(X), where
the function g : R→ R is defined by g(x) = P(A | X = x).

The expected value of the random variable P(A | X) is given by

E
[
P(A | X)

]
= E[g(X)] =

∑

x

g(x)P{X = x}

=
∑

x

P(A | X = x)P{X = x} = P(A).
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Thus, the cryptic-looking identity (B.3) is just a concise way of expressing the law of total
probability.

(B.7) Example [Expectation of the Geom(p) distribution, by conditioning]. Let
X1, X2, . . . be iid Bernoulli(p) random variables, that is, P{Xk = 1} = p = 1− P{Xk = 0}.
Define T = inf{k : Xk = 1}, that is, T is the time of the first “success” (where we are
thinking of “1” as success here), and T ∼ Geom(p). Find E(T ) by conditioning on X1 to
write an equation for E(T ) in terms of itself.

Solution. Conditioning on X1, we obtain

E(T ) = E[E(T | X1)]

= E(T | X1 = 1)P{X1 = 1}+ E(T | X1 = 0)P{X1 = 0}
= E(T | X1 = 1)p+ E(T | X1 = 0)(1− p).

But X1 = 1 implies T = 1, so that E(T | X1 = 1) = 1. Also, if X1 = 0, then it is as if we
are restarting the process of waiting for the first success, having already used one trial, so
that E(T | X1 = 0) = 1 + E(T ). Making these substitutions gives

E(T ) = p+ (1 + E(T ))(1− p),

or pE(T ) = 1, or E(T ) = 1/p.

B.2 Summary of some rules

1. If X and Y are independent, then E(Y | X) = E(Y ).

To see this, just observe that E(Y | X = x) = E(Y ) for all x.

2. E(g(X)Y | X) = g(X)E(Y | X) holds for any deterministic function g.

This is intuitive: if we know that value of X, then we also know the value of a
function g(X) of X, which then acts like a constant, so that it can be pulled outside
the expectation. More formally, E(g(X)Y | X = x) = E(g(x)Y | X = x) = g(x)E(Y |
X = x).

3. E[E(Y | X)] = E(Y ).

(B.8) Example. For g a deterministic function, show that E[E(Y | X)g(X)] = E[Y g(X)].

Solution:
E[E(Y | X)g(X)]

(a)
= E[E(Y g(X) | X)]

(b)
= E[Y g(X)],

where (a) and (b) are consequences of rules 2 and 3, respectively.

The result of example (B.8) is important; in some more advanced treatments it is taken
as the basis of the definition of conditional expectation.
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B.3 Conditional probabilities are probabilities, conditional
expectations are expectations

A conditional probability is a probability measure in its own right. For example, if Ω
denotes the sample space as usual, then P(Ω | X = x) = 1. Also, if A and B are disjoint
events, then P(A ∪ B | X = x) = P(A | X = x) + P(B | X = x). Thus, P(Ω | X) = 1,
and P(A ∪ B | X) = P(A | X) + P(B | X) for disjoint A and B. Formulas that hold
for ordinary probabilities and expectations have analogs for conditional probabilities and
expectations. For example, Jensen’s inequality says that f(E(Y )) ≤ E(f(Y )) if f is a
convex function. Replacing each of the expectations “E” in the previous formula by a
conditional expectation “E(· | X)”, say, we get the conditional form of Jensen’s inequality
f(E(Y | X)) ≤ E(f(Y ) | X).

As another example, consider the relation E(Y ) = E[E(Y | X)]. For any random variable
Z, we can replace each of the expectations “E” in the previous formula by a conditional
expectation “E(· | Z)” to obtain the identity

(B.9) E(Y | Z) = E[E(Y | X,Z) | Z].

This is a conditional analog of rule 3.
Here is a conditional analog of rule 1: If X and Y are independent conditional on Z,

then

(B.10) E(Y | X,Z) = E(Y | Z).

To check this in the discrete case,

E(Y | X = x, Z = z) =
E[Y I{X = x}I{Z = z}]

P{X = x, Z = z}

=
E[Y I{X = x} | Z = z]

P{X = x | Z = z}

=
E[Y | Z = z]P{X = x | Z = z}

P{X = x | Z = z}
= E(Y | Z = z).

(B.11) Example. Letting W be a standard Brownian motion, show that E(WsWt |Wu) =
s
tE(W 2

t |Wu) for 0 ≤ s ≤ t ≤ u.

Solution.

E(WsWt |Wu)
(a)
= E

[
E(WsWt |Wt,Wu) |Wu

]

(b)
= E

[
WtE(Ws |Wt,Wu) |Wu

]

(c)
= E

[
WtE(Ws |Wt) |Wu

]

= E

[
Wt(

s

t
Wt) |Wu

]

=
s

t
E

[
W 2
t |Wu

]
,
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where (a) is by (B.9), and (b) uses rule 2 of the list in the previous section to pull the Wt

outside the inner conditional expectation. Equality (c) uses (B.10) together with the fact
that Ws and Wu are independent conditional on Wt.
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