Statistics 251/551 spring 2013 Homework # 1 Due: Wednesday 23 January

- [1] (5 points) Suppose X_0, X_1, \ldots is a Markov chain with state space S and transition probabilities P(i, j) for $i, j \in S$. Define $Y_n = X_{2n}$. Show that Y_0, Y_1, \ldots is also a Markov chain, with transition probability matrix P^2 . Hint: If *info* stands for some information regarding $Y_0, Y_1, \ldots, Y_{n-1}$, calculate $\mathbb{P}_{\mu}\{Y_{n+1} = j \mid Y_n = i, info\}$ by conditioning on the value that X_{2n+1} takes.
- [2] (5 points) For the hhh vs. thh coin tossing game, as described in the first lecture:
 - (i) Which states are accessible from which states?
 - (ii) Which states communicate?
 - (iii) What is the period for each state?
- [3] (5 points) Let S be a finite set for which there is a nonnegative weight $w_{i,j}$ assigned to each distinct pair i, j from S. Suppose $W_i = \sum_{j \neq i} w_{i,j}$ is strictly positive for each i. Define a transition matrix P by $P(i, j) = w_{i,j}/W_i$ for $i \neq j$, and P(i, i) = 0. Show that $\pi_i = W_i/W$, where $W = \sum_i W_i$, is a stationary distribution.