
Chapter 13

Multivariate normal distributions
The multivariate normal is the most useful, and most studied, of the standard

joint distributions. A huge body of statistical theory depends on the properties of
families of random variables whose joint distributions are at least approximately
multivariate normal. The bivariate case (two variables) is the easiest to understand,
because it requires a minimum of notation. Vector notation and matrix algebra
becomes necessities when many random variables are involved: for random variables
X1, . . . , Xn write X for the random vector (X1, . . . , Xn), and x for the generic
point (x1, . . . , xn) in Rn.

Remark. In general, if W = (Wij) is an m × n matrix whose elements are
random variables, the m×n matrix EW is defined to have (i, j)th element EWij .
That is, expectations are taken element-wise. If B is an n × p matrix of
constants then WB has (i, j)th element

∑n
k=1WikBkj whose expected value

equals
∑n

k=1(EWik)B`j , the (i, j)th element of the matrix (EW )B. That is,
E(WB) = (EW )B. Similarly, for an `×m matrix of constants A, the expected
value of AW equals A(EW ).

For a 1 × n vector of random variables X = (X1, . . . , Xn), with expected
value µ = EX, the variance matrix var(X) is defined to be the n × n
matrix E(X−µ)′(X−µ), whose (i, j)th element equals E(Xi−µi)(Xj −µj) =
cov(Xi, Xj).

For random vectors x and Y with expected values µX and µY , the covariance
matrix equals E(X−µX)′(Y−µY ), whose (i, j)th elements equals cov(Xi, Yj).

As an exercise you should check that, for an n × p matrix B of constants,
var(XB) = B′var(X)B. Other results for variance (and covariance matrices)
can be derived similarly.

Be careful when checking these definitions against Wikipedia. I have made
my random vectors row vectors; some authors use column vectors.

Definition. Random variables X1, X2, . . . , Xn are said to have a jointly continuous
distribution with joint density function f(x1, x2, . . . , xn) if, for each subset A of Rn,

P{X ∈ A} =

∫∫
. . .

∫
{(x1, x2, . . . xn) ∈ A}f(x1, x2, . . . , xn) dx1 dx2 . . . dxn

=

∫
{x ∈ A}f(x) dx,

where
∫
. . . dx is an abbreviation for the n-fold integral.

version: 12Nov2011
printed: 14 November 2011

Stat241/541
c©David Pollard



Chap 13: Multivariate normal distributions 2

For small regions ∆ containing a point x,

P{X ∈ ∆}
vol(∆)

→ f(x) as ∆ shrinks down to x.

Here vol(∆) denotes the n-dimensional volume of ∆.
The density f must be nonnegative and integrate to one over Rn. If the random

variables X1, . . . , Xn are independent, the joint density function is equal to the
product of the marginal densities for each Xi, and conversely. The proof is similar
to the proof for the bivariate case. For example, if Z1, . . . , Zn are independent and
each Zi has a N(0, 1) distribution, the joint density is

f(z1, . . . , zn) = (2π)−n/2 exp
(
−
∑

i≤n
z2i /2

)
for all z1, . . . , zn

= (2π)−n/2 exp(−‖z‖2 /2) for all z.

This joint distribution is denoted by N(0, In). It is often referred to as the spher-
ical normal distribution, because of the spherical symmetry of the density.
The N(0, In) notation refers to the vector of means and the variance matrix,

EZ = (EZ1, . . . ,EZn) = 0 and var(Z) = In.

Remark. More generally, if X = µ + ZA, where µ is a constant vector in Rn

and A is a matrix of constants and Z = N(0, In), then

EX = µ and var(X) = V = A′A.

If the variance matrix V is non-singular, the n-dimensional analog of the
methods in Chapter 11 show that X has joint density

f(x) = (2π)
−n/2 |det(V )|−1/2 exp

(
−1

2
(x− µ)V −1(x− µ)′

)
This distribution is denoted by N(µ, V ).

You don’t really need to know about the general N(µ, V ) density for this
course.

The distance of the random vector Z from the origin is ‖Z‖ =
√
Z2
1 + · · ·+ Z2

n.
From Chapter 11, if Z ∼ N(0, In) you know that ‖Z‖2 /2 has a gamma(n/2) distri-
bution. The distribution of ‖Z‖2 is given another special name, because of its great
importance in the theory of statistics.

