
Statistics 251/551 spring 2013
2013: Solutions to sheet 3

If you are not able to solve a part of a problem, you can still get credit for later
parts: Just assume the truth of what you were unable to prove in the earlier part.

[1] (10 points) Find the transition probability matrix Q∗ for the bivariate chain Z∗n =
(XnY

∗
n ) that appeared in the coupling proof of the BLT. It would be a good idea to

check that∑
z1∈S×S

Q∗(z0, z1) = 1 for each z0.

By definition, T = min{n : Xn = Yn} and

Y ∗n =

{Yn if n < T
Yn = Xn if n = T
Xn if n > T

.

I asserted that Z∗n := (Xn, Y
∗
n ) is a Markov chain with stationary transition probabil-

ities. That is, for all z0 and z1 in S× S there should exist nonnegative (nonrandom)
numbers Q∗(z0, z1) for which

∑
z1∈S×SQ

∗(z0, z1) = 1 and

P{Z∗n+1 = z1 | Z∗n = z0, past info} = Q∗(z0, z1) for all z0 and z1 in S× S.

Many of you gave values for Q∗(z0, z1) than seemed to depend on the random
variable T . That is, you made Q∗ random, which is illegal. Obviously T has to get
into the story somehow but the result must not be random.

Here is how to use T properly. Suppose z0 = (i0, j0) and z1 = (i1, j1).

Consider first the case where i0 6= j0. If Xn = i0 and Y ∗n = j0 then Y ∗n 6= Xn.
The events {Z∗n = z0} and {Xn = i0, Yn = j0, T > n} are the same. If we condition
on that event then we must have Y ∗n+1 = Yn+1. Thus

P{Z∗n+1 = z1 | Z∗n = z0, past info}
= P{Xn+1 = i1, Yn+1 = j1 | Xn = i0, Yn = j0, T > n, past info}
= P{Xn+1 = i1, Yn+1 = j1 | Xn = i0, Yn = j0}
= P (i0, i1)P (j0, j1).

In the third line, the past info and the event {T > n} (which tells us something
about Xm and Ym for m ≤ n) become irrelevant if we also condition on Xn = i0
and Yn = j0. That’s the Markov property. The factorization in the last line then
comes from the independence of the X- and Y -chains.

Now consider the case where i0 = j0. If Y ∗n = j0 = i0 = Xn then we must
have T ≤ n; the X- and Y -chains must have met at time n or earlier. The two
events {Z∗n = z0} and {Xn = i0, T ≤ n} are the same. Thus

P{Z∗n+1 = z1 | Z∗n = z0, past info}
= P{Xn+1 = i1, Xn+1 = j1 | Xn = i0, T ≤ n, past info}

=

{
P (i0, i1) if i1 = j1
0 if i1 6= j1



Again the past info and the event {T ≤ n} become irrelevant once we condition
on Xn = i0.

In summary, the Z∗-chain has transition probabilities

Q∗ [(i0, j0), (i1, j1)] =

{
P (i0, i1)P (j0, j1) if i0 6= j0
P (i0, i1) if i0 = j0 and i1 = j1
0 otherwise

The stuff about T caused the differences between the i0 = j0 and i0 6= j0 cases but T
itself appears nowhere is the expression for Q∗.

[2] (15 points) Chang Exercise 1.17.

(a) (Why a MC with state space S?) The update step ensures that the row and
column sums do not change. Each table belongs to S. The Markov property
comes from the fact that P{Xn+1 = τ | Xn = σ, past info} is determined by
the same probabilty mechansim, which depends only on σ, each time Xn is in
state σ.

(c) (Aperiodic?) In what follows I draw pictures as if i1 = j1 = 1 and i2 = j2 = 2
and focus only on changes that affect that top left corner of the table. (The

values shown as dots are unaffected.) There are
(
4
2

)2
= 36 ways to actually

choose i1, i2, j1, j2.

σ =

a b . . 220
c d . . 215

. . . . 93

. . . . 64

108 286 71 127

σ′ =

a+1 b−1 . . 220
c−1 d+1 . . 215

. . . . 93

. . . . 64

108 286 71 127

σ′′ =

a−1 b+1 . . 220
c+1 d−1 . . 215

. . . . 93

. . . . 64

108 286 71 127

If min(a, b, c, d) > 0 then P (σ, σ′) = 1/72 = P (σ, σ′′). If min(a, b, c, d) = 0

the probabilities are a little different. For example, if a = 0 < b, c, d then
P (σ, σ) = 1/72 = P (σ, σ′). Tables in S that contain at least one zero (of
which there are many) have period 1. If the chain is irreducible then it has
period 1.

