Statistics 251/551 spring 2013
Homework # 4
Due: Wednesday 20 February

If you are not able to solve a part of a problem, you can still get credit for later
parts: Just assume the truth of what you were unable to prove in the earlier part.

This homework will step you through the proof of Lemma 1 in the Jerrum (1995)
paper.! I mostly use Jerrum’s notation, except that the number of colors is ¢, not k.

The setting

The set of available “colors” is € = {1,2,...,q}. We have a graph G on a finite set of
vertices V = {v1,...,v,} with edge set € = {e1,...,er}. The degree of a vertex v,
denoted by deg(v), is the number of edges having v as one of the endpoints. The
neighborhood of vertex v is the set of vertices connected to v by an edge,

Nw) :={w eV :w#vand {v,w} € E}.

A coloring of the graph is a map o : V — €. The coloring is proper if the
two vertices that make up each edge are assigned different colors, that is, if

o) ¢ {o(w) : w e N(v)} for every v € V.

Denote the set of all proper colorings of the graph by 8.

It is easy to see (by means of a greedy coloring method) that 8 is nonempty
if ¢ > A. For ¢ > 2A Jerrum’s algorithm generates observations from the uni-
form distribution m on § by means of a Markov chain that converges very rapidly
towards .

Transition probabilities
The transition probabilities P(o,7) for the chain are defined implicity by a random
method for producing a new coloring 7 from a coloring o.

First define a function T'RY that generates a new coloring 7 given a new color c,
a vertex v, and a current coloring o. Define 7 = TRY (¢, v, o) by

(i) if ce {o(w) : w € N(v)} then 7 = o

(ii) if ¢ ¢ {o(w) : w € N(v)} then 7(v) = ¢ and 7(w) = o(w) for all w not equal
to v.

In other words, TRY (¢,v,0) changes the color of v to ¢, provided the resulting
coloring is proper. If the proposed change would create an improper coloring, o is
left unchanged.

! Available at http://onlinelibrary.wiley.com/doi/10.1002/rsa.3240070205 /abstract.
You might need to access the site via http://sfr.library.yale.edu/sfx_local /azlist .



Here is the random procedure corresponding to P(o,7):

(a) Choose a vertex V at random from (the uniform distribution on) V.
(b) Choose a color C' at random from (the uniform distribution on) C.

(¢) Define 7 =TRY(C,V,0).

The coupling
Jerrum’s proof works by creating a coupling of a Markov chain {Y; : ¢ > 0} with
state space 8§ and an arbitrary (but fixed) initial distribution y and another Markov
chain {X; : t > 0} with state space 8 and initial distribution 7, using a method a
little like the coupling used to prove the BLT.

Write info; for the information corresponding to everything that has happened
up to the completion of step t. Initially Xo ~ 7 and Yy ~ u, independently. After
the completion of step ¢ the X;11 and Y; 41 values are coupled as follows

(a) Choose a new vertex V;11 at random from (the uniform distribution on) V,
independently of info;.

(b) Independently of V;1; and of info;, choose a color C' at random from (the
uniform distribution on) €.

(c) Define X117 = TRY (Cyt1, Viy1, X¢). Based on info; and V4, construct a
one-to-one function g : € — C then define Y311 = TRY (¢(Ci11), Vit1, Yz)-

Remark. The random color g(Cyy1) is also uniformly distributed on C,
independently of info; and V4. The change from Y; to Y. still follows
the P transition probabilities; marginally, Y is still just a Markov chain
with initial distribution g and transition matrix P.

If Xy(Vis1) # Yi(Viy1) then g is taken to be the identity map (that is, g(c) = ¢
for all cin €) and Y;11 = TRY (Ci41, Vi1, Yi). The cleverness in Jerrum’s algorithm
comes from the choice of g for the cases where Xy(Vii1) = Yi(Vigq).

We need some notation for the case where X; and Y; agree on the color given
to vertex Viy1. After step t of the algorithm the vertex set 'V finds itself partitioned
into two subsets: A; = {v € V: Xi(v) = Yi(v)}, the set of vertices where the two
colorings agree; and Dy = {v € V: X;(v) # Yi(v)}, the set where they disagree.

For the sake of notational clarity let me omit some subscripts ¢t and ¢ + 1,
writing V' for Viy; and so on. Write Kx (V) for {Xi(w) : w € N(V)}, the set
of colors used by X, for the neighbors of V. Define Ky (V') analogously. Then
Cx (V) = Kx(V) N K§ (V) is the set of colors used only by X; for the neighbors
of V and Cy (V) := Ky (V) N K%(V) is the set of colors used only by Y; for the
neighbors of V.