Definition. Let Z = (Z1, Z2, . . . , Zn) have a spherical normal distribution, N(0, In).
The chi-square, χ2

n, is defined as the distribution of ‖Z‖2 = Z2
1 + · · ·+ Z2

n.
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The methods for finding (bivariate) joint densities for functions of two random
variables with jointly continuous distributions extend to multivariate distributions.
Admittedly there is a problem with the drawing of pictures in n dimensions, to
keep track of the transformations, and one must remember to say “n-dimensional
volume” instead of area, but otherwise calculations are not much more complicated
than in two dimensions.

The spherical symmetry of the N(0, In) makes some arguments particularly easy.
Let me start with the two-dimensional case. Suppose Z1 and Z2 have independent
N(0, 1) distributions, defining a random point Z = (Z1, Z2) in the plane. You could
also write Z as Z1e1+Z2e2, where e1 = (1, 0) and e2 = (0, 1). Rotate the coordinate
axes through an angle α, writing W = (W1,W2) for the coordinates of the random
point in the new coordinate system.

z1

z2

w 1

w 2 α

The new axes are defined by the unit vectors

q1 = (cosα, sinα) and q2 = (− sinα, cosα).

Remark. Note that q1 and q2 are orthogonal because q1 · q2 = 0.

The representation Z = (Z1, Z2) = W1q1 +W2q2 gives

W1 = Z · q1 = Z1 cosα+ Z2 sinα

W2 = Z · q2 = −Z1 sinα+ Z2 cosα.

That is, W1 and W2 are both linear functions of Z1 and Z2. The random variables
W = (W1,W2) have a multivariate normal distribution with EW = 0 and

var(W1) = cos2 α+ sin2 α = 1

var(W2) = sin2 α+ cos2 α = 1

cov(W1,W2) = (cosα)(− sinα) + (sinα)(cosα) = 0.
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More succinctly, var(W) = I2, a property that you could check more cleanly us-
ing the representation W = ZQ′, where Q is the orthogonal matrix with rows q1

and q2. In fact, the random variables W1 and W2 are independent and each is dis-
tributed N(0, 1). I won’t give all the details for the two-dimensional case because
the argument in higher dimensions also works for R2.

<1> Example. Suppose Z ∼ N(0, In). Let q1, . . . ,qn be a new orthonormal basis for
Rn, and let Z = W1q1 + · · · + Wnqn be the representation for Z in the new basis.
Then the W1, . . . ,Wn are also independent N(0, 1) distributed random variables.

To prove results involving the spherical normal it is often merely a matter of
transforming to an appropriate orthonormal basis. This technique greatly simplifies
the study of statistical problems based on multivariate normal models.

<2> Example. Suppose Z1, Z2, . . . , Zn are independent, each distributed N(0, 1). De-
fine Z̄ = (Z1 + · · ·+ Zn) /n and T =

∑
i≤n(Zi − Z̄)2. Show that Z̄ has a N(0, 1/n)

distribution independently of T , which has a χ2
n−1 distribution.

Statistical problems often deal with independent random variables Y1, . . . , Yn
each distributed N(µ, σ2), where µ and σ2 are unknown parameters that need to be
estimated. If we define Zi = (Yi−µ)/σ then the Zi are as in the previous Example.
Moreover,

Ȳ =
1

n

∑
i≤n

Yi = µ+ σZ̄ ∼ N(µ, σ2/n)∑
i≤n

(Yi − Ȳ )2/σ2 =
∑

i≤n
(Zi − Z̄)2 ∼ χ2

n−1,

from which it follows that Ȳ and σ̂2 :=
∑

i≤n(Yi − Ȳ )2/(n− 1) are independent.

Remark. It is traditional to use Ȳ to estimate µ and σ̂2 to estimate σ2. The

random variable
√
n(Ȳ − µ)/σ̂ has the same distribution as U/

√
V/(n− 1),

where U ∼ N(0, 1) independently of V ∼ χ2
n−1. By definition, such a ratio is

said to have a t distribution on n− 1 degrees of freedom .

