
Statistics 251/551 spring 2013
Homework # 8
Due: Wednesday 17 April

This homework will step you through some of the basic ideas of stochastic calculus.
The homework problems themselves are boxed so that you don’t miss them.

1. Nonrandom case
Start with a simple, nonrandom case. Suppose f and g are continuous functions de-
fined at least on some interval [a, b]. What should

∫ b
a fdg mean? Typically integrals

are defined as limits of finite sums, each defined by a finite grid of points

G : a = t0 < t1 < · · · < tk = b.

Define the G-increments of the function g as ∆ig := g(ti)− g(ti−1) for i = 1, . . . , k.
Define the corresponding approximating sum as

<1> SG(f, dg) =
∑k

i=1
f(ti−1)∆ig

Remark. I have cunningly evaluated the f function at the left end-
point of the interval that defines ∆ig. For nonrandom functions the
cunningness is wasted. For stochastic processes, it will make a difference.

It is not so hard to understand why the the approximating sums converge to a
finite limit if the function g has bounded variation on the interval [a, b], that is,
if there exists a finite constant C := V (g, [a, b]) for which

∑
i |∆ig| ≤ C for every

grid, no matter how finely spaced the grid points are.

Remark. If g is nondecreasing then
∑

i |∆ig| =
∑

i ∆ig = g(b)−g(a) for
every grid. Thus g has bounded variation on [a, b]. A similar argument
works if g can be written as a difference of two nondecreasing functions.
In fact, g has bounded variation if and only if it can be written as a
difference of two nondecreasing functions.

Suppose that g has bounded variation. Let G′ be a finer grid obtained by
subdividing each G-interval:

ti−1 = ti−1,0 < ti−1,1 < . . . ti−1,m = ti for each i.

Write ∆i−1,jg for g(ti−1,j)− g(ti−1,j−1). Then

SG′(f, dg) =
∑

i

∑
j
f(ti−1,j−1)∆i−1,jg



so that

|SG(f, dg)− SG′(f, dg)| = |
∑

i

∑
j

(f(ti−1)− f(ti−1,j−1)) ∆i−1,jg|<2>

≤
∑

i

∑
j
|f(ti−1)− f(ti−1,j−1)| |∆i−1,jg|

If G is fine enough that f varies by at most ε over each [ti−1, ti] interval then the
last sum is bounded above by εV (g, [a, b]). The bound can be made arbtrarily small
by making G fine enough. If you know about Cauchy sequences of real numbers you
should be able to turn the bound into a rigorous argument that the approximating
sums converge to some finite limit as the grids get finer.

2. Difficulties with Brownian motion
If X and Y are stochastic processes with continuous smple paths, and if each sample
path of Y has bounded variation, then the integral

∫ b
a X dY can be defined by

applying the preceeding construction pathwise. Unfortunately, Brownian motion
sample paths don’t have bounded variation. For simplicity, take [a, b] as the unit
interval [0, 1].

[1]

Suppose B = {Bt : 0 ≤ t ≤ 1} is a standard Brownian motion. For a
fixed k let ti = i/k for i = 0, . . . , k. Write ∆iB for B(ti)−B(ti−1). Define
Vk =

∑k
i=1 |∆iB|.

(i) (10 points) Show that EVk →∞ as k →∞ but

var (Vk) =
∑

i
var(|∆iB|)

stays bounded by 1. Hint: var(|X|) ≤ EX2.

(ii) (5 points) Deduce that P{V (B, [0, 1]) = ∞} = 1. Hint: Use Tchebychev
for P{Vk ≥M} for each constant M .

Fortunately, the martingale properties of Brownian motion offer another ap-
proach to defining

∫ 1
0 X dB, for various stochastic processes X. The key to the

construction is finiteness of the quadratic variation. In the notation of the pre-
vious problem, if Qk =

∑
i ∆2

iB (=
∑

i(∆iB)2) then EQk = 1 and

var(Qk) =
∑

i
var(∆2

iB) ≤
∑

i
E∆4

iB → 0 as k →∞

because each ∆iB is N(0, k−1) distributed. Compare with Chang page 195.