(d) (Stationary distribution uniform?) The transition probabilities are symmetric:
P (σ, τ) = P (τ, σ). (Time reversibility.) If σ 6= τ and the chain goes from σ
to τ by choosing i1, i2, j1, j2 and tossing a head then the chain goes from τ
to σ by choosing i1, i2, j1, j2 and tossing a tail.



If πσ = 1/#S for all σ in S then∑
σ∈S

πσP (σ, τ) =
∑

σ∈S
πτP (τ, σ) = πτ

That is, π is the stationary distribution.

(b) (Irreducible?) One way to proceed is to work with the distance between tables
defined by d(σ, τ) :=

∑
i,j |σ[i, j]−τ [i, j]|. It suffices to show that if σ 6= τ then

there is a always a legal step from σ to some σ′ for which d(σ′, τ) < d(σ, τ).
By a finite number of such steps we could build a legal path between σ and τ .

Locate a suitable place for taking the step by looking at the signs in the table
of differences D = σ− τ . The row and column sums of D are all zero. Also D
must contain at least one strictly negative number. For concreteness suppose
D[1, 1] < 0. To make the sum across the first row equal to zero there must
exist some column j for which D[1, j] > 0. Similarly, there must exist some
row i for which D[i, 1] > 0. We have no control over D[i, j]. The pattern of
signs in D shows that

σ[1, 1] < τ [1, 1] σ[1, j] > τ [1, j]

σ[i, 1] > τ [i, 1] ??

In consequence, both σ[i, 1] and σ[1, j] are strictly positive. The table σ′ that
agrees with σ except for

σ′[1, 1] = σ[1, 1] + 1 σ′[1, j] = σ[1, j]− 1

σ′[i, 1] = σ[i, 1]− 1 σ′[i, j] + 1

contains no strictly negative values (so it belongs to S) and

|σ′[1, 1]− τ [1, 1]| = |σ[1, 1]− τ [1, 1]| − 1

|σ′[1, j]− τ [1, j]| = |σ[1, j]− τ [1, j]| − 1

|σ′[i, 1]− τ [i, 1]| = |σ[i, 1]− τ [i, 1]| − 1

|σ′[i, j]− τ [i, j]| = |1 + σ[i, j]− τ [i, j]| ≤ 1 + |σ[i, j]− τ [i, j]|.

We have made three improvements at a possible cost of at most one in the
[i, j] position. Thus d(σ′, τ) ≤ d(σ, τ)− 2.

[3] Consider once again the one-sided random walk described on Wednesday 23 January
(and on the onesideRW.pdf handout). Suppose β > 1/2. You know that the chain
has a stationary probability distribution. The chain is recurrent. In fact (see bonus
question) it is positive recurrent. Find the value τ := E1T0 by these steps.
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(i) (10 points) Explain why τ must be finite if the chain is positive recurrent.

(ii) (10 points) Show that EkT0 = kτ for each k ≥ 1.

(iii) (10 points) Set up an equation for τ by conditioning on the first step, then solve.
Your solution should tend to infinity as β decreases to 1/2.

For (i): By conditioning on the first step we get

∞ > E0T0 = β(1 + 0) + α(1 + E1T0)

Many of you forgot to add 1 for the first step.

For (ii), note that a path from k to 0 must first pass through k − 1, then
through k − 2, . . . , then through 1, then lead to zero. (In between visiting k1
then visiting k − 2 the chain might return to k.) The Markov property gives the
representation

EkT0 = EkTk−1 + Ek−1Tk−2 + · · ·+ E1T0.

For EkTk−1 notice that nothing to the left of state k−1 in the picture has any effect
on the calculation. If we ignore those irrelevant parts we are left with a picture
that looks just like the original one except that the labels are changed from 0, 1, . . .
to k − 1, k, . . . (and it lacks a loop from k − 1 back to k − 1). The task of getting
from k to k−1 is probabilistically the same as the task of getting from 1 to 0. Hence
EkTk−1 = E1T0 = τ . And so on.

For (iii), condition on F = {first step goes to 0} and F c = {first step goes to 2};

τ = E1T0 = (P1F )E1(T0 | F )+(P1F
c)E1(T0 | F c) = β(1)+α(1+E2T0) = 1+2ατ

whose only finite solution is τ = (1− 2α)−1.

[4] (bonus points) You know that an irreducible [aperiodic] Markov chain that has a
stationary probability distribution π = {πi : i ∈ S} must be recurrent. Use the BLT
to show that such a chain must actually be positively recurrent. Here are some ideas
that might help.

