Statistics 251/551 spring 2013 Homework # 6 Due: Wednesday 6 March

If you are not able to solve a part of a problem, you can still get credit for later parts: Just assume the truth of what you were unable to prove in the earlier part.

- [1] (15 points) Suppose
 - (a) S_0, S_1, \ldots is a supermartingale for a flow of information W_0, W_1, \ldots
 - (b) σ and τ are stopping times for which $0 \leq \sigma \leq \tau \leq N$, where N is a fixed (finite) positive integer
 - (c) B is a nonnegative random variable for which $B\mathbb{I}\{\sigma = j\}$ depends only on $W_{0,j}$ for $0 \le j \le N$. That is,

$$B = \sum\nolimits_{0 \leq j \leq N} b_j(W_{0,j}) \mathbb{I}\{\sigma = j\}$$

for some nonnegative b_i functions.

Show that $\mathbb{E}S_{\sigma}B \geq \mathbb{E}S_{\tau}B$. Explain each step in your reasoning. Hint: Write $\mathbb{E}(S_{\tau} - S_{\sigma})B$ as a double sum over t (for the increments) and j (for the value of σ).

- [2] (10 points) Near the top of page 2 of the optimal.pdf handout I asserted that the Y process defined at the bottom of page 1 is actually the smallest supermartingale for which $Y_t \ge Z_t$ for each t. Prove that fact.
- [3] In class I discussed the simple example where Z_1, \ldots, Z_N are independent random variables, each distributed Uniform(0,1), and we seek a stopping time σ for which $\mathbb{E}Z_{\sigma}$ is maximized. Write M_N for $\max_{i \leq N} Z_i$.
 - (i) (10 points) Express $\mathbb{E}M_N$ as a function of N.
 - (ii) (10 points) For N = 5 calculate the constants C_i for which $Y_i = \max(Z_i, C_i)$ and

 $\tau := \min\{i \le N : Z_i = Y_i\}$

defines the optimal stopping time. (Please explain your reasoning and display your results in a form that is easy for us to read.)

- (iii) (10 points) Calculate $\mathbb{E}Z_{\tau}$. Again, explain your reasoning; a single number will not suffice.
- (iv) (5 points) Explain why your answer from (i) for N = 5 is bigger than your answer from (ii).