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Existence of stationary distributions

Suppose a Markov chain with state space S is irreducible and recurrent.
Let i be an arbitrarily chosen but fixed state. For each j ∈ S define

λj := Ei (number of visits to j during a cycle around i)

= Ei

∑
n∈N

I{Xn = j, Ti ≥ n}

=
∑

n∈N
Pi{Xn = j, Ti ≥ n}

where, as usual, Ti is the first time (after time 0) that the chain visits state i.
Note that λi = 1 because the cycle ends with the first return, at time Ti, to
state i.

First I’ll show that

<1> λj =
∑

k∈S
λkP (k, j) for each j ∈ S

Then I’ll show that
∑

j∈S λj = EiTi. If the state i is positive recurrent then
πj = λj/EiTi defines a stationary probability distribution for the chain.

Remark. By construction, πi = 1/EiTi. As you know from HW2.2,
if i is positive recurrent then every state in S must also be positive
recurrent. I could repeat the construction with any other state i′ taking
over the role of i to get another stationary probability distribution
{π′

j : j ∈ S} for which π′
i′ = 1/Ei′Ti′ .

It might appear that the chain has many different stationary
distributions. However, the Basic Limit Theorem will force the
stationary distribution to be unique. That is, we must have πi = π′

i′ =
1/Ei′Ti′ . The unique stationary distribution for an irreducible, positive
recurrent chain is given by πj = 1/EjTj for every j ∈ S.

The key idea behind <1> is that the event {Ti ≥ n} only depends on
information about the chain before time n. More precisely, Ti is always ≥ 1
and

{Ti ≥ n} = {X1 6= i,X2 6= i, . . . ,Xn−1 6= i} for n ≥ 2.

Thus ∑
k∈S

λkP (k, j) =
∑

k∈S

∑
n≥1

(
Pi{Xn = k, Ti ≥ n}×

Pi{Xn+1 = j | Xn = k, Ti ≥ n}
)

=
∑

k∈S

∑
n≥1

Pi{Xn = k, Ti ≥ n,Xn+1 = j}
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The event {Ti ≥ n,Xn+1 = j} equals ∪k∈S{Xn = k, Ti ≥ n,Xn+1 = j} and
for different k the events {Xn = k, Ti ≥ n,Xn+1 = j} are disjoint. The last
sum simplifies to∑

n≥1
Pi{Ti ≥ n,Xn+1 = j} =

∑
n≥1

Pi{Ti ≥ n+ 1, Xn+1 = j}

+
∑

n≥1
Pi{Ti = n,Xn+1 = j}.

On the right-hand side the first sum can be rewitten as∑
m≥2

Pi{Ti ≥ m,Xm = j},

which is just λj minus Pi{Ti ≥ 1, X1 = j} = P (i, j). The other sum equals∑
n≥1

Pi{Xn+1 = j | Ti = n}Pi{Ti = n} = P (i, j)
∑

n≥1
Pi{Ti = n},

which adds back the missing P (i, j). (The sum of the Pi{Ti = n} terms
equals Pi{Ti <∞} = 1.)

So much for <1>. The rest is easy. The random variable
∑

n≥1 I{Ti ≥ n}
counts one for each n for which Ti ≥ n. In other words,

∑
n≥1 I{Ti ≥ n} =

Ti. It follows that∑
j∈S

λj = Ei

∑
n∈N

∑
j∈S

I{Xn = j, Ti ≥ n}

= Ei

∑
n∈N

I{Ti ≥ n}

because
∑

j∈S I{Xn = j} = 1 for every n

= EiTi.
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