3. Stochastic integral with respect to Brownian motion
Suppose X = {Xt : 0 ≤ t ≤ 1} is another stochastic process, with continuous sample
paths, for which Xt is a function of B0,t.



Let G and G′ be grids as in Section 1 (but now a = 0 and b = 1). Define
SG(X, dB) as in <1>, with f replaced by X and g replaced by B. Define SG′(X, dB)
similarly. Then, as in <2>,

|SG(X, dB)− SG′(X, dB)| = |
∑

i

∑
j

(X(ti−1)−X(ti−1,j−1)) ∆i−1,jB|

Instead of taking the absolute value inside the sum, take the expected value of
squared sum.

[2]

(10 points) Show that

E|SG(X, dB)− SG′(X, dB)|2 =
∑

i,j
E (X(ti−1)−X(ti−1,j−1))

2 ∆2
i−1,jB

=
∑

i,j
E (X(ti−1)−X(ti−1,j−1))

2 δi−1,j<3>

where δi−1,j = E∆2
i−1,jB = ti−1,j − ti−1,j−1. Hint: ∆i−1,jB is independent

of B0,s for s = ti−1,j−1.

Intuitively, if the G-spacing is fine enough then each |X(ti−1) − X(ti−1,j−1)|
should be small with high probability, by sample path continuity. If we could turn
that property into a bound,

maxi,j E (X(ti−1)−X(ti−1,j−1))
2 < ε,

then the final sum in <3> would be bounded by ε. We could then argue that, as the
grid gets finer, SG(X, dB) gets arbitrarily close in some mean-squared error sense to
a random variable that then defines

∫ 1
0 X db. If you know about Cauchy sequences

in spaces of square-integrable functions you should be able to make this argument
rigorous.

More precisely, the quantity in <3> can be written as∫ 1

0
E (XG(t)−XG′(t))2 dt

where

XG(t) =
∑

i
X(ti−1)I{ti−1 ≤ t < ti}

XG′(t) =
∑

i,j
X(ti−1,j−1)I{ti−1,j−1 ≤ t < ti,j}.

If the assumptions on X are enough to guarantee that∫ 1

0
E (XG(t)−X(t))2 dt→ 0 as the grid gets finer



then ∫ 1

0
E (XG(t)−XG′(t))2 dt

≤ 2

∫ 1

0
E (XG(t)−X(t))2 dt+ 2

∫ 1

0
E (XG′(t)−X(t))2 dt

→ 0,

which would also lead to the existence of the limit (in the sense of mean-squared
error) of the approximations SG(X, dB).

4. Contributions from quadratic variation
In class I ended up with expressions like

AG =
∑

i
Z(ti−1)∆

2
iB

for grids G as in Section 1 and processes Z. These sums also converge to a random
limit under mild assumptions on the Z process. Once again assume Zt is a function
of B0,t and the sample paths are continuous.

For simplicity assume ti = i/k for each i. Simplify notation by abbreviating B0,ti

to Fi. Remember that E
(
∆2
iB | Fi−1)

)
= δi := ti− ti−1. Define ξi := ∆2

iB−δi. The
following problem gives a simple condition under which

∑
i Z(ti−1)∆

2
iB converges

to
∫ 1
0 Zt dt in some probabilistic sense.

[3]

Suppose |Zt| ≤ C for all t (and every sample path), where C is a finite
constant.

(i) (10 points) Explain why E (
∑

i Z(ti−1)ξi)
2 → 0 as k →∞.

(ii) (5 points) Explain why
∑

i Z(ti−1)δi →
∫ 1
0 Zt dt pathwise.

Remark. The boundedness assumption on Z can be removed by defining
stopping times τm = inf{t : |Zt − Z0| ≥ m} for each positive integer m.
One then replaces Zt by Zt−Z0 and each ti by ti ∧ τm and argues as in
the problem to get convergence in some sense to Z0 +

∫ 1
0 Zt∧τm dt, for

each fixed m. Finally one lets m tend to infinity.

Similar tricks with stopping times can be used to eliminate other
boundedness assumptions, at the cost of weakening the convergence to
an “in probability” sense.


