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Statistics 251/551 spring 2013
Homework # 4
Due: Wednesday 20 February

If you are not able to solve a part of a problem, you can still get credit for later
parts: Just assume the truth of what you were unable to prove in the earlier part.

This homework will step you through the proof of Lemma 1 in the Jerrum (1995)
paper.1 I mostly use Jerrum’s notation, except that the number of colors is q, not k.

The setting
The set of available “colors” is C = {1, 2, . . . , q}. We have a graph G on a finite set of
vertices V = {v1, . . . , vn} with edge set E = {e1, . . . , eR}. The degree of a vertex v,
denoted by deg(v), is the number of edges having v as one of the endpoints. The
neighborhood of vertex v is the set of vertices connected to v by an edge,

N(v) := {w ∈ V : w 6= v and {v, w} ∈ E}.

A coloring of the graph is a map σ : V → C. The coloring is proper if the
two vertices that make up each edge are assigned different colors, that is, if

σ(v) /∈ {σ(w) : w ∈ N(v)} for every v ∈ V.

Denote the set of all proper colorings of the graph by S.

It is easy to see (by means of a greedy coloring method) that S is nonempty
if q > ∆. For q > 2∆ Jerrum’s algorithm generates observations from the uni-
form distribution π on S by means of a Markov chain that converges very rapidly
towards π.

Transition probabilities
The transition probabilities P (σ, τ) for the chain are defined implicity by a random
method for producing a new coloring τ from a coloring σ.

First define a function TRY that generates a new coloring τ given a new color c,
a vertex v, and a current coloring σ. Define τ = TRY (c, v, σ) by

(i) if c ∈ {σ(w) : w ∈ N(v)} then τ = σ

(ii) if c /∈ {σ(w) : w ∈ N(v)} then τ(v) = c and τ(w) = σ(w) for all w not equal
to v.

In other words, TRY (c, v, σ) changes the color of v to c, provided the resulting
coloring is proper. If the proposed change would create an improper coloring, σ is
left unchanged.

1Available at http://onlinelibrary.wiley.com/doi/10.1002/rsa.3240070205/abstract.
You might need to access the site via http://sfx.library.yale.edu/sfx local/azlist .
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Here is the random procedure corresponding to P (σ, τ):

(a) Choose a vertex V at random from (the uniform distribution on) V.

(b) Choose a color C at random from (the uniform distribution on) C.

(c) Define τ = TRY (C, V, σ).

The coupling
Jerrum’s proof works by creating a coupling of a Markov chain {Yt : t ≥ 0} with
state space S and an arbitrary (but fixed) initial distribution µ and another Markov
chain {Xt : t ≥ 0} with state space S and initial distribution π, using a method a
little like the coupling used to prove the BLT.

Write infot for the information corresponding to everything that has happened
up to the completion of step t. Initially X0 ∼ π and Y0 ∼ µ, independently. After
the completion of step t the Xt+1 and Yt+1 values are coupled as follows

(a) Choose a new vertex Vt+1 at random from (the uniform distribution on) V,
independently of infot.

(b) Independently of Vt+1 and of infot, choose a color C at random from (the
uniform distribution on) C.

(c) Define Xt+1 = TRY (Ct+1, Vt+1, Xt). Based on infot and Vt+1, construct a
one-to-one function g : C→ C then define Yt+1 = TRY (g(Ct+1), Vt+1, Yt).

Remark. The random color g(Ct+1) is also uniformly distributed on C,
independently of infot and Vt+1. The change from Yt to Yt+1 still follows
the P transition probabilities; marginally, Y is still just a Markov chain
with initial distribution µ and transition matrix P .

If Xt(Vt+1) 6= Yt(Vt+1) then g is taken to be the identity map (that is, g(c) = c
for all c in C) and Yt+1 = TRY (Ct+1, Vt+1, Yt). The cleverness in Jerrum’s algorithm
comes from the choice of g for the cases where Xt(Vt+1) = Yt(Vt+1).

We need some notation for the case where Xt and Yt agree on the color given
to vertex Vt+1. After step t of the algorithm the vertex set V finds itself partitioned
into two subsets: At = {v ∈ V : Xt(v) = Yt(v)}, the set of vertices where the two
colorings agree; and Dt = {v ∈ V : Xt(v) 6= Yt(v)}, the set where they disagree.

For the sake of notational clarity let me omit some subscripts t and t + 1,
writing V for Vt+1 and so on. Write KX(V ) for {Xt(w) : w ∈ N(V )}, the set
of colors used by Xt for the neighbors of V . Define KY (V ) analogously. Then
CX(V ) := KX(V ) ∩ Kc

Y (V ) is the set of colors used only by Xt for the neighbors
of V and CY (V ) := KY (V ) ∩ Kc

X(V ) is the set of colors used only by Yt for the
neighbors of V .
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The g is chosen in a way that discourages changes that would turn an agreement
at vertex V into a disagreement.

