Statistics 251/551 spring 2013 Homework # 5 Due: Wednesday 27 February

If you are not able to solve a part of a problem, you can still get credit for later parts: Just assume the truth of what you were unable to prove in the earlier part.

- [1] Suppose σ and τ are stopping times for a "flow of information" W_0, W_1, \ldots Which of the following are necessarily stopping times? In each case give a proof or counterexample.
 - (i) (5 points) $\max(\sigma, \tau)$
 - (ii) (5 points) $\min(\sigma, \tau)$
 - (iii) (5 points) $\tau + \sigma$
 - (iv) (5 points) $(\tau \sigma)^+ := \max(\tau \sigma, 0)$
- [2] Consider a random walk on the integers \mathbb{Z} defined by $W_n = W_0 + \sum_{1 \le i \le n} \xi_i$ where $W_0, \xi_1, \xi_2, \ldots$ are independent random variables with

 $\mathbb{P}\{\xi_i = +1\} = 1/2 = \mathbb{P}\{\xi_i = -1\}.$

For each m in \mathbb{Z} define

$$\sigma_m = \begin{cases} \min\{n \in \mathbb{N} : W_n = m\} \\ +\infty & \text{if } W_n \neq m \text{ for all } n \in \mathbb{N} \end{cases}$$

and $\tau := \min(\sigma_0, \sigma_N)$ where N := a + b, with a and b positive integers. As in the class presentation of the gambler's ruin problem, write V for the event $\{\tau = \sigma_N\}$, which corresponds to A winning. Write θ_i for $\mathbb{P}(V \mid W_0 = i)$ and λ_i for $\mathbb{E}(\tau \mid W_0 = i)$ if $0 \le i \le N$.

- (i) (10 points) Show that W_0, W_1, \ldots is a martingale. Use the optional sampling theorem for martingales to show that $\theta_a = a/N$. (Don't forget to start with $\tau \wedge k$ for a positive integer k.)
- (ii) (10 points) Define $Z_n := W_n^2 n$. Show that Z_0, Z_1, \ldots is a martingale.
- (iii) (10 points) Use the optional sampling theorem for martingales to show that $a^2 = N^2 \theta_a \lambda_a$ then deduce that $\lambda_a = ab$. Hint: $Z_{\tau \wedge k} = W_{\tau \wedge k}^2 \tau \wedge k$.
- (iv) (10 points) Write δ_i for $\lambda_i \lambda_{i-1}$. Use Markov chain methods to show that $\delta_{i+1} = \delta_i 2$ for i = 1, 2, ..., N 1.
- (v) (10 points) Show that $\lambda_i = \sum_{j=1}^i \delta_j = i\delta_1 (i-1)i$ for $1 \le i \le N$. Deduce that $\lambda_i = i(N-i)$ for $0 \le i \le N$, in agreement with (iii).