Statistics 251/551 spring 2013

Homework # 2 Due: Wednesday 30 January

If you are not able to solve a part of a problem, you can still get credit for later parts: Just assume the truth of what you were unable to prove in the earlier part.

- [1] Consider an irreducible Markov chain with a finite state space S. Show that every state *i* is positive recurrent (that is, $\mathbb{E}_i T_i < \infty$) by following these steps.
 - (i) (5 points) Explain why there is a positive integer N and a $\delta > 0$ for which $\mathbb{P}_j\{T_i \leq N\} \geq \delta$ for all $j \in S$. Hint: For each $j \neq i$ there is a path from j to i that is taken with strictly positive \mathbb{P}_j probability. What if j = i?
 - (ii) (5 points) For each $k \in \mathbb{N}$ write \mathcal{U}_k for the set of times $\{n \in \mathbb{N} : (k-1)N < n \leq kN\}$. Let W denote the first k for which there is a visit to i during \mathcal{U}_k . Explain why $T_i \leq NW$.
 - (iii) (5 points) Intuitively, from part (i), within each \mathcal{U}_k time block the chain should visit state *i* with probability at least δ , no matter what has happened up to time (k-1)N. To formalize this intuition, define

 $V_k = \{ \text{chain visits } i \text{ during block } \mathcal{U}_k \} = \bigcup_{n \in \mathcal{U}_k} \{ X_n = i \}.$

Show that $\mathbb{P}_i(V_\ell^c \mid V_1^c \cap V_2^c \cap \cdots \cap V_{\ell-1}^c) \leq 1-\delta$ for each $\ell \geq 2$. (Hint: Condition on $X_{(\ell-1)N}$.) Deduce that $\mathbb{P}_i\{W \geq k\} \leq (1-\delta)^{k-1}$ for each k in \mathbb{N} .

- (iv) (5 points) If the last inequality were actually an equality for each k then W would have a geometric distribution, which has a finite expected value. In some sense, W is smaller than a geometric, so W should also have a finite expected value. Prove that $\mathbb{E}_i W < \infty$. Hint: First explain why $W = \sum_{k \in \mathbb{N}} \mathbb{I}\{W \ge k\}$.
- [2] Suppose $i \rightsquigarrow j$ (that is, state j is accessible from state i). Suppose also that $\tau := \mathbb{E}_i T_i < \infty$. Show that $\mathbb{E}_j T_j < \infty$ by the following steps.

Remember that $\theta = \mathbb{P}_i\{X_1 = i_1, X_2 = i_2, \dots, X_k = j\} > 0$ for some sequence of states $i_1, i_2, \dots, i_k = j$. Write $T_i^{(1)}, T_i^{(2)}, \dots$ for the lengths of successive cycles that start from *i*. That is, if starting from state *i*, the first return to *i* occurs at time $T_i^{(1)}$, the second at time $T_i^{(1)} + T_i^{(2)}$, and so on. If starting from state *j*, the successive visits to *i* occur at times $T_i, T_i + T_i^{(1)}, T_i + T_i^{(2)}, \dots$ Also, write F_m for the event that the mth cycle (starting from *i*) begins with visits to states i_1, i_2, \dots, i_k in that order.

- (i) (5 points) Explain why $\mathbb{E}_i T_i^{(m)} \ge \theta \mathbb{E}_i (T_i^{(m)} \mid F_m)$ and $\mathbb{E}_i (T_i^{(m)} \mid F_m) = k + \mathbb{E}_j T_i$. Deduce that $\mathbb{E}_j T_i < \infty$.
- (ii) (5 points) If the chain starts in state i, explain why

$$T_j \leq T_i^{(1)} + \sum_{m \geq 2} \left(T_i^{(m)} \mathbb{I}(F_1^c \cap F_2^c \dots F_{m-1}^c) \right).$$

Hint: If m = 3 is the first cycle for which F_m occurs, why is T_j less than $T_i^{(1)} + T_i^{(2)} + T_i^{(3)}$? (iii) (5 points) By taking \mathbb{E}_i expectations of both sides of the inequality from the previous part,

and by using independence between what happens in each cycle, deduce that

$$\mathbb{E}_i T_j \le \tau \left(1 + (1-\theta) + (1-\theta)^2 + \dots \right) < \infty$$

(iv) (5 points) Write $T_i + S_j$ for the first time after T_i that the chain visits state j. Show that

$$\mathbb{E}_j T_j \le \mathbb{E}_j (T_i + S_j) \le \mathbb{E}_j T_i + \mathbb{E}_i T_j < \infty.$$