<3> Example. Distribution of least squares estimators for regression.
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Examples for Chapter 13

Example 1
We have Z ∼ N(0, In) and q1, . . . ,qn a new orthonormal basis for Rn. In the new
coordinate system, Z = W1q1 + · · ·+Wnqn We need to show that the W1, . . . ,Wn

are also independent N(0, 1) distributed random variables.

z1

z2

w 1

w 2

    ball B (in Z-coordinates) =  ball B* (in W-coordinates)


The picture shows only two of the n coordinates; the other n−2 coordinates are
sticking out of the page. I have placed the pictures for the w- and z-spaces on top
of each other, so that you can see how the balls B and B∗ line up.

For a small ball B centered at z,

P{Z ∈ B} ≈ f(z)(volume of B) where f(z) = (2π)−n/2 exp(−‖z‖2 /2).

The corresponding region for W is B∗, a ball of the same radius, but centered at
the point w = (w1, . . . , wn) for which w1q1 + · · ·+ wnqn = z. Thus

P{W ∈ B∗} = P{Z ∈ B} ≈ (2π)−n/2 exp(−1
2 ‖x‖

2)(volume of B).

From the equalities

‖w‖ = ‖z‖ and volume of B = volume of B∗,

we get
P{W ∈ B∗} ≈ (2π)−n/2 exp(−1

2 ‖w‖
2)(volume of B∗).

That is, W has the asserted N(0, In) density. �
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Example 2
Suppose Z1, Z2, . . . , Zn are independent, each distributed N(0, 1). Define

Z̄ =
Z1 + · · ·+ Zn

n
and T =

∑
i≤n

(Zi − Z̄)2

Show that Z̄ has a N(0, 1/n) distribution independently of T , which has a χ2
n−1 distribution.

Choose the new orthonormal basis with q1 = (1, 1, . . . , 1)/
√
n. Choose q2, . . . ,qn

however you like, provided they are orthogonal unit vectors, all orthogonal to q1.
In the new coordinate system,

Z = W1q1 + · · ·+Wnqn where Wi = Z · qi for each i.

In particular,

W1 = Z · q1 =
Z1 + · · ·+ Zn√

n
=
√
nZ̄

From Example <1> you know that W1 has a N(0, 1) distribution. It follows that Z̄
has a N(0, 1/n) distribution.

The random variable T equals the squared length of the vector

(Z1 − Z̄, . . . , Zn − Z̄) = Z− Z̄(
√
nq1) = Z−W1q1 = W2q2 + · · ·+Wnqn.

That is,
T = ‖W2q2 + · · ·+Wnqn‖2 = W 2

2 + · · ·+W 2
n ,

a sum of squares of n− 1 independent N(0, 1) random variables, which has a χ2
n−1-

distribution.
Finally, notice that Z̄ is a function of W1, whereas T is a function of the in-

dependent random variables W2, . . . ,Wn. The independence of Z̄ and T follows.
�

Example 3
Suppose Y1, . . . Yn are independent random variables, with Yi ∼ N(µi, σ

2) for an
unknown σ2. Suppose also that µi = α+βxi, for unknown parameters α and β and
observed constants x1, . . . , xn with average x̄ =

∑
i≤n xi/n.

The method of least squares estimates the parameters α and β by the values â
and b̂ that minimize

S2(a, b) =
∑

i≤n

(
Yi − a− bxi

)2
over all (a, b) in R2. One then estimates σ2 by the value σ̂2 = S2(â, b̂)/(n− 2).

In what follows I will assume that T :=
∑n

i=1(xi− x̄)2 > 0. (If T were zero then
all the xi would be equal, which would make x = x̄1.)
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Define Y = (Y1, . . . , Yn) and x = (x1, . . . , xn) and 1 = (1, 1, . . . , 1). Then

EY = µ = α1 + βx and Y = µ + σZ where Z ∼ N(0, In)

and
S2(a, b) = ‖Y − a1− bx‖2 .

Create a new orthonormal basis for Rn by taking

q1 = (1, 1, . . . , 1)/
√
n and q2 =

x− x̄1

‖x− x̄1‖

Choose q3, . . . ,qn however you like, provided they are orthogonal unit vectors, all
orthogonal to q1.

Remark. You should check that q1 · q2 = 0 and ‖q1‖ = ‖q2‖ = 1. Also note
that ‖x− x̄1‖ =

√
T .