The g is chosen in a way that discourages changes that would turn an agreement
at vertex V into a disagreement.

If either Cx (V') or Cy (V) is empty let g be the identity map on C.

If both Cx (V) and Cy (V) are nonempty the smaller of the two sets of colors
drives the construction. For concreteness suppose 0 < #Cx (V) < #Cy (V), so that
the distinct colors in Cx (V') can be enumerated as ci,ca,...,c. and the distinct
colors in Cy (V') can be enumerated as ¢/, c,...,c,, with r <r’. Define g by

g9(ci) = ¢; and g(c}) = ¢; fori=1,2,...,r
glc)=c otherwise

If #Cx (V) > #Cy (V) > 0, reverse the roles of X and Y in the construction, so
that g maps Cy (V') onto a subset of Cx (V).

The meeting of the chains

At the random time 7" := min{t : D; = (}} the colorings agree for all vertices. At that
time both Cx (v) and Cy (v) are empty for every v in V. Subsequently, the algorithm
merely modifies the color scheme without creating any new disagreements.

The details of Jerrum’s argument appear in the following Problems.

HOMEWORK PROBLEMS

Write f; for #D,, the number of vertices where the colorings disagree after comple-
tion of step ¢. The main idea is to show that Ef;11 < (1 — a)Ef; where

q—2A
ngq

> 0,

which will produce a rapidly decreasing bound on the total variation distance be-
tween 7 and the distribution of Y;.

(5 points) For each o and 7 in 8§ show that P(o,7) = P(7,0). Deduce that the
uniform distribution 7 on § is the stationary distribution.

(5 points) Explain why

TV; := max |P{Y; € B} — n(B)| < P{T >t}
Hint: The argument is similar to the one used for the proof of the BLT.
(10 points) Explain why 7" = min{¢ : f; = 0} and

P{T >t} <P{f; # 0} <Efi.



Hint: The random variable f; takes only nonnegative integer values.

[4] (5 points) Explain why |fi+1 — fi] < 1 always, with fip1 < fi if Viyy € Dy and
fte1 = feif Vigr € Ay

[5] (5 points) For each vertex v, define

_ J#N@w)NA) ifve Dy
de(v) = { #(N(w)NDy) ifve A

Equivalently, d;(v) is the number of edges (with v as one of the endpoints) that join
a point in A; to a point in D;. Explain why the total number of edges that join a
point in A; to a point in D; equals

my = ZveAt di(v) = ZveDt di(v).

[6] Consider the case where V41 € A;. Abbreviate Vi1 to V and Cyyq to C.
(i) (5 points) Explain why fi41 = fi if Cx (V) = Cy (V) = 0.
Without loss of generality suppose #Cx (V) < #Cy (V) and Cy (V) # 0 for the rest

of this problem. It is possible that Cx (V') is empty, which would make (ii) a bit
easier.

(ii) (15 points) If C' ¢ Cy(V'), show that fiy; = fi. Hint: Consider separately the cases
where C belongs to (Kx(V)U Ky (V) or Kx(V)N Ky (V) or Cx (V).

(iii) (5 points) Explain why f;+1 might equal 1+ f; if C' € Cy (V).
(iv) (5 points) Explain why #Cy (V) < di(V) when V € A;.
(v) (10 points) Deduce that

P{fis1 =1+ f; | info} <P{V € A;,C € €y (V) | infos} < %

Explain your reasoning in detail.

[7] Consider the case where Vi1 € D;. Abbreviate Vi41 to V and Cy4q to C.
(i) (5 points) For each v in Dy explain why

P(fix1=fi— 1|V =wv,info;) > P(C ¢ Kx(v) U Ky(v) | V = v, info)

(ii) (5 points) Explain why # (Kx(v) U Ky (v)) < 2A — di(v) for all v in D;. Hint:
What is the largest number of distinct colors that can be contributed by N(v) N D,?

(iii) Deduce that

) m
P(fiy1 = ft — 1| infoy) > afy + Tth



[8] Combine the last two results.

(i) (5 points) Show that

E (ft—‘,—l — ft | infot) = P{ft+1 =1+ ft ‘ iIlfOt} - ]P)(ft—i-l = ft -1 ‘ iIlfOt)
< -—af

(i) (5 points) Deduce that Ef;11 < (1 — a)Ef; for all ¢.
(iii) (5 points) Deduce that
Ef; < (1—a)'Efy <n(l—a).

Notice that the upper bound does not depend on .
(iv) (5 points) Conclude, via Problems [2] and [3] that

TV; < n(1 — a)

Remark. You could solve to find how large ¢ must be in order to make
TV; <, for any given € > 0.
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