For some state i suppose EiTi = +∞.

(i) Let VN =
∑

n≤N I{Xn = i} denote the number of visits to state i in the first
N steps. Use the BLT to show that EiVN/N → πi as N →∞.

(ii) For each positive integer M , show that VN ≥ M iff
∑

n≤M T
(n)
i ≤ N , where

the T
(n)
i ’s are the successive cycle times.

(iii) With Pi probability one,
∑

n≤M T
(n)
i /M → ∞. (Why?) Deduce, for each

ε > 0, that

Pi{VN/N > ε} → 0 as N →∞.

(iv) Deduce that Ei(VN/N) < 2ε for N large enough.

(v) What does that tell you about πi?



(vi) In fact, is it possible to have πj = 0 for at least one j in S?

My apologies for omitting the word aperiodic from the original statement of the
Problem. None of you seemed to be bothered by the omission. I would be interested
to hear from any of you who can correctly describe (with proofs) what happens if the
chain has a stationary probability distribution π, is irreducible, and has period 2.

For (i):

EiVN =
∑

1≤n≤N
EiI{Xn = i} =

∑
1≤n≤N

Pi{Xn = i}.

By the BLT, Pi{Xn = i} → π as n→∞. Then use the Analysis fact that if an → a
then N−1

∑
1≤n≤N an → a.

Remark. See http://en.wikipedia.org/wiki/Cesàro summation. The proof is
easy. For each ε > 0 there exists an nε such that |an− a| < ε for all n ≥ nε. For
N > nε,∣∣∣a−N−1

∑
1≤n≤N

an

∣∣∣ ≤ N−1
∑

1≤n≤nε

|an − a|+
N − nε
N

ε

On the right-hand side, the first sum is fixed while N goes to infinity and the
second term is less than ε.

Many of you seemed to assert that Pi{Xn = i} = πi for all n (which is not true),
or started a calculation with Pπ with a mysterious change to Pi in subsequent lines.

For (ii), I intended the calculation to refer to chains starting from state i.
The asserted inequality reflects the fact that the Mth return to state i occurs at

time SM :=
∑

n≤M T
(n)
i , the end of the Mth cycle.

For (iii) I was expecting something like: for each ε > 0

Pi{
∑

n≤M
T
(n)
i /M ≤ 2/ε} → 0 as M →∞.

Take M as the largest integer for which M ≤ Nε. Then

Pi{VN > Nε} ≤ Pi{VN ≥M}

= Pi{
∑

n≤M
T
(n)
i /M ≤ N/M} ≤ Pi{

∑
n≤M

T
(n)
i /M ≤ 2/ε},

which tends to zero as N tends to infinity.

Some of you asserted that SVN = N , which is not true. (Consider the case

T
(1)
i = T

(2)
i = T

(3)
i = 4 and N = 9, for which VN = 2 and T

(1)
i +T

(2)
i = 8.) However

it is true that SVN ≤ N < S1+VN . For each realization of the chain along which
Sn/n→∞ as n→∞ we have

N/VN ≥ SVN /VN →∞.

Thus VN/N → 0 with Pi probability one.

Those of you who have studied some advanced probability would have recognized
the argument leading from

Pi{VN/N → 0} = 1 to Pi{VN/N > ε} → 0 for each ε > 0,



or from

Pi{Sn/n→∞} = 1 to Pi{Sn/n ≤ C} → 0 for each finite C,

as an example of almost sure convergence implying convergence in probability. I
was not expecting any of you to know any advanced probability; I accepted any
reasonable attempt to explain.

For (iv):

Ei(VN/N) ≤ Ei
(
εI{VN ≤ Nε}+ I{VN > Nε}

)
≤ ε+ P{VN > Nε}.

For (v): Parts (i) and (iv) togther imply that πi < 2ε for each ε > 0. That is, πi
must be zero.

For (vi): By HW2.2, if EiTi =∞ for one i ∈ S then EjTj =∞ for all j ∈ S, which
would imply πj = 0 for all j. That is, π could not be a probability distribution.
The only alternative is that EjTj <∞ and πj = 1/EjTj > 0 for all j.

Some of you gave a more direct argument. For each j ∈ S and each n ∈ N,

πj =
∑

i∈S
πiP

n(i, j).

There must exist at least one i0 for which πi0 > 0, because
∑

i∈S = 1. If πj = 0
then we would have Pn(i0, j) = 0 for all n, which would violate the assumption
that i0  j.

Some of you were confused by the fact, for a nonnegative random variable T ,
that P{T <∞} = 1 is compatible with ET =∞.