The vectors 1,x and q1,q2 span the same two-dimensional subspace of R2. That
is, any vector that can be written as a linear combination of 1 and x can also be
written as a linear combination of q1 and q2; and any vector that can be written
as a linear combination of q1 and q2 can also be written as a linear combination
of 1 and x. Put another way, for each pair a, b there is a unique pair c, d for which
a1 + bx = cq1 + dq2.

Remark. In matrix form, (a, b)X = (c, d)Q, where X is the 2 × 2 matrix with
rows 1 and x, and Q is the 2× 2 orthogonal matrix with rows q1 and q2. The
two matrices are related by X = RQ and Q = R−1X where

R =

( √
n 0√
nx̄

√
T

)
and R−1 =

(
1/
√
n 0

−x̄/
√
T 1/

√
T

)
.

Thus (a, b)X = (c, d)Q if and only if (a, b)R = (c, d) if and only if (a, b) =
(c, d)R−1. That is,

c =
√
n(a+ bx̄), d =

√
T b

a = c/
√
n− dx̄/

√
T , b = d/

√
T .

The calculations for transforming between coordinate systems are easier if you
work with matrix notation.

The least squares problem
Write all the vectors in the new basis:

â1 + b̂x = (â+ b̂x̄)1 + b̂(x− x̄1)

= ĉq1 + d̂q2 where ĉ = (â+ b̂x̄)
√
n and d̂ = b̂

√
T ,
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and

Y =
∑

i≤n
giqi where gi := Y · qi.

Remark. By direct calculation, g1 = Y · 1/
√
n = Ȳ

√
n, where Ȳ =

∑
i≤n Yi/n,

and g2 = Y · (x− x̄1)/
√
T =

∑
i≤n Yi(xi − x̄)/

√∑
i≤n(xi − x̄)2.

The quantities ĉ and d̂ minimize, over all (c, d) ∈ R2,

‖Y − cq1 − dq2‖2 =
∥∥∥(g1 − c)q1 + (g2 − d)q2 +

∑
i≥3

giqi

∥∥∥2
= (g1 − c)2 + (g2 − d)2 +

∑n

i=3
g2i

Clearly the solution is ĉ = g1 and d̂ = g2. That is,

b̂ = d̂/
√
T =

∑
i≤n

Yi(xi − x̄)/
∑

i≤n
(xi − x̄)2

â = ĉ/
√
n− d̂x̄/

√
T = Ȳ − b̂x̄

The least squares estimators
By assumption Y = µ + σZ where Z ∼ N(0, In). In the new coordinate system,

Z = W1q1 +W2q2 + · · ·+Wnqn with W ∼ N(0, In)

so that

Y = µ + σ
∑n

i=1
Wiqi

= (γ + σW1)q1 + (δ + σW2)q2 where γ := (α+ βx̄)
√
n and δ := β

√
T .

The representation for µ comes from

µ = α1 + βx = (α+ βx̄)1 + β(x− x̄1) = γq1 + δq2.

Dot both sides of the last equation for Y with qi to get

gi = Y · qi =

{ γ + σW1 for i = 1
δ + σW2 for i = 2
σWi for 3 ≤ i ≤ n.

Thus

ĉ = γ + σW1 ∼ N(γ, σ2)

d̂ = δ + σW2 ∼ N(δ, σ2)

(n− 2)σ̂2/σ2 =
∥∥∥Y − ĉq1 − d̂q2

∥∥∥2 /σ2 =
∑n

i=3
W 2

i ∼ χ2
n−2.
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Moreover, the independence of the Wi’s implies that ĉ, d̂, and σ̂2 are independent
random variables.

More succinctly,

(ĉ, d̂) ∼ N
(
(γ, δ), σ2Ii

)
,

so that

(â, b̂) = (ĉ, d̂)R−1 ∼ N
(
(α, β), σ2(R−1)′R−1

)
.

If you look in a regression textbook you might see the variance matrix rewritten
as σ2(XX ′)−1. �

Remark. All the algebra, including the calculation of matrix inverses and a
possible choice for q1, . . . ,qn is carried out automatically in a statistical package
such as R. There is not much point in memorizing the solutions these days.


