Statistics 251/551 spring 2013 Homework # 7 Due: Wednesday 3 April

If you are not able to solve a part of a problem, you can still get credit for later parts: Just assume the truth of what you were unable to prove in the earlier part.

[1] Suppose $B = \{B_t : t \ge 0\}$ is a standard Brownian motion. In class I showed, for each fixed $\theta \in \mathbb{R}$, that the process

 $M_t = \exp\left(\theta B_t - \theta^2 t/2\right)$ for $t \ge 0$

is a martingale for the flow of information $info_t = B_{0,t}$.

- (i) (10 points) Expand M_t as a power series in θ for each fixed t. Find the coefficient of θ^k for k = 0, 1, 2, 3.
- (ii) (20 points) Write Z_t for the coefficient of θ^3 from part (i). Show by direct calculation (as in class) that Z is a martingale.
- [2] (bonus points) Suppose $X = \{X_t : t \ge 0\}$ and $Y = \{Y_t : t \ge 0\}$ are independent standard Brownian motions. Define a 2-dimensional Brownian motion by $W_t = (X_t, Y_t)$.
 - (i) Explain why $W_0 = 0$ and why W has continuous sample paths and independent increments. Find the (bivariate) distribution of $W_t W_s$ for fixed t > s.
 - (ii) For a fixed real θ define orthogonal unit vectors $e_1 = (\cos \theta, \sin \theta)$ and $e_2 = (-\sin \theta, \cos \theta)$. Express W in the new coordinate system as

 $W_t = X_t^* e_1 + Y_t^* e_2$ for $t \ge 0$.

Show that X^* and Y^* are also independent standard Brownian motions.

(iii) For a fixed r > 0 define $\tau = \inf\{t : ||W_t|| = r\}$. Explain why W_{τ} is uniformly distributed on $\{w \in \mathbb{R}^2 : ||w|| = r\}$.