If either CX(V ) or CY (V ) is empty let g be the identity map on C.

If both CX(V ) and CY (V ) are nonempty the smaller of the two sets of colors
drives the construction. For concreteness suppose 0 < #CX(V ) ≤ #CY (V ), so that
the distinct colors in CX(V ) can be enumerated as c1, c2, . . . , cr and the distinct
colors in CY (V ) can be enumerated as c′1, c

′
2, . . . , c

′
r′ , with r ≤ r′. Define g by

g(ci) = c′i and g(c′i) = ci for i = 1, 2, . . . , r

g(c) = c otherwise

If #CX(V ) > #CY (V ) > 0, reverse the roles of X and Y in the construction, so
that g maps CY (V ) onto a subset of CX(V ).

The meeting of the chains
At the random time T := min{t : Dt = ∅} the colorings agree for all vertices. At that
time both CX(v) and CY (v) are empty for every v in V. Subsequently, the algorithm
merely modifies the color scheme without creating any new disagreements.

The details of Jerrum’s argument appear in the following Problems.

Homework problems

Write ft for #Dt, the number of vertices where the colorings disagree after comple-
tion of step t. The main idea is to show that Eft+1 ≤ (1− α)Eft where

α :=
q − 2∆

nq
> 0,

which will produce a rapidly decreasing bound on the total variation distance be-
tween π and the distribution of Yt.

[1] (5 points) For each σ and τ in S show that P (σ, τ) = P (τ, σ). Deduce that the
uniform distribution π on S is the stationary distribution.

[2] (5 points) Explain why

TVt := max
B⊆S
|P{Yt ∈ B} − π(B)| ≤ P{T > t}

Hint: The argument is similar to the one used for the proof of the BLT.

[3] (10 points) Explain why T = min{t : ft = 0} and

P{T > t} ≤ P{ft 6= 0} ≤ Eft.
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Hint: The random variable ft takes only nonnegative integer values.

[4] (5 points) Explain why |ft+1 − ft| ≤ 1 always, with ft+1 ≤ ft if Vt+1 ∈ Dt and
ft+1 ≥ ft if Vt+1 ∈ At.

[5] (5 points) For each vertex v, define

dt(v) :=

{
#(N(v) ∩At) if v ∈ Dt

#(N(v) ∩Dt) if v ∈ At.

Equivalently, dt(v) is the number of edges (with v as one of the endpoints) that join
a point in At to a point in Dt. Explain why the total number of edges that join a
point in At to a point in Dt equals

mt :=
∑

v∈At

dt(v) =
∑

v∈Dt

dt(v).

[6] Consider the case where Vt+1 ∈ At. Abbreviate Vt+1 to V and Ct+1 to C.

(i) (5 points) Explain why ft+1 = ft if CX(V ) = CY (V ) = ∅.

Without loss of generality suppose #CX(V ) ≤ #CY (V ) and CY (V ) 6= ∅ for the rest
of this problem. It is possible that CX(V ) is empty, which would make (ii) a bit
easier.

(ii) (15 points) If C /∈ CY (V ), show that ft+1 = ft. Hint: Consider separately the cases
where C belongs to (KX(V ) ∪KY (V ))c or KX(V ) ∩KY (V ) or CX(V ).

(iii) (5 points) Explain why ft+1 might equal 1 + ft if C ∈ CY (V ).

(iv) (5 points) Explain why #CY (V ) ≤ dt(V ) when V ∈ At.

(v) (10 points) Deduce that

P{ft+1 = 1 + ft | infot} ≤ P{V ∈ At, C ∈ CY (V ) | infot} ≤
mt

nq
.

Explain your reasoning in detail.

[7] Consider the case where Vt+1 ∈ Dt. Abbreviate Vt+1 to V and Ct+1 to C.

(i) (5 points) For each v in Dt explain why

P(ft+1 = ft − 1 | V = v, infot) ≥ P(C /∈ KX(v) ∪KY (v) | V = v, infot)

(ii) (5 points) Explain why # (KX(v) ∪KY (v)) ≤ 2∆ − dt(v) for all v in Dt. Hint:
What is the largest number of distinct colors that can be contributed by N(v)∩Dt?

(iii) Deduce that

P(ft+1 = ft − 1 | infot) ≥ αft +
mt

nq
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[8] Combine the last two results.

(i) (5 points) Show that

E (ft+1 − ft | infot) = P{ft+1 = 1 + ft | infot} − P(ft+1 = ft − 1 | infot)

≤ −αft

(ii) (5 points) Deduce that Eft+1 ≤ (1− α)Eft for all t.

(iii) (5 points) Deduce that

Eft ≤ (1− α)tEf0 ≤ n(1− α)t.

Notice that the upper bound does not depend on µ.

(iv) (5 points) Conclude, via Problems [2] and [3] that

TVt ≤ n(1− α)t

Remark. You could solve to find how large t must be in order to make
TVt ≤ ε, for any given ε > 